Basic Current Mirrors and Single‐
Basic Current Mirrors and Single‐
Stage Amplifiers g p
Hossein Shamsi Hossein Shamsi
١
Simple Current Mirror
ds out
W r r
⎜ ⎞
⎛
=
2in
out
I
W L W
I ⎛ ⎞
⎠
⎜ ⎞
⎝
⎛
=
2 inout
L W ⎟
⎠
⎜ ⎞
⎝
⎛
1
eff
out
V
V ≥
٢
Common‐Source Amplifier
٣
Source‐Follower or Common‐Drain Amplifier
gs1 denotes the body effect. (gs1 =gmb1) gs1 denotes the body effect. (gs1 gmb1)
۴
Common‐Gate Amplifier
2 ds
L
r
R =
۵
Common‐Gate Amplifier
۶
Source‐Degenerated Current Mirrors
in
out
I
L I W L
if W ⎟ ⇒ =
⎠
⎜ ⎞
⎝
= ⎛
⎟ ⎠
⎜ ⎞
⎝
⎛
2
1
L
L ⎠ ⎝ ⎠
⎝
1 2eff out
s
out
R I V
V ≥ +
٧
High‐Output‐Impedance Current Mirrors
Cascode Current Mirror Wilson Current Mirror
٨
Cascode Current Mirror
L I W
I
2⎟ ⎠
⎜ ⎞
⎝
⎛
=
inout
I
L I W
1
⎟ ⎠
⎜ ⎞
⎝
= ⎛
٩
Wilson Current Mirror
L W ⎟
⎠
⎜ ⎞
⎝
⎛
in
out
I
L W
I L
2⎟ ⎠
⎜ ⎞
⎝
⎛
⎠
= ⎝
L ⎠
1⎝
١٠
CASCODE Gain Stage
telescopic-cascode amplifier folded-cascode amplifier
١١
Telescopic‐Cascode Amplifier
R
R ||
out m
V
L d
out
R g
A
R r
R
×
−
≅
=
1 2
||
The folded-cascode amplifier is analyzed similarly.
١٢
Differential Pair Differential Pair
After a few manipulation, it
i th t
r r
r ≅
is proven that:
2 4 ds ds
out
r r
r ≅
Besides, we have:
i
g v
g v i
i
sc≅ 2 i
s2 g
mg
mv
ii
1 1 12 2
2 = =
≅
So the voltage-gain is obtained:
So, the voltage gain is obtained:
out m
V
g r
A =
Frequency Response
Common‐Source Amplifier Common Source Amplifier
١۴
Frequency Response Common‐Source Amplifier p
Assuming that poles are real numbers and ωp1<< ωp2, we have:
١۵
Frequency Response Common‐Source Amplifier p
If the poles are complex conjugate, we will write the above transfer function as follows:
( ) g R
A 0 = −
m1 2b
= 1 ω
0a Q = b
Si il l l th C D d C G lifi
١۶
Similarly, we can analyze the C.D and C.G amplifiers.
Frequency Response CASCODE Amplifier p
p
R C R C
1 1
1
≅ ≅
ω
2
g
mω ≅
L out d
out
p1
R C
2R C
2 2
s
p
≅ C
ω
١٧