! "# $
%&' ( ) *+ $ , - . ! /!(
* 0 1 2 3$ ( 45 6
71 *+
8 9 ( 1:
<6 * 8 ;
: 7
$ + * =
;
! " # $% &'() * + , + -,
'() * .(.)/
01 / 2234 56 7 5 8 Email:[email protected]
6
&'() * + , +
19 ! " # $%
3
19 ! " # $% &'() * + , (%
!
"
#$
%
&
&'(
)* * !
"
'+
9 : / 65
; 6
; 3 5
<, =! : / 2
; 2
; 3 3 >?
/@ A
"
> ?@ A B CDE F G(1H/ G- 0 I(-,/ J ? ( A K (+ > 2
L,) , J ? ( A M - N (+ & ,
O Moving Bed Biofilm Reactors -
PMBBR
*+
A M G -@ A B L,) , K (F ( A M - ,F 0 &Q(.)/ 0 KMT
O k1
P
*F, ,R + , M $% >@ S (.
B A T( - H A,+ - > &N (+ 0 2
O PR1 A> M O PR2 A U(/,
NVB W
; 3 5 A G- , (?
WoC
; 6X
&
X 7 8
&
pH=
&
7 mg/l W
; DO=
*% , *I 3Q
1 + G + (! H
>@ G( -
" V + C - S + , %
,! *I
A M - R1 A M G -@ R2
U(/,/ G k1 25 W5 KVB 9 F ", M A @ (? @
spss excel
" V
/
G A> , , A> M - ) Y( - *Z [ '+ 2
Wmg/l
; 7
?@ 0 ,- \=B '+
O PSCOD
] ^ A =
O 6555mg/l 7 355 P
> _(
W
`
\=B T( - - @ ( 0 , %(
] ^ A M A = J , ( \=B
O mg-
6W5N/l 7 6W P G
2
; 7 X5
B 0 , %( ,((a 9
A = \=
mg/m2.day X
; 5 7 68
; 5
?@ 0 ,- bB T( - - N (F ( cd+ S + , O
B 6 P`
@ *+
*#,+ &G F _ F (+ (1 , ( &G/> I(-,/ A = ( _ F G- % e
*+ G F _M - &f A = @ _ F
* # - * , ( gKV/ > K B G @
A> M 0 /C N (+ CDE F > G/> ?@ I(-,/ \=B ,F G- % e 2
G MBBR
<
Y( - ) ' , & h 0 ,- gI > 1 + 0V? *% , & (+ (1 , ( _(!
- )
I(-,/ > , . A A M CDE F G(1H/ * h h / i R , K# A &A> M
?@ G/>
&L,) , K (F ( A M - & ) Y( - &G/> ?@ I(-,/ &CDE F 3D
G -@
O Pk1
6
L,) , K (F ( A M - - O
MBBRs P j k ? - A B
/ @ GKM d CDE F G(1H/ A M B A> + G ( A , Q(.)/
G ,( *^+ d() * > A M + K# i(? A GI h
" V B @
> A + A , 0(+
g h A , G- M Q(.)/ B CDE F G(1H/ A M B , i R S B A M '() Tl - ,m (/ , ? A ,
CDE F > J , ( ?@ I(-,/ \=B * h G(1H/
O P
, J ? ( - K (+ 0 >
GM i G- *+ L,)
5
*F Gn+ / -
L,) , K (F ( O
PMBBR k! *F Gn+ / J ,
G , ! @ >
(+ *Im O
6 P n/ ,E B B
0 S + , g(+ S (. CDE F G(1H/ (+ / > A >
( ,+ ,+ ] ^ A M %- *(? nF B ,F M O 3 P A M - A M - G F i / j MBBR
] ,n/ N (F ( S + , G- M nF 0V? * m ,
* A 0( l NM nF 0V? ,F A M *( R M
NM > G @ 0 F, , (F ( A M N (+
@ > T ,M U n - O
2 P ,o- \D ,
& K (F ( A M - A , T / NVB " K/ > MBBR
- 1 + k (
A N (+ 0 B 0(#
M *F
A (l
*% , G > ( nF 0V? \D , N (+ 0
K 0V?
*+ B A 0V? Y 0
*-,B - i g NVB G >@ G- @
- O W P
! 0 (/ ! > N (F ( A B 0 k h
@ p H^ > 0 (! ,!
B g/cm3 6
; 5 7 4
; 5
* ^E > ,l 9 G f Kn
mm 8
,dR 5 mm
A ,E T @ G- M
,! & Y cd+ _ F " ) + , f * h i
*+
O 2
&
3 P
] ^ A , / - M - iKB $ I
h d
> A, =! \ dn q# , 0((n/ G
N (F ( Y A bF O
W&4 P I(-,/ J ? ( \=B * h
- ( - A , - *(? nF > &,I ( H G/>
* , ( O PNOB A,( h
> \ M 0 G ( +
&f ,B Gh C ^ , - 0 ,- r f pH
, =! 0( ! ) Y( - *Z [ O
8 P
* h
A,( h * h 0 ,/ i + f K B A, A DE F G(1H/
>
Y( - *Z [ 0 $ 0( ! < > 1 + NOB
) O
X P
s G f G- G $ KM
I(-,/ G (+ f Kn G/> I(-,/
(+ (1 , ( ,F >
\=B CDE F > (+ (1 , ( O
P f Kn
(+ ( - *#,+ > , n ,+ ( * , ( (+ ( - *#,+
G d & L ( @ G
G I '() * , (
gKh iR B *Z [ . > f K B 0
/ G- , + G ! *? B k ( > * KB
A M - ( - '+ / , + Af I \,H *#,+
* , ( O
5 P J , ( ,I ( J ? ( \=B s0 ,
* , ( G L ( @ G- 0 A J ? / >
i I/ J , ( > G * , ( ,- ( - (B
- O 6
&
P
t h (+ (1 , ( i 0 A M ,F 0 , - ) ' , *)/ * , ( gKV/ Q ,u > (+ (1 , (
3
* % %M Y! K # G HF
*F <, Y( - O
2
&
3 P ( I(-,/ ,F 0
G B, ,M , ( * , (
O (+ (1 , (
(+ (1 , ( P
G t h (+ (1 , ( - A I
@ (+ (1 , ( * , ( O
* , ( P ,/ +@ , ( A V
M
> ( & > 0V? (? / _M - , D# &< 0
?@ G > ( & (+ (1 , ( G B, u Y( - G _M - (+ (1 , ( ,F O
6 P Kn
*#,+ f
* , ( (+ (1 , ( W
; 7 6 , ( > , n ,+ , ,
O W P ,F > 1 + &i f 0(KM G f K B
* , ( G ) Y( - ' , *)/ t h (+ (1 , (
*+ Gh / i R C =h O
8
&
4 P
I(-,/ ?@ \=B > Q(.)/ 0 > \ M N (+ > 1 + J , (
*Z [ ' , *)/ MBBR
A M ,F > , K- A Z [ ) ) Y( - M $% >@ ! S (. CDE F T J ? ( G(1H/
O 7lab
scale P j > A M G - M - 0 KMT (k1)
,!
,R A , , > G + (! H
F,
A B
( )/ Gn? d j 7
*+ A , - GV( M $% >@
L,) , K (F ( A M - - Z K Q(.)/ 0 j A M G -@ A B O
Pk1
?@ I(-,/ \=B * hKMT
F > G/>
> & ) ) Y( - ' , *)/ CDE
i -
(1 NVB G T( - - T W
; 3 , (?
(1 NVB G A> M - T 5
-D! k h > , (?
1 + SD G -= A M G - '+ / M - 0
,! *I U(/,/
25 W5
G F, KVB 9
d+
N (F ( A , 1 + nR Y c
, ,
n M G -@ j 0 Y cd+
m2/m3 W55
O 3 P
*% , * h ) A> M - A
\ M T( - - G * , ( , ( A A B
B ,u (+ (1 , ( ,F u @ \=B O
i P
E>- 2 1 ( 9 ! - F 0 $
° °
Feeding tank
Internal recycle
Pump Anoxic
reactor (R1) Aerobic reactor (R2)
Air supply Water bath
Settling tank
Waste sludge
2
L,) , K (F ( A M - - O
MBBRs P j k ? - A B
M +,vK- T '+ / A> M - > ( A M HEALIA
]- w + # G+ UH 0(l * +
0( / - G G =a/ ^ > T( + CDE F .
T( - G A> M > CDE F *% , T( - (? Q / xK! '+ / ETATRON D.S
DLS-
" V MA '+ / KM iK# T( - -
, ? KM T
*#,+ % ,/ k ,(
45
*F, " V G.(R M -@ ( ,B Gh y1B * h
z 0 $ * m C d B
6ºC 6X
>
", C@ " KB Water Bath
" -@ A M , (M G V
1 + A - A M K# 9 G M, (M 0 .
G = - " KB Z G 0KE
1 + -@ xK! T > &" KB i C@ A M M { B % , ,h 0V? > M - M = * h
1 + 19 C h CDE F z G(1H/ " > F 0
B Z
W5 M -@ > T ,M NVB > 9
,! , C@ M -@ NVB K(R 0V?
,M
A T( + CDE F G + (! H M - > T 655 mg/l COD=
*I W
; W5
; 55
| COD/N/P
* h
G M, 1 , ( M , 1 , ( ,(o / (+ ! T
*F, ,R A , ,
> G B , 0 ,-
T( - - A, N(+ ! , ( > A> M - A, N( @ 1 + J , ( gI # G G + (! 9 G N (+ G B, 0 > k!
Contineus CDE F
A n COD
6555mg/l 7 355 ] ^ A I COD/N/P
>
; W
; 55 / W
; 6W
; 55 A = Z G
h A K ( , ( , + M, 1 , ( & M, 1 , (
> - , D# & ,F KH2PO4
K2HPO4
n
T( + CDE F * + ( , > A =a > ,1 F gI 1 + O
X
&
P
N ( 1? + O
MgSO4.7H2O P
N( - , - &
O CaCl2.2H2O P
0M@ , - &
O FeCl3.6H2O P
k 1? + &
O CuSO4.5H2O P
N(+ ! &
O PKI $ , - &
O MnCl2.H2O P
N + I(? &
O Na2MoO4.2H2O P&
A 1? +
O ZnSO4.7H2O P
*? I- , -&
O CoCl2.6H2O P
T (+
O H3BO3
P
A @ gKh M -@ > T ,M h , A > M G K ) Y( - & ,B Gh
G > d pH
A,( > A , G K > k! G 9 FD Y( -
) U(/, pH
, DO -55 , YSI , pH
CG-824
*-, * + SCHOTT
A,( >
G( -
\ 9 > k! *(t ( R G } , A M G K V M G K
%[ F 9 '+ / A> + 2W m
; 5 (? G 9 FD
_ >@
- ( @ > & ) COD O
NH4-N P , ( &
O NO3-N P
* , ( &
O NO2-N P A Q d *(t ( R
" V + O
65 P
", G Gh / e i( )/ (? @
A M F SPSS Excel
*+ G F, 9
/
u A> M T - - ) Y( - *Z [
K A , ,
*+ %
0((n/ * h
- -
MBBRs ,((a/ & ) Y( - ' , *)/
W
G A $ MBBRs
$
; Qr/Q=
H
$SCOD HR
SCOD removal efficiency (%)Anoxic SCOD removal rate (g SCOD/m2.day) Aerobic SCOD removal rate (g SCOD/m2.day)
Aerobic SCOD loading rate (g SCOD/m
G A $COD I mg/l J K DO=
"# * L #0 M SCOD
HR ( N R2
SCOD concentration (mg/l)
R
²
Anoxic SCOD loading rate (g SCOD/m Fitting
R1
R
²
Aerobic SCOD loading rate (g SCOD/m Fitting
R2
"# * ,A COD
K
;J O TN=
mg/l
"# * L #0 M 9
N R1
SCOD concentration (mg/l)
R
Anoxic SCOD loading rate (g SCOD/m 56%
85%
Fitting
R
Aerobic SCOD loading rate (g SCOD/m Fitting
95%
$ 7 I
"# * ,A
, - N Pmg/l K
$
; I
"# * L #0 M 9
SCOD concentration (mg/l)
Anoxic SCOD loading rate (g SCOD/m2.day)
Aerobic SCOD loading rate (g SCOD/m2.day) 85%
", ( G A
) Y( - ( &
e G- @ *+ , (? ", ( G/> I(
COD 3
'+ G- M ( % G 9 B e
N (+ i- ] ^ A =
&
SCOD
P R
` 7
` 7
$ , -
.day)
.day)
0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3
DO concentration (mg/l)
5 / 2
; 3
", ( G A TN
) Y( - ( &
e G- @ *+ , (? ", (
-,/ ?@ 0 ,- \=B @ - > i9 B G/> I(
\=B ,((a/
COD A M K 6
'+ G- M ( % G 9 B e
N (+ i- ] ^ A =
i G Gh / 3
&
\=B *#,+ &N (+ 0 ?@ A = _ F SCOD
\=B '+ *+ G F _ F (
SCOD
T( - A M - ] ^ A M A =
O PR1
- SCOD R1
Pg G XW
`
PR ( / W
`
$ ) *+ .Q R ES T
G A $ ( 9
MBBR
* % %M Y! K # G HF
0.04 0.12
Anoxic (R Minimum Maximum
> A> M - ) Y(
2
; 5
*F, ,R >
COD
, (? , ", ( P
) Y( - ( &
e G- @ *+ , (? ", (
-,/ ?@ 0 ,- \=B @ - > i9 B K
\=B ,((a/
] ^ A M - )
A M K MBBR
'+ G- M ( % G 9 B e
N (+ i- ] ^ A =
*+
i G Gh /
\=B *#,+ &N (+ 0 ?@ A = _ F
\=B '+ *+ G F _ F (
T( - A M - ] ^ A M A =
\=B ( SCOD
g SCOD/m2.day
A> M - @ . O
R2
$ ) *+ .Q R ES T
G A $ ( 9
* % %M Y! K # G HF
0.42 0.12
R1) Aerobic Minimum
Maximum
> A> M - ) Y(
*F, ,R >
8
; 3W O , (? , ", (
W
; 7 e G- @ *+ , (? ", (
-,/ ?@ 0 ,- \=B @ - > i9 B
*+ @ A n A M K K
] ^ A M - )
*+ %
'+ G- M ( % G 9 B e
\=B N (+ i- ] ^ A = COD
> _(
W
`
*+
\=B *#,+ &N (+ 0 ?@ A = _ F
\=B '+ *+ G F _ F (
T( - A M - ] ^ A M A =
1
\=B (
( S + , A =
.day
A> M - @ .
*+ \=B
$ ) *+ .Q R ES T
G A $ ( 9
* % %M Y! K # G HF
0.42 3.4
Aerobic (R2)
- (
> A> M - ) Y(
&, (?
*F, ,R >
U(/,/
W55 8
G G (
W
-,/ ?@ 0 ,- \=B @ - > i9 B
*+ @ A n A M K
] ^ A M - )
*+ %
\=B MBBRs
> _(
\=B *#,+ &N (+ 0 ?@ A = _ F
\=B '+ *+ G F _ F (
T( - A M - ] ^ A M A =
A> M O PR2 1
O ( S + ,
W4
` A> M - @ .
XW
`
*+ \=B
$ I
$ ) *+ .Q R ES T
G A $ ( 9
* % %M Y! K # G HF
- (
&, (?
U(/,/
G G (
-,/ ?@ 0 ,- \=B @ - > i9 B
*+ @ A n A M K
*+ %
\=B MBBRs
\=B *#,+ &N (+ 0 ?@ A = _ F
\=B '+ *+ G F _ F (
T( - A M - ] ^ A M A =
A> M O W4 XW
4
L,) , K (F ( A M - - O
MBBRs P j k ? - A B
(? @ QIu
@
= ( 0( &A A
SCOD
A R n zd T @ \=B
O P- <0/01
; 5
R2= P M %
\=B 0 , %(
SCOD
T - -
O XW P`
*F, 9 G ( A =
> _( / @ . W
`
*+ \=B A> M -
\=B *#,+ 0 ,/f & 0 , T( - - SCOD
, ( ,F G % G- *+ F ~ 1/
0 (+ (1
- A> M - G A, K- ?@ U(/,/ 0
(+ (1 , ( ( f , (? 0 G-
*)/ T( - - (+ (1 , ( A> M -
*+ Y( - ) ' ,
" V Q(.)/
'+ /
Jianlong KM
+ _
655X J , ( \=B #
(+ (1 , ( '+ / - T " / (+ (1 , (
* , ( Q ,u > ? A ,I(M J ? ( O
(+ (1 , (
t h P ( A COD
3W5mg/l
& A , ,
\=B
> _( COD 6
`
@ *+
O 6 P QIu
G Kh > ,$ ..) G- .(.)/
Andreottola
_ KM
" V
• N (+ '+ / ?@ 0 ,- \=B ,o- B
N (+ 9 G A> + G ( nF 0V?
> MBBR
(? (M 8
, , '+ u G *# + XX
`
*+
@ O 66 P
= G Gh / i- J , ( \=B ( N (+ @ A
MBBRs A> M A M - > T ,M T( 1/ G
O PR2
T( - O PR1 ) ' , *)/ &N (+ i-
) Y( - O
W mg/l
; 7 DO= P A M K 2
/ 8
*+ %
K G Gh / 2
\=B ,((a/
G N (+ i- J , (
2
; 7 X5
` G- ,((a
A = J , ( \=B 0 , %(
mg/m2.day
X
; 5 7 68
; 5
*Z [ N (F ( cd+ *B S + , mg-N/l
8
; 3W 7 6W
*Z [ G } , J , ( \=B 0 , K-
A J , (
mg-N/l 6W5
*I 6 COD/N=
*+
*+ @
K G Gh / W
4
\=B ( J , (
G T( - -
6 7 25
`
% G- ,((a M
bB T( - - J , ( \=B 0 , %(
A> M - ) Y( - ) *Z [ ?@ 0 ,-
A M *Z [ h , A S + , M
- N (F ( cd+ *B J , ( A> M
O PR2
*+ GI+ ) M $% >@ S (.
% G d
J , ( A = ( _ F (+ (1 , ( ( *+
(+ (1 , ( _ F *#,+ &*+ G F _ F
*+ G F _M - J , ( ,/f A = 0 K @ * #
* , ( gKV/ *+
N( @ *I ,$ I# G
G * , ( i I/ *I > , %( &* , ( G i I/
, ( O
63 P
_ F J , ( \=B ( G- *F, GV( / 0 , G F _ F N (F ( Y *B S + , @ A = (
*+
M *Z [ _ F 0 G A N( @ Af A
A> M - O
6 COD/N= P
'+ d G _M -
B @
; 44
` ' , &G (/ 9 &
O mg COD/l W55
mg NH4-N/l 8
; 3W P
\=B
B '+ d J , ( 82
; W
`
*+
O K 8 P
*+ 0 K (+ (1 , ( (
?@ & , ( *Z [
8
A M A, - '+ / Y( - A> M - 0 ,
,F * h * , ( " ( @ € - ( - \ ,/ /
,m G G Gh / \,H (+ (1 , (
A , , %( ) Y( - 0( ! A Z [ >
gKV/ 0 ,
Z ) Y( - 0( ! A Z [ * , ( ( i( )/
- M, 1 , ( , K# ,
,-=? ~ F A M i( )/ U? d • ( &A> M O
62 P
Jmg/l K I H
$
MBBRs
A M A, - '+ / Y( - A> M - 0 ,
,F * h * , ( " ( @ € - ( - \ ,/ /
,m G G Gh / \,H (+ (1 , (
A , , %( ) Y( - 0( ! A Z [ >
& S > , ( kv+ , - , ( gKV/ 0 ,
Z ) Y( - 0( ! A Z [ * , ( Jianlong
( i( )/ Ning
- M, 1 , ( , K# ,
,-=? ~ F A M i( )/ U? d • ( &A> M
$ DO N mg/l
G A E 9 O ( $ $ E *D .Q R "# * L 8 /<
MBBRs
TN removal rate (g/m2.d)
A M A, - '+ / Y( - A> M - 0 ,
,F * h * , ( " ( @ € - ( - \ ,/ /
,m G G Gh / \,H (+ (1 , (
A , , %( ) Y( - 0( ! A Z [ >
& S > , ( kv+ , - , ( Z ) Y( - 0( ! A Z [ * , ( '+ / " V .(.)/
Jianlong
,(m / , ( &* , ( - M, 1 , ( , K# , DO
,-=? ~ F A M i( )/ U? d • ( &A> M
, - $ *D #0 * L U A DO
G A E 9 O ( $ $ E *D .Q R "# * L 8 /<
TN removal rate (g TN/m2.d)
A M A, - '+ / Y( - A> M - 0 ,
,F * h * , ( " ( @ € - ( - \ ,/ /
,m G G Gh / \,H (+ (1 , (
A , , %( ) Y( - 0( ! A Z [ >
& S > , ( kv+ , - , ( Z ) Y( - 0( ! A Z [ * , ( '+ / " V .(.)/
,(m / , ( &* , ( ,-=? ~ F A M i( )/ U? d • ( &A> M
, - $ *D #0 * L U A MBBRs
G A E 9 O ( $ $ E *D .Q R "# * L 8 /<
Input TN loading rate (g TN/m Anoxic reactor (R
Aerobic reactor (R Total MBBR system removal
bB )(h,/
A CDE F Q ,u > Y( - ,
J ? ( G V/ i R ?@ & 0( / % , i (+
1 + * h @ . 0 , \,H A> M H
>
# G (+ (1 , ( _ - ) Y( - & F,u
*Z [
A M - ( - j ,M _ - *#,+ ( , @
,F * h * , ( " ( @ € - ( - \ ,/ /
,m G G Gh / \,H (+ (1 , (
A , , %( ) Y( - 0( ! A Z [ >
& S > , ( kv+ , - , ( Z ) Y( - 0( ! A Z [ * , ( '+ / " V .(.)/
,(m / , ( &* , ( ,-=? ~ F A M i( )/ U? d • ( &A> M
, - $ *D #0 * L U A G A MBBRs
G A E 9 O ( $ $ E *D .Q R "# * L 8 /<
TN loading rate (g/m 99.
Input TN loading rate (g TN/m Anoxic reactor (R
Aerobic reactor (R Total MBBR system removal
Y( - *Z [ J ? ( G V/ i R O
bB )(h,/
A CDE F Q ,u > Y( - ,
J ? ( G V/ i R ?@ & 0( / % , i (+
1 + * h @ . 0 , \,H A> M H _M - & M , ?
# G (+ (1 , ( _ - ) Y( - & F,u
*Z [
A M - ( - j ,M _ - *#,+ ( , @
‚ h / i R ,(
‚
E *D "# V!
N HTN , - $ *D #0 * L U A
G A
G A E 9 O ( $ $ E *D .Q R "# * L 8 /<
TN loading rate (g/m2.d) .4% removal
Input TN loading rate (g TN/m2.d)
* % %M Y! K # G HF
Y( - *Z [ J ? ( G V/ i R A CDE F Q ,u > Y( - ,
J ? ( G V/ i R ?@ & 0( / % , i (+
1 + * h @ . 0 , \,H A> M H _M - & M , ?
# G (+ (1 , ( _ - ) Y( - & F,u Co- substrate
*Z [
A M - ( - j ,M _ - *#,+ ( , @
, ( A M
‚ m / A *
‚
E *D "# V!
G A E 9 O ( $ $ E *D .Q R "# * L 8 /<
d)
80% removal
* % %M Y! K # G HF
Y( - *Z [ J ? ( G V/ i R )
A CDE F Q ,u > Y( - ,
J ? ( G V/ i R ?@ & 0( / % , i (+
1 + * h @ . 0 , \,H A> M H n (+ (1 , ( A , _M - & M , ?
# G (+ (1 , ( _ - ) Y( - & F,u
G m L, % , +
substrate
A M - ( - j ,M _ - *#,+ ( , @
- ( - " ( @
‚ , ( A M
E *D "# V!
$ J I G A E 9 O ( $ $ E *D .Q R "# * L 8 /<
COD/N=2
* % %M Y! K # G HF
Y( - *Z [ J ? ( G V/ i R Y( - P )
J ? ( G V/ i R ?@ & 0( / % , i (+
1 + * h @ . 0 , \,H A> M H n (+ (1 , ( A ,
# G (+ (1 , ( _ - ) Y( - & F,u
G m L, % , +
A M - ( - j ,M _ - *#,+ ( , @
- ( - " ( @
$ W I E *D "# V!
$
* % %M Y! K # G HF
Y( - *Z [ J ? ( G V/ i R Y( - J ? ( G V/ i R ?@ & 0( / % , i (+
1 + * h @ . 0 , \,H A> M H n (+ (1 , ( A ,
# G (+ (1 , ( _ - ) Y( - & F,u
G m L, % , +
A M - ( - j ,M _ - *#,+ ( , @
- ( - " ( @
$
$ X
! 7JX H
$
, ( Af A Z [ (+ (1 , ( _M - * # J
~ ./ 0 sG- ,- i( )/ G $ / N (+ G A S , ( (+
- & Kn d
0( ! ( ?@ IK- i(?
f @ (+ (1 , ( ( A GZBD i R d
Af *Z [ J , ( \=B *#,+ _M - * # s0( ƒKM 8
P f K B s
9 $ * "# * L E *D #0 M
N HR1
mg-N/l P
K
;J
!
, ( Af A Z [ (+ (1 , ( _M - * #
~ ./ 0 sG- ,- i( )/ G $ / N (+ G A
>@ L ( @ bB _ F >
O PFA S , ( (+
A> M - - & Kn d
0( ! ( ?@ IK- i(?
f @ (+ (1 , ( ( A GZBD i R d
Af *Z [ J , ( \=B *#,+ _M - * # s0( ƒKM MBBRs
O K 2
Anoxic TN removal rate( g TN /m2.d)
9 $ * "# * L E *D #0 M
$ Y Z .Q R $
N N/l
I
, ( Af A Z [ (+ (1 , ( _M - * #
~ ./ 0 sG- ,- i( )/ G $ / N (+ G A
>@ L ( @ bB _ F >
A> M -
F,/ , M *(? nF A> M 0( ! ( ?@ IK- i(?
f @ (+ (1 , ( ( A GZBD i R d
Af *Z [ J , ( \=B *#,+ _M - * # s0( ƒKM N (+ G A " ( MBBRs
0 1 2 3 4 5 6 7 8 9 10
0
Anoxic TN removal rate( g TN /m2.d)
9 $ * "# * L E *D #0 M
$ Y Z .Q R $
) mg/l J K
, ( Af A Z [ (+ (1 , ( _M - * #
~ ./ 0 sG- ,- i( )/ G $ / N (+ G A
>@ L ( @ bB _ F >
PHNO A> M -
F,/ , M *(? nF A> M f @ (+ (1 , ( ( A GZBD i R d
Af *Z [ J , ( \=B *#,+ _M - * # s0( ƒKM N (+ G A " (
1 2 3
Anoxic TN loading rate 92%
j k ? - A B
9 $ * "# * L E *D #0 M
E *D H
$ Y Z .Q R $
MBBRs
$ ) DO
- ?@ 0 ,- , %( & @ *+ e G Gh / , ? € M n (+ (1 , ( ,F u T( - G F,
- (+ (1 , ( ,F A> M - & H ,([
*+ A , M, 1 , ( F ,/ , M l ]R
g ,+ ,- M * R NM Y( - @
, ( Af A Z [ (+ (1 , ( _M - * #
~ ./ 0 sG- ,- i( )/ G $ / N (+ G A
>@ L ( @ bB _ F >
O HNO2
F,/ , M *(? nF A> M f @ (+ (1 , ( ( A GZBD i R d
Af *Z [ J , ( \=B *#,+ _M - * # s0( ƒKM N (+ G A " (
4 5
Anoxic TN loading rate COD N
MBBRs P j k ? - A B
9 $ * "# * L E *D #0 M
"# * V!
NTN E *D
G A $ MBBRs
- ?@ 0 ,- , %( & @ *+ e G Gh / , ? € M n (+ (1 , ( ,F u T( -
,R \,H , ( * , ( A A (B * h G F,
A> M - ?@ > K- *Z [ - (+ (1 , ( ,F A> M - & H ,([
*+ A , M, 1 , ( F ,/ , M l ]R
g ,+ ,- M * R NM Y( - @
M M, O
6W P
6 7 8
Anoxic TN loading rate (g TN /m 2 40%
rem oval COD/N=2 N=250 m g/l
L,) , K (F ( A M - - O
MBBRs
$ [ I
9 $ * "# * L E *D #0 M
"# * V!
G A $
- ?@ 0 ,- , %( & @ *+ e G Gh / , ? € M n (+ (1 , ( ,F u T( -
,R \,H , ( * , ( A A (B * h A> M - ?@ > K- *Z [ - (+ (1 , ( ,F A> M - & H ,([
*+ A , M, 1 , ( F ,/ , M l ]R
g ,+ ,- M * R NM Y( - @
1 , ( A ](nb/ q# F ,/ , M M M,
9 10
2.d)
L,) , K (F ( A M - -
$
I
"# * V!
0 /C - ?@ 0 ,- , %( & @ *+ e G Gh / , ? € M n (+ (1 , ( ,F u T( -
,R \,H , ( * , ( A A (B * h A> M - ?@ > K- *Z [ - (+ (1 , ( ,F A> M - & H ,([
*+ A , M, 1 , ( F ,/ , M l ]R
g ,+ ,- M * R NM Y( - @
1 , ( A ](nb/ q# F ,/ , M
11
L,) , K (F ( A M - -
$ P I
\ 0 /C - ?@ 0 ,- , %( & @ *+ e G Gh / , ? € M n (+ (1 , ( ,F u T( -
,R \,H , ( * , ( A A (B * h A> M - ?@ > K- *Z [ - (+ (1 , ( ,F A> M - & H ,([
*+ A , M, 1 , ( F ,/ , M l ]R
g ,+ ,- M * R NM Y( - @
1 , ( A ](nb/ q# F ,/ , M
\ - ?@ 0 ,- , %( & @ *+ e G Gh / , ? € M n (+ (1 , ( ,F u T( -
,R \,H , ( * , ( A A (B * h A> M - ?@ > K- *Z [ - (+ (1 , ( ,F A> M - & H ,([
*+ A , M, 1 , ( F ,/ , M l ]R
g ,+ ,- M * R NM Y( - @
1 , ( A ](nb/ q# F ,/ , M
* % %M Y! K # G HF
t h (+ (1 , ( * , ( gKV/
f B
Andreottola et al + G- .(.)/ (
6555
L,) , K (F ( A M - - G . * h
Gt G % ( )/ " V nF 0V? ,F G . Q(.)/ 0 > i9 B e t G- K O
64 P
+ _ KM Yoo A , G- .(.)/
& " V T( + CDE F > > , ( \=B
\=B COD
> _( U(/, TN W
` 5
` K "D#
N (+ 0 > @ *+ > , K- G- O
68 P
*)/ N (+ 0 G- M % e ) ' ,
gI > 1 + 0V? *% , & ) Y( -
> _( i- J , ( \=B / & h 0 ,- X
`
T n / N (+ 0 G ( ' ,
G A
> ?@ A=a \=B * h ,m
,- %(! n 9 A, A DE F
$ S >]!
N G K(K9 A KM > G (+
(B S M
A R@ ' , „ % >@ " V # ,u G A ,V +
& G A KM ! * + G- > …,F S , , %/ , ./
%^ G? . 0 G- *+ ,-„ G ">f
A, - G ! >
References
1-Hasar H. Simultaneous removal of organic matter and nitrogen compounds by combining a membrane bioreactor and a membrane biofilm reactor. Bioresource Technology 2009; 100 (10): 2699-2705.
2- Maurer M, Fux C, Graff M, et al. Moving bed biological treatment (MBBT) of municipal wastewater:
denitrification. Water Science & Technology 2000; 43(4-5): 337-344.
3- Odegaard H, Rusten B, Swestrum T. A new moving bed biofilm reactor – applications and results. Water Science & Technology 1994; 29(10-11):157-165.
4- Delenfort E, Thulin P. The use of Kaldnes suspended carrier process in treatment of wastewaters from the forest industry. Water Science & Technology 1997; 35(2-3):123-130.
5- Xiao L.W, Rodgers M, Mulqueen J. Organic carbon and nitrogen removal from a strong wastewater using a denitrifying suspended growth reactor and a horizontal-flow biofilm reactor. Bioresource Technology 2007; (98): 739–744.
6- Rusten B, Eikebrokk B, Ulgenes Y. Design and operations of the kaldnes moving bed biofilm reactors.
Aquacultural Engineering 2006; 34(3): 322-331.
7- Munich EV, Lant P, Keller J. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. Water Reserch 1996; 30(2): 277–284.
55
L,) , K (F ( A M - - O
MBBRs P j k ? - A B
8- Zhang X, Zhou J, Guo H, et al. Nitrogen removal performance in a novel combined biofilm reactor.
Process Biochemical 2007; 42: 620–626.
9- Wang J, Yang N. Partial nitrification under limited dissolved oxygen conditions. Process Biochemistry 2004; 39: 1223-1229.
10- Rittmann BE, Mc Carty PL. Environmental biotechnology: principles and applications. New York;
McGraw-Hill, 2001: 470-474.
11- Turk O, Mavinic DS. Selective inhibition: a novel concept for removing nitrogen from highly nitrogenous wastes. Environ Technol Lett 1987; 8: 419-426.
12- Chung J, Bae W. Nitrite reduction by a mixed culture under conditions relevant to shortcut biological nitrogen removal. Biodegradation 2002; 13: 163-170.
13- Ruiz G, Jeison D, Chamy R. Nitrification with high nitrite accumulation fore the treatment of wastewater with high ammonia concentration. Water Research 2003; 37(6): 1371-1377.
14- Ruiz G, Jeison D, Rubilar O, et al. Nitrification-denitrification via nitrite accumulation for nitrogen removal from wastewaters. Bioresource Technology 2006; 97:330-335.
15- Abeling U, Seyfried CF.Anaerobic-aerobic treatment of high strength ammonium wastewater nitrogen removal via nitrite.Water Science&Technology 1992; 26: 1007-15.
16- Bernet N, Dangcong P, Delgenès JP, et al. Nitrification at low oxygen concentration in biofilm reactor.
Journal of Environmental Engineering 2001; 127(3): 266-271.
17- Antileo C, Werner A, Ciudad G, et al. Novel operational strategy for partial nitrification to nitrite in a sequencing batch rotating disk reactor. Biochemical Engineering Journal 2006; 32: 69-78.
18- Dulkadiroglu H, Cokgor EU, Artan N, et al. The effect of temperature and sludge age on COD removal and nitrification in a moving bed sequencing batch biofilm reactor.Water Science & Technology 2005;
51(11): 95-103.
19- Hem L.J, Rusten B, Ødegaard H. Nitrification in a moving bed biofilm reactor. Water Research 1994;
28(6): 1425-1433.
20- APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater.21st ed.
Washington DC, American Public Health Association: USA; 2005: 4-118-4-120.
21- Jianlong W, Yongzhen P, Shuying W, et al. Nitrogen removal by simultaneous nitrification and denitrification via nitrite in a sequence hybrid biological reactor. Chinese journal of chemical engineering 2008; 16 (5): 778-784.
5
* % %M Y! K # G HF
22- Andreottola G, Foladori P, Gatti G, et al. Upgrading of a Small Overloaded Activated Sludge Plant Using a MBBR System. Journal of Environmental Science and Health, Part A-Toxic/Hazardous Substances
& Environmental Engineering 2003; 38 (10): 2317–2328.
23- Gerardi M.H. Nitrification and Denitrification in the Activated Sludge Process. New York: John Wiley and Sons Inc; 2002: 120-122.
24- Jianlong W, Ning Y. Partial nitrification under limited dissolved oxygen conditions. Process Biochemistry 2004; 39(10): 1223–1229.
25-Mosquera-Corral A, Gonza ´lez F, Campos J.L, et al. Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds. Process Biochemistry 2005; 40: 3109–3118.
26- Andreottola G, Foladori P, Ragazzi M. Upgrading of a small wastewater treatment plant in a cold climate region using a moving bed biofilm reactor (MBBR) system. Water Science and Technology 2000;
41(1): 177–185.
27- YOO H, AHN KH M, LEE HJ, et al. Nitrogen Removal from Synthetic Wastewater by Simultaneous Nitrification and Denitrification (SND) via Nitrite in an Intermittently-Aerated reactor. Water Research 1999; 33(1): 145–154.
56
L,) , K (F ( A M - - O
MBBRs P j k ? - A B
Kaldnes(k1) Moving bed Biofilm Reactors Performance for Organic and Nitrogen Compounds Removal From Wastewater with Iimited Dissolved Oxygen
Zafarzadeh A (Ph.D)* 1Bina B (Ph.D)2 Nikaeen M(Ph.D)3 Movahedian Attar H (Ph.D)2 Hajian Nejad M(Ph.D)3 1.Corresponding Author: Assistant Professor, Department of Environmental Health Engineering, Golestan University of Medical Sciences, Gorgan, Iran.
2.Professor, Department of Environmental Health Engineering, Isfahan University of Medical Sciences, Isfahan, Iran.
3.Associate professor, Department of Environmental Health Engineering, Isfahan university of Medical Sciences, Isfahan, Iran.
Abstract
Background: Moving bed biofilm reactor (MBBR) is one of the new hybrids biological systems that are used in treatment of wastewater contaminated by organic and nitrogen pollutant. In this study, the continuously operated laboratory scale Kaldnes(k1) moving bed biofilm reactors (MBBRs) was investigated.
Methods: In this system, two series as Anoxic reactor (R1) and aerobic (R2) have a size 3.5 and 10 liters, respectively. This system was operated at temperature 28.5 oC, pH=7-8, DO= 1-1.5 mg/l and internal recycle ratio in continuously. All tests based on the standard methods were performed. The Anoxic and Aerobic reactors were filled to 40 and 50 %( v/v) to attach and retain biomass with k1 biofilm carriers, respectively.
Statistical analysis software was SPSS and EXCEL.
Results: During operation, the average dissolved oxygen in the aerobic reactor was 1-1.5 mg/l. The average removal efficiency of soluble organic carbon (SCOD) was obtained over 95% at different load organic matter (300-2000 mg/l) in the anoxic reactor. The average removal efficiency of total nitrogen (TN) occurred in the range of 80-99.4% at different load nitrogen (25-250 mg/l) and maximum removal efficiency based on biofilm surface area occurred close 92% at loading rate of 0.127-0.181 mg-N/m2.day. The results show that nitrification rate was increased to increase loading rate of nitrogen compounds but the rate of nitrification was decreased at high loading rate. Probably this was due to an excessive accumulation of nitrite ion in the aerobic reactor.
Conclusions: This investigation showed that the process of removal organic and nitrogen compounds in the MBBRs system under pre-denitrification without recycle sludge and external carbon source has an acceptable performance for treatment of wastewater with high load organic carbon and organic nitrogen compounds.
Keywords: Wastewater, Organic and nitrogen compounds,Oxygen limited, Moving bed biofilm reactors, Kaldnes (k1).