ContentslistsavailableatScienceDirect
Journal of Manufacturing Systems
jo u r n al ho m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / j m a n s y s
Technical Paper
A robust optimization approach for pollution routing problem with pickup and delivery under uncertainty
N. Tajik
a,∗, R. Tavakkoli-Moghaddam
a, Behnam Vahdani
b, S. Meysam Mousavi
caSchoolofIndustrialEngineering,CollegeofEngineering,UniversityofTehran,Tehran,Iran
bFacultyofIndustrial&MechanicalEngineering,QazvinBranch,IslamicAzadUniversity,Qazvin,Iran
cIndustrialEngineeringDepartment,FacultyofEngineering,ShahedUniversity,Tehran,Iran
a r t i c l e i n f o
Articlehistory:
Received4October2012
Receivedinrevisedform11October2013 Accepted31December2013
Availableonline16February2014
Keywords:
Pollutionroutingproblem Pickupanddelivery Robustoptimization Fuelconsumptions CO2emissions
a b s t r a c t
Organizationshaverecentlybecomeinterestedinapplyingnewapproachestoreducefuelconsumptions, aimingatdecreasinggreenhousegasesemissionduetotheirharmfuleffectsonenvironmentandhuman health;however,thelargedifferencebetweenpracticalandtheoreticalexperimentsgrowstheconcern aboutsignificantchangesinthetransportationenvironment,includingfuelconsumptions,carbondioxide (CO2)emissionscostandvehiclesvelocity,thatitencouragesresearcherstodesignanear-realityand robustpollutionroutingproblem.Thispaperaddressesanewtimewindowpickup-deliverypollution routingproblem(TWPDPRP)todealwithuncertaininputdataforthefirsttimeintheliterature.Forthis purpose,anewmixedintegerlinearprogramming(MILP)approachispresentedunderuncertaintyby takinggreenhouseemissionsintoconsideration.Theobjectiveofthemodelistominimizenotonlythe traveldistanceandnumberofavailablevehiclesalongwiththecapacityandaggregatedrouteduration restrictionsbutalsotheamountoffuelconsumptionsandgreenhouseemissionsalongwiththeirtotal costs.Moreover,arobustcounterpartoftheMILPisintroducedbyapplyingtherecentrobustoptimization theory.Computationalresultsforseveraltestproblemsindicatethecapabilityandsuitabilityofthe presentedMILPmodelinsavingcostsandreducinggreenhousegasesconcurrentlyfortheTWPDPRP problem.Finally,bothdeterministicandrobustmathematicalprogrammingarecomparedandcontrasted byanumberofnominalandrealizationsunderthesetestproblemstojudgetherobustnessofthesolution achievedbythepresentedrobustoptimizationmodel.
©2014TheSocietyofManufacturingEngineers.PublishedbyElsevierLtd.Allrightsreserved.
1. Introduction
Carbon dioxide (CO2) is one of the elemental green house gasesemitted throughhumanresource activity.Increasing CO2 becomesa majorproblemforthenaturalcycleinecosystemas thenaturealwaysmaintaintheequilibriumbetweentheamount ofCO2unleashedandtheamountofCO2refined;therefore,human resourceactivityisresponsibleforthatrisinghascomeabout.CO2 emissionsinUnitedStatewentupbyabout12%between1990and 2010[1].In2010,itaccountedforquiet84%ofallUnitedStateso thatthemainhumanresourceactivitycausesCO2emissionswith thecombustionoffossilfuels(e.g.,coal,naturalgasandoil)forpro- ducingenergyandtransportation.TheamountofCO2emissionof fuelcombustionintransportation,suchasgasolineanddiesel,after electricityproducersisthesecondlargestsourceofCO2pollutants.
Itisresponsiblefor31%oftotalUnitedStateCO2 emissionsand 26%oftotalgreenhousegasemissions[1].Theroadtransportation
∗Correspondingauthor.Tel.:+982182084183.
E-mailaddress:[email protected](N.Tajik).
accountsfor78%ofgreenhouseemissions,includingCO2 grow- ingtheconcernabouthazardouseffectsonecosystem[2],which makesscientistsandresearchersdevelopadaptiveapproachesand modelstoexplicitlyreducetheamountoftheabovepollutants.
Thevehicleroutingproblem(VRP)determinestheoptimalset ofroutestobeperformedbyafleetofvehiclestoserveagiven setofcustomerunderspecificconstraints.Besides,thevehiclesare startfrom,andendtoadepot[3–5].Theclassicalversionofthe VRPiscapacitateVRP(CVRP),inwhichallcustomerscorrespond todeliveriesandthedemandsaredeterministic,anditmaynotbe splitandonlycapacityrestrictionsareconsideredforthevehicles.
Fungetal.[6]representacapacitatearcroutingproblemwhich usesmemeticalgorithmtofindasetofroutesholdingtheminimum costoftransportation.Thecomputationalresultsillustratethatthe qualityofthesolutionishighinareasonabletime.
AnothercommonvariantistimewindowVRP(TWVRP)thatis anextensionofCVRP,atwhicheachcustomerisassociatedtoan interval,calledtimewindow,andeach ofthemmustbemetat itsinterval.Thesignificance oftheapplicationofthis TWVRPin realworldhasmaderesearchersdoeffortstofindappropriateand strongalgorithmtosolvethesetypesofVRPmodels.Forexample, 0278-6125/$–seefrontmatter©2014TheSocietyofManufacturingEngineers.PublishedbyElsevierLtd.Allrightsreserved.
http://dx.doi.org/10.1016/j.jmsy.2013.12.009
Nagateetal.[7]introduceamemeticalgorithmforTWVRPusing newpenaltyfunctiontoeliminateviolationoftimewindowcon- straintsaswellasoriginalconstraintusesin commonmemetic algorithm.Theexperimentalresultofthismodelassertsthatthe developedalgorithmperformswell.Zachariadisetal.[8]represent ahybridsolutionapproachasacombination oftabusearchand guidedlocalsearchwhichhasamplepowertoexploreavastspace tofindabettersolutionforVRPPDwithsimultaneouspickupand deliveryservices.Jeonetal.[9]developthemainVRPPDmodeland considerdoubletrip,multidepot,andheterogeneousvehiclesand suggestahybridgeneticalgorithminordertosolvethelargescale problems.
Anextended variantin thispaperis introducedasVRPwith pickup and delivery (VRPPD), in which some customers have demandtodeliverandsomeofothershaveloadstopickup.The typicalclassofVRPPDispickinguploadfromtheentirecustomer relatedto,andthendeliveringloadtoallremainedcustomers.Ter- sanandGen [10]consider a pickupdeliveryproblemin which vehiclecandeliverandcollectgoodssimultaneouslyinorderto modelrealworldproblemsuchareverselogisticandthenexam- inethemathematicalmodelbygeneticalgorithmandrepresentthe resultswhichapprovedtheaccuracyofthemodel.Anotherintro- ductionofVRPPDwithsimultaneouspickupdeliveryannouncedby Goksaletal.[11];Inthispaper,aheuristicsolutionbasedonpar- ticleswarmoptimizationispresentedwhichusesannealing-like strategytopreservethediversityofswarm.Fortheliteratureon theVRPanditsextensions,readerscanbereferredto[12–18].
ThereisagreatdealofeffortatextendingthetraditionalVRP objectivesandconstraintsnotjusttoaccountfortheeconomiccosts buttoconsidermorecomprehensiveenvironmentalandecological impacts.AcertainamountofworksreducestheCO2emissionswith loweringtheamountoffuelconsumptions.Bywayofillustration, ErduganandMiller-Hooks[19]introduceamathematicalmodel bykeepingfuelconsumptionstoaminimumviaminimizingthe totaltraveleddistancewhileconsideringtheneedsforrefuelingin therouteplanssooptimizedastoavoidtheriskofrunningoutof fuel.Ubedaetal.[20]representadistance-basedmodelaffected bymultiplyinganemissionfactordependedonaverageweightof atypicalvehicleandfuelconversionfactor.Thisstudyshowsthat introducingbackhaulstoavoidemptyrunningbenefitfromboth economicandecologicalmoreefficient.
Apartfromtheabove-mentionedstudies,someofotherworks involvefactorsdependedonthefeaturesofthevehicle,thefuelthat vehicleconsumes,andtherouteittravelstodepletetheamount ofCO2 emitted.Suzuki[21]showsthatthelessdistanceadeliv- eryvehicleisanticipatedwithheavierloadtraveledthelessfuel consumptions.Also,theyconsiderthefuelconsumptionsthatare relevanttowaitingtimeincustomerserviceplace.Figliozzi[22]
representsananalyticalmodelofCO2emissionsinvolvedinavari- etyoftime-definitivecustomerdemandsbyusingtimedependant vehicleroutingmethodin ordertoplanvehicles routes.Bektas and Laporte [23] shed light on thetrade-off betweendifferent parameters,suchasvehicleload,speed,and aggregatecost and environmentalgreenvehicleroutes,andtheyrepresentamodel namedpollutionroutingproblem(PRP).
Thereview oftherelated literature indicatesthat there is a significantgapontheapplyingthenew economic-friendly and ecological-friendlyVRPtopickupanddeliverysystems.Moststud- ieshavefailedtopayattentiontotheeffectof someeconomic impactsonecologicalinfluenceintheVRPnetworks.Inaddition, consumingtherealizationofsomeinfluentialparametersseems tobenecessarybecauseoftheimportanceofbuildingmathemati- calmodelsinthereal-worldapplications.Thispaperistoaddress a newtime window pickup-deliverypollution routingproblem (TWPDPRP)todealwithuncertaininputdataforthefirsttimein theliterature.ThepresentedproblemcombinesconventionalVRP
andtechnicalandmechanicalapproachestoestablishanewmixed integerlinearprogramming(MILP)modelbyconsideringeconomic andenvironmentalissuesconcurrently.
Themaininnovationsofthispapertodifferentiatetheefforts fromthosealready publishedonthesubjectareasfollows: (1) introducingpenalty costsforpickup nodesin ordertocreate a sequenceofpickupnodestoreducingtheamountoftravelingtime andthentheamountoffuelconsumptionsandCO2emissions;(2) integratingtimewindowconstraintsintotheVRPPDinorderto decreasethearrivaltimetodeliverynodes.Both(1)and(2)show uptheeconomiceffectsthatenrichenvironmentalinfluencesin themodel;(3)applyingrobustoptimizationwithintheconstraints consideringthevelocityofvehicleasanuncertainparameterin ordertoachieveapracticalmodel;forinstance,thisuncertaintyis relatedtotrafficflow,stopsatfuelstationsandtrafficlights.Allof theaboveconsiderationsbringthemathematicalmodelcloserto reality,unlikethepreviousstudiesbyconsideringthevelocityas asetofnumbersthatcanbechosenfrominordertooptimizethe VRPmodel[22,23];(4)consideringthechangesoftheCO2emis- sionscostandthefuelconsumptionscostoverthetimetothink overthealteringintherealworldapplications.Bytaking(3)and (4)intoconsiderationrobustoptimizationimportsintheTWPDPRP asanewwaytocreateatrade-offbetweeneconomicandecolog- icalissuesandcombinesthemtothenaturalcases;(5)takinginto accounttherobustconceptforservicetimeofeachcustomertodeal withdifferentsituations;and(6)thinkingoverthephysicalfeature ofeachvehicle,suchasthefrontsurfacetheweight,theslopeand thefractionfactorofroadsandbringthemintotheTWVRPPDto getthebestsequencepickupanddeliverynodessothatthefuel consumptionsandCO2emissionscostgetdownconsiderably.
Theremainderofthispaperisorganizedasfollows.Sections2, 3and4provideaformaldescriptionoftheTWPDPRP,theproposed mathematical model and the robust counterpart mathematical model,respectively.Computationalresultsondeterministicand robustsolutionsarepresentedinSection5.Also,inthissection thesensitivityanalysisisreportedonvariousparameters ofthe proposedMILPmodel.Thefinalsectionendswiththeconclusions.
2. Problemdefinition
ThispaperaddressesanewTWPDPRPincludingtwogroupsof nodes.Thefirst onecontains customerswhose loadsshouldbe pickedup,andthesecondonecoverscustomerswhosedemands shouldbedelivered.Themodelemploysagroupofvehiclesfor servicetasks,unlikethepreviousstudieswithonlyonevehicle mentioned in Section 1.As illustrated in Fig. 1, after servicing allpickup customers,theirloads arecarried bytrucks(i.e.,the loadspickedupfromthefirstgroupnodesandtheloadsthatare neededtobepickedupfromdepotatthebeginningforsupplying totaldemandsaccurately),thevehiclesdistributetheloadsamong deliverycustomers.Hence,theamountoftheproductwhicheach vehicleloadedupatthestartnode(i.e.,depot)isthetotaldemands ofdeliverynodesinwhichtheyvisitduringtheirroutesminusthe totalloadscollectedfrompickuppointsduringtravelingtheroutes thattheyareassociatedto.Iftotalpickedupproductsareoveror equaltothetotaldeliverydemandsduringtherelevantroutethe vehiclefollows,itleavesthedepotempty.Inaddition,thephysical featureofeachvehicle,suchasthefrontsurfacetheweight,the slopeandthefractionfactorofroads,areconsideredbasedon[24].
Calculatingthevelocityvalue:Duetoassumingvehiclesmotion withconstantacceleration,themaximumvalueofvelocityduring travelingfrompointitopointjwiththedistanceamount,dij is achievedfromthebelowequation[24]:
vij=
v20+2adij (1)
Fig.1.AnillustrativeexamplefortheTWPDPRPwithninecustomers,includingsix pickupcustomers(P),onedepot(O)andthreedeliverycustomers(D).
But,thevelocityinconstantaccelerationmotionhasdifferent valueinvariouspartsoftravelingdij.Thus,themeanvalueofveloc- itycanbeapropervaluetofigureoutthetimetravelingbetween pointsiandjforthedeterministicsolutioncalculatedby:
¯ v=
vij−v0
2 (2)
visthemaximumvelocityandv0istheminimumvelocityduring travelingdij.
Tospecifythestudyscope,assumptionandfacilitationaresup- posedinthepresentedMILPmodelformulationasbelow:
•Allpickupanddeliverynodesmustbeserviced;however,extra loadsareallowedtoretrievetothedepotbyvehiclesattheend oftheirroutes.
•Locationsofthedepotandcustomersnodesarefixedandprede- fined.
•Allvehiclesendupgettingtodepotaftercompletingtheirroutes.
•Eachvehiclehasapredefinedandfinitecapacity.
Withconsideringtheaboveassumptions,thispapersetsoutto describeaprocessinordertoreducetheaverageamountofloads carriedbyeachvehicleandtodecreasethenegativeimpactsof carryingloadsonfuelconsumptions.Then,CO2 emissionsbeside loweringthetraveldistance,traveltimeandarrivaltimestopoints foreachvehiclebyconsideringtheroadelements,suchasslope andfraction,andthephysicalfeaturesofeachvehicle,suchasfront surface,netweightandcapacity.Italsolinksthepenaltycostsfor pickuppointstotimewindowintervalsofdeliverypoints.
3. Modelformulation
Thefollowingnotationsareusedintheformulationofthepro- posedTWPDPRP.
3.1. Sets
P Setofpickupcustomersp=
1,2,...,P
D Setofdeliverycustomersd={n+1,n+2,...,n+n′} K Setofvehiclek={1,2,...,K}
{0} Depotatthebeginningoftheroute(allvehiclesstartsfrom) {n+n′+1} Depotattheendoftheroute(allvehiclesendto) V Setofallvertices{0,1,2,...,n,n+1,...,n+n′+1}
A SetofedgesA={(i,j)|i,j∈Vj=/0,i=/n+n′+1,i=/j}
3.2. Indices
i Indexofthepickupanddeliverycustomersandthedepotatthe startandendoftheroute
i={0,1,....,n,n+1,...,n+n′+n+n′+1}
j Indexofpickupanddeliverycustomersplusdepotatthestartand endoftheroutej={0,1,...,n,n+1,....,n+n′+n+n′+1}>
k Indexofvehiclesk={1,2,...,K}
3.3. Parameters
qi Demandforcustomeri
qi>0 ifi∈Pqi<0 ifi∈D q0=qn+n′+1=0 Ck Capacityofvehiclek
di Servicetimeatvertexi
ei Earlieststartofservicetimeatvertexi li Latestservicetimeatvertexi
Cijk Costoftravelingbetweenvertexi,jbyvehiclek tijk Traveltimebetweenvertexi,jbyvehiclek Tk Maximumtraveltimeofvehiclek Di Duedateofvertexi
CTi Costoftardinessinvertexi CEi Costofearlinessinvertexi Cf Costoffuelconsumption e CostofCO2emission
Wk Weightofvehiclekwithoutloads P Costofdriverperhours ij Slopeofedge(i,j) Ak Frontspaceofvehiclek Cd Frictionrateofair Cr Rollingresistance
sin(i,j) Sineoftheanglebetweentheroadconnectingvertexiandj andhorizonline(angleiscalculatedbasedongradient) cos(i,j) Cosineoftheanglebetweentheroadconnectingvertexiandj
andhorizonline(angleiscalculatedbasedongradient)
Airdensity
g Gravity
ϑijk Speedofvehiclektravelingbetweenvertexiandj ak Averageaccelerationofvehiclek
3.4. Decisionvariables Xijk
1 ifvehiclektravelsbetweenvertexiandj0 otherwise,
Qijk Loadsofvehiclekbeforearrivingtojafterpassingisubsequently yik Timeofstartingserviceatvertexibyvehiclek
Sjk Timeofcompletingaroutebyvehiclekwhenvertexjisthelast nodebeforevertexn+n′+1
TTik Tardinesstimeforvehiclekinvertexi ETik Earlinesstimeforvehiclekinvertexi
Intermsoftheabovenotations,theproposedMILPmodelfor theTWPDPRPispresentedasfollows:
MinZ=
K
k=1 n+n′+1
j=0,i=/j n+n′+1
i=0
(Cf+e)(ak+(sin(i,j)
+Crcos(i,j))g)dijWkxijk
+
K
k=1 n+n′+1
j=0,i=/j n+n′+1
i=0
(Cf+e)(ak+(sin(i,j)+Crcos(i,j))g)dijQijk
+
K
k=1 n+n′+1
j=0,i=/j n+n′+1
i=0
(Cf+e)(1/2CdAk)dijtijxijk
+
K
k=1 n+n′+1
i=0
Psik+
K
k=1 n+n′+1
i=0
CEiETik+
K
k=1 n+n′+1
i=0
CTiTTik (3)
s.t.
n+n′+1
j=1
x0jk=1 ∀k∈K (4)
n+n′
i=0
xin+n′+1k=1 ∀k∈K (5)
K
k=1 n+n′+1
j=1j=/i
xijk=1 ∀i∈P∪D (6)
K
k=1 n+n′
i=0j=/i
xijk=1 ∀j∈P∪D (7)
K
k=1 n+n′
i=0j=/i
xijk−
K
k=1 n+n′+1
i=1j=/i
xjik=0 ∀j∈P∪D (8)
yik+t(i,j)+di−yjk≤M(1−xijk)
∀i∈P∪D∪{0},
∀jεP∪D∪
n+n′+1
, i=/j,k∈K
(9)
yjk+t(i,n+n′+1)+dj−sjk≤M(1−xin+n′+1k) j∈P∪D∪
0
,kεK (10)
K
k=1 n+n′
i=0j=/i
Qijk−
K
k=1 n+n′+1
i=1j=/i
Qjik=−qj ∀j∈P∪D (11)
max{0,−qj}≤Qijk≤min{Ck,Ck−qj} i,j∈P∪D∪
0
,k∈K (12)
yik−yjk≤M
⎛
⎝
2−⎛
⎝
n+n′
l=0,l=/j
xljk−
n+n′
l=0,l=/i
xlik
⎞
⎠
⎞
⎠
i∈P,j∈D,k∈K (13)K
k=1 n
j=0 n+n′+1
i=n+1
xijk=0 (14)
ei n+n′
j=0,i=/j
xijk≤yik≤li n+n′
j=0,i=/j
xijk ∀k∈K,∀i∈D (15)
max{0,yik−Di}≤TTik+M
⎛
⎝
1−n+n′
j=0,i=/j
xjik
⎞
⎠
∀i∈P,∀k∈K (16)max{0,Di−yik}≤ETik+M
⎛
⎝
1−n+n′
j=0,i=/j
xjik
⎞
⎠
∀i∈P,∀k∈K (17)Q0ik+
n+n′+1
j=1 n+n′
l=0
qixljk≥−M(1−x0ik) ∀i∈V/
0
(18)
xijk∈
0,1
∀i∈V,∀j∈V,∀k∈K (19)
yik≥0,Qijk≥0,sjk≥0,ETik≥0,TTik≥0 ∀i∈V,∀j∈V,∀k∈K (20) Theobjectivefunction(3)minimizestotalcostsincludingsix components:thefirstthreemeasurethefuelconsumptionscost andCO2 emissionscostwhich considertheroadsphysical con- ditionselected byvehicles totravel(i.e.,the roadfraction, and roadslop),theweightof thevehicles,and theloadstheycarry, inphysicalequationsthatpresenttheamountofenergyconsumed bytheirindependentlyandinterdependentlyimpacts.Surfaceand air fraction impacts on fuel consumption are even involved in thoseequations.Accelerationandvelocityimpactsontimetrav- elingandvehiclefuelconsumptionsareconsideredaswell.The sixthcomponentcalculatesthedrivercostoneachroute.Thelast twocomponentsdescribethepenaltycostfortardinessandearli- nessinarrivaltimeofpickupcustomers.Constraints(4)ensurethat allvehiclesstarttheirroutefromthedepot.Constraints(5)assure thatallvehiclesendtheirroutestothedepot.Constraints(6)and (7)considerthateachvertexmustbevisitedjustonetime.Con- straints(8)defineaflowbywhichthenumberofarrivalsisequal tothenumberofdeparturesforallvertices.Constraints(9)aresub- tourseliminationconstraints.Thetotaltimeoftravelingforeach vehicleisrelatedtothelastnodethatitpassesbeforereachingto thedepot.Thus,byconstraints(10)theentiretravelingtimeinthe correspondingtourcalculatedbyalinearformulationderivedfrom thebelownonlinearequation:
Sjk=
yjktj+ dj0 vj0k
xj0k (21)
Theequilibrium ofproductsflowis describedbyconstraints (11).Theyclearthatnoloadappearsordisappearsbyitselfandthe loadsleveleachvehiclecarriesonlychangebycustomersorder.
Constraints (12) are employed to restrict total loads that each vehiclecarries by itscapacity. Constraints (13)and (14)define restrictionstoserviceallpickupcustomers beforedeliverycus- tomers. Time window limitation is shown by constraints (15).
Constraints(16)and(17)describethetardinessandearlinessof arrivingtimeforeachvertex.Constraints(18)dispersethenum- berofloadsneededtopickupfromthedepotatthebeginningof theroute.Finally,constraints(19)and(20)enforcethebinaryand non-negativityrestrictionsondecisionvariables.
4. Robustcounterpartmathematicalmodel
Recallthatthelinearoptimizationproblemisindicatedasfol- lows:
mincTx (22)
s.t.Ax≥b (23)
where c∈Rn isvector formingobjectivefunction coefficientfor decisionvariablesandx∈Rnisthevectorofdecisionvariables,and finallyA∈Rm×nandb∈Rmareconstraintmatrixandrighthandside vector.
Uncertaintypartoftheproposedmodelinthispaperisconsid- eredtobeoptimizedbytherobustcounterpartlinearoptimization solution which is done based on Ben-tal and Nemirofski [25].
Beforerepresentingtheproposedrobustmodel,somedefinitions arereviewedfortherobustoptimizationtheory.
Definition1. Afeasiblesolutionforrobustlinearoptimizationisa setofvaluesrelatedtodecisionvariablesthatrepresentameaning fullobjectivefunctionvaluebesidessatisfyingalltheconstraintsas representedbelow:
{min{cTx+dAx≤b}}∀(c,d,A,B)∈u (24)
Thedifferencebetween(23)and(24)isthedata(c′d,A,b)vary- ing in a given detailed closed bounded box u, which is called
uncertaintysetaswell[25],whereu⊆R(m+1)×(n+1)anditsgeneral formisindicatedasfollows:
={ϑ∈Rn:|ϑt−ϑˆt|≤Gt,t=1,...,n}, (25) inwhich ˆϑtisnormalvalueofϑt,>0isthelevelofuncertainty, andGTdefinesasuncertaintyscale.
Definition2. By consideringapotentialsolutionx,therobust objectivefunctionvalue ˆc(x)isthesupermomvalueofthat‘true’
objectiveCTc+dsetoverwholerealizationsofthedatafromu.
cˆ(x)=sup[c′Tx+d](c,d,A,b)∈u (26)
Afterknowingthemeaningful solutionsfor uncertainmodel definition,theuncertainmodelmustsuggestthebestrobustvalue ofobjectivefunctionamonggivenfeasiblesolutions.Thisprocess introducesthe robustcounterpart ofan uncertainoptimization problem.
Definition3. Therobustcounterpartofanuncertainlinearisopti- mizingthebelowproblem:
minx {ˆc(x)=sup[c′Tx+d](c,d,A,b):Ax≤b∀(c,d,A,b)∈u} (27) By solving (27), the robust optimal solution of (26)can be obtained.ThevalueofobjectivefunctioninDefinition3cansatisfy allconstraintsandgivethebestrobustoptimizedvalueforlinear models.
Forapplyingtherobustcounterpartofthepresentedmodel,fuel consumptionscost(Cf),CO2emissionscost(e),theservicetimefor eachcustomerservicedbyacertainvehicle(dik),thetimetravel- ingbetweentwocertaincustomers(tij)areassumedasuncertain parameters.Hence,accordingtoabove-mentioneddefinitions,the robustcounterpartoftherecommendedTWPDPRPdesignsamodel foruncertainservicetime,travelingtime,fuelconsumptionsand CO2emissionscostprovidedbyuncertaintysetu.
MinZ s.t.
K
k=1 n+n′+1
j=0,i=/j n+n′+1
i=0
( ¯Cf+e)(a¯ k+(sin(i,j)+Crcos(i,j))g)dijWkxijk
+
K
k=1 n+n′+1
j=0,i=/j n+n′+1
i=0
( ¯Cf+e)(a¯ k+(sin(i,j)+Crcos(i,j))g)dijQijk
+
K
k=1 n+n′+1
j=0,i=/j n+n′+1
i=0
(Cf+e)(1/2CdAk)dijtijxijk+tij)+f+e
+
K
k=1 n+n′+1
i=0
Psik+
K
k=1 n+n′+1
i=0
CEiETik+
K
k=1 n+n′+1
i=0
CTiTTik≤Z
eGexijk≤e ∀i,j∈V,∀k∈K
eGexijk≥−e ∀i,j∈V,∀k∈K
eGeQijk≤e ∀i,j∈V,∀k∈K
eGeQijk≥−e ∀i,j∈V,∀k∈K
cfGcfxijk≤cf ∀i,j∈V,∀k∈K
cfGcfxijk≥−cf ∀i,j∈V,∀k∈K
cfGcfQijk≤cf ∀i,j∈V,∀k∈K
cfGcfQijk≥−cf ∀i,j∈V,∀k∈K
tGtijxijk≤tij ∀i,j∈V,∀k∈K
tGtijxijk≥−tij ∀i,j∈V,∀k∈K
n+n′+1
j=1
x0jk=1 ∀k∈K
n+n′
i=0
xin+n′+1k=1 ∀k∈K
K
k=1 n+n′+1
j=1j=/i
xijk=1 ∀i∈P∪D
K
k=1 n+n′
i=0j=/i
xijk=1 ∀j∈P∪D
K
k=1 n+n′
i=0j=/i
xijk−
K
k=1 n+n′+1
i=1j=/i
xjik=0 ∀j∈P∪D
yjk−yik≥−M(1−xijk)+t(i,j)+di+dGdi+tGtij
∀i∈P∪D∪
0
∀j∈P∪D∪
n+n′+1
,i=/j,k∈K
sjk−yjk≥−M(1−xin+n′+1k)+t
i,n+n′+1
+dj+dGdj +tGtin+n′+1 j∈P∪D∪
0
,k∈K
K
k=1 n+n′
i=0j=/i
Qijk−
K
k=1 n+n′+1
i=1j=/i
Qjik=−qj ∀j∈P∪D
max
0,−qj
≤Qijk≤min{Ck,Ck−qj}∀i∈P∪D∪
0
∀j∈P∪D∪i=/j,k∈K
yik−yjk≤M
⎛
⎝
2−⎛
⎝
n+n′
l=0,l=/j
xljk−
n+n′
l=0,l=/i
xlik
⎞
⎠
⎞
⎠
i∈P,j∈D,k∈KK
k=1 n
j=0 n+n′+1
i=n+1
xijk=0
ei
n+n′
j=0,i=/j
xijk≤yik≤li
n+n′
j=0,i=/j
xijk ∀k∈K,∀i∈D
max{0,yik−Di}≤TTik+M
⎛
⎝
1−n+n′
j=0,i=/j
xjik
⎞
⎠
∀i∈P,∀k∈Kmax{0,Di−yik}≤ETik+M
⎛
⎝
1−n+n′
j=0,i=/j
xjik
⎞
⎠
∀i∈P,∀k∈KQ0ik+
n+n′+1
j=1 n+n′
l=0
qixljk≥−M(1−x0ik) ∀i∈V/{0}
xijk∈
0,1
∀i∈V,∀j∈V,∀k∈K
yik≥0,Qijk≥0,sjk≥0,ETik≥0,TTik≥0 ∀i∈V,∀j∈V,∀k∈K
5. Experimentalresults
Toshowthevalidityandreliabilityoftherepresentedmodel, severalnumericalexperiments are executedand relevant solu- tionresultsareprovidedinthissection.Fornominalexperiments, nine test problems with different sizes, as shown in Table 2, aredoneundernominaldatachosenfromuniformboundsrep- resented in Table 1 and for each size the experiments are performedbyconsideringsixdifferentuncertaintylevels(i.e.,= 0.1,0.3,0.5,0.7,0.9,1).Then,fiverandomrealizationsthathave gottenfromuniformuncertaintyset,[nominalvalue−*G*,nom- inalvalue+*G*],areexaminedforsix testproblems with(i.e., =0.1,0.5,1)toevaluatetheperformanceofthesolutionsrep- resentedbytheproposeddeterministicandrobustmodels.The secondresultsaregiveninTable3.
In the analysis of the random realizations, the mean and standard deviationare used asperformance measures for both deterministicand robust models. The uncertainty levels for all parametersintherobustmodelarethesame(i.e.e=cf=t= d)andfordeterministicmodels(=0).Allresultsrelatedtothe robustanddeterministicrealizationsaregiveninTable3.
Itisobviousthattheresultrelatedtotheproposedrobustopti- mizationmodelisworsethantheonesobtainedfromtheproposed deterministicoptimizationmodel.Itisbecausethatintherobust optimizationalluncertainparametersareregardedasworstcases inpracticetolowertheriskandlackuntilitis possibletoper- form.Moreover,astheuncertaintylevel isincreasedtherobust objectivefunctiondegenerates.Hence,byincreasingtheamount oftheuncertaintyoftheproposedmodel,thesolutionhastoadapt itselftotheuncertainconditionsandcreateworsevalues.There- fore,increasingtheuncertaintylevelthedecisionbecomesmuch moresensitiveanddifficult.Thissensitivityanddifficultyaffects ontherobustoptimizationmodeltoadjusttheconditioninorder toproducethesolutions thatcanreduce thepossibilityof fail- urein itswork rather thanthe deterministicmodel.According toTable3,therobustmodelrepresentsthesolutionwithhigher valuesandlowerstandarddeviationratherthanthedeterministic model.
Table1
Sourceofrandomgenerationsforthenominaldata.
Parameters Correspondingrandomdistribution
e Uniform(3.15,4.95)
Cf Uniform(0.35,0.55)
di Uniform(0.25,0.75)
v Uniform(30,80)
Table2
Summaryoftestresultsundernominaldata.
Problemsize
|V|*|P|*|D|
Uncertainty rate()
Objectivefunctionvalue undernominaldata Deterministic Robust
4*2*2 0.1 77,300.619 77,424.144
0.3 77,671.194
0.5 77,918.244
0.7 78,165.293
0.9 78,412.343
1 78,535.868
5*2*3 0.1 114,042.620 114,203.143
0.3 114,524.187
0.5 104,845.231
0.7 115,166.275
0.9 115,487.319
1 115,647.841
6*3*3 0.1 129,302.698 129,634.650
0.3 130,298.553
0.5 130,962.457
0.7 131,626.361
0.9 132,290.265
1 132,622.217
7*5*2 0.1 147,014.565 147,467.174
0.3 148,372.393
0.5 149,277.611
0.7 150,182.830
0.9 151,088.048
1 151,540.658
8*5*3 0.1 192,356.047 193,164.917
0.3 194,782.658
0.5 196,400.398
0.7 198,018.139
0.9 199,635.880
1 200,444.750
9*5*4 0.1 197,788.229 209,088.737
0.3 202,139.392
0.5 205,040.168
0.7 207,940.944
0.9 216,296.487
1 217,197.456
10*5*5 0.1 208,017.768 209,088.737
0.3 210,890.674
0.5 212,692.612
0.7 214,494.550
0.9 210,841.719
1 212,292.107
11*5*6 0.1 265,912.423 267,040.540
0.3 269,296.773
0.5 271,553.007
0.7 273,809.241
0.9 276,065.474
1 277,193.591
12*5*7 0.1 277,232.580 278,607.945
0.3 281,358.676
0.5 284,109.406
0.7 286,860.137
0.9 289,610.868
1 290,986.233
Thesensitivityanalysisisconductedonatestproblemwith(= 0.3)andninecustomers.ItisrepresentedinTables4–6.Inaddition, allmathematicalmodelseitherdeterministicorrobustarecoded intheoptimizationsoftware(i.e.,GAMS).
In thenextsub-section, afurthersensitivity analysisis per- formed for evaluating the capability and effectiveness of the proposedMILPmodelandtheimpactsoftheparametersusedin themodel(e.g.,CO2emissionscost,thecapacityofvehicles,andthe numberofpickup(delivery)centersinacustomerzone).Allsen- sitivityanalysesarereportedbasedontheselectedtestproblem withninecustomers.
Table3
Summaryoftestresultsunderrealization.
Problemsize|V|*|P|*|D| Uncertainty level()
Meanofobjectivefunction valuesunderrealizations
Standarddeviationofobjective functionvaluesundernominaldata
Deterministic Robust Deterministic Robust
6*4*2 0.1 132,689.092 133,010.435 5874.806 5863.886
0.5 103,816.160 105,052.459 7697.402 7243.613
1 120,900.173 127,016.307 51,434.472 44,923.780
7*3*4 0.1 147,134.402 147,587.708 4540.966 4523.098
0.5 158,813.433 160,809.728 22,819.394 22,401.967
1 187,915.287 194,173.110 37,370.501 35,899.592
8*3*5 0.1 193,851.471 194,679.441 9881.532 9826.449
0.5 170,134.691 173,692.072 20,079.781 19,419.356
1 206,627.628 214,373.962 75,911.719 73,291.846
9*6*3 0.1 197,446.889 198,973.708 7047.592 68,531.662
0.5 202,145.887 206,185.946 48,184.873 46,827.245
1 230,667.210 239,900.967 72,276.401 68,315.493
10*6*4 0.1 231,087.940 232,096.158 5687.912 5656.778
0.5 221,868.504 231,621.073 20,200.991 15,319.460
1 252,548.786 268,822.541 129,005.798 126,364.011
11*5*6 0.1 272,306.884 273,600.724 13,122.635 13,079.201
0.5 215,498.852 220,558.448 54,576.422 53,566.694
1 324,444.373 359,772.328 94,246.525 66,031.599
Table4
Resultsofsensitivityanalysisonnumberofpicksupanddeliveriesforeighttest problems.
Problemsize|V|*|P|*|D| Objectivefunctionvaluesunder nominaldata
Deterministic Robust
9*8*1 241,837.029 246,064.209
9*7*2 210,132.374 214,111.610
9*6*3 199,663.385 203,727.521
9*5*4 197,788.229 202,139.392
9*4*5 210,255.321 224,855.175
9*3*6 218,928.635 223,313.315
9*2*7 225,453.320 230,897.073
9*1*8 222,027.539 227,471.292
Table5
ResultsofsensitivityanalysisonCO2emissionscostfordeterministicandrobust testproblem.
Problemsize
|V|*|P|*|D|
CO2emission cost
Objectivefunctionvalues undernominaldata
Deterministic Robust
9*6*3 1.55 117,630.919 121,590.182
2.05 130,838.654 134,032.446
2.55 148,044.837 151,554.886
3.05 165,251.020 169,073.327
3.55 182,457.203 186,593.767
4.05 199,663.385 204,114.207
4.55 216,869.568 221,634.647
5.05 234,075.751 239,155.088
5.55 251,281.934 256,675.528
6.05 268,488.116 274,195.968
6.55 285,694.299 291,716.408
7.05 302,900.482 309,236.848
7.55 320,106.665 326,757.289
8.05 337,312.847 347,421.928
8.55 354,519.030 361,798.169
9.05 371,725.213 379,318.609
9.55 388,931.396 396,839.050
10.05 406,137.578 417,856.874
10.55 423,343.761 431,879.930
5.1. CO2emissionscost
AsensitivityanalysisontheCO2emissionscostareperformed anddepictedinFig.2.Asitcanbeseeninthisfigure,whentheCO2
Table6
Resultsofsensitivityanalysisonthevehiclecapacityfordeterministicandrobust testproblem.
Problemsize
|V|*|P|*|D|
Capacity Objectivefunction undernominaldata
Numberoftruckused inmodel
9*6*3 25 Infeasible Infeasible
26 Infeasible Infeasible
27 Infeasible Infeasible
28 199,663.385 4
29 199,654.385 4
30 199,645.385 4
31 199,636.385 4
32 199,627.385 4
33 199,618.385 4
34 199,609.385 4
35 199,600.384 4
36 199,591.385 4
45 199,510.385 4
47 199,492.380 4
50 199,465.385 4
55 183,650.569 4
57 183,632.569 4
60 183,605.569 4
50 212,419.715 3
55 183,650.567 3
57 183,632.569 3
60 183,605.569 3
emissionscostincreases,theobjectivefunctionvaluesincreaseas well.
5.2. Numberofpickup(delivery)nodes
AccordingtoFigs.3 and4, thenumber ofpickup anddeliv- erycustomersaffectontheobjectivefunctionvalue.Forexample, whenthecustomerzonehastheleastpickupcustomer,theobjec- tivefunctionvaluestandsatthemaximumamountthemodelis able torepresent basedonthe test problem. It occurs because the average amount of the load carried during the route and thetimeofcarryingtheloadsincrease,andsotheysignificantly impactonfuelconsumptions;however,asthenumberofpickup nodesgoesuptheobjectivefunction valuedecreaseasaresult of reducing theaverage amount of loads carried in the routes andthetimetheycarriedduringthoseroutes.Ithappensbecause vehiclegets thechoice thatloads up theproductdeliverycus- tomersneedfromthepickupcustomersduringtheirrouteinstead
Fig.2.ObjectivefunctionandCO2emissionscost.
Fig.3.Objectivefunctionandnumberofpickupnodes.
Fig.4.Objectivefunctionandnumberofdeliverynodes.
Fig.5.Objectivefunctionandvehiclescapacity.
Fig.6.Objectivefunctionandnumberofvehicles.
ofloadingupatdepot.It cancontinueuntiltheobjectivefunc- tion gets the minimum value and the optimized numbers of pickupanddeliverycustomerisachieved;however,ifthenum- ber of pickups rises continuously, the objective function value willincreaseagain.It isbecauseofraisingtheamountofloads which hasto bepicked upand then carried to thedepot, and ofcoursethetimeof carryingtheseloadsthat makesfuelcon- sumedfordeliverthemtotheirdepartureseitherdeliverynode ordepot.
5.3. Capacityofvehicles
AsdepictedinFig.5,increasingthecapacitycannotaffectthe objective functionvalue impressively beforea certainsize (i.e., 55tons);however,asitreachesto55tonsthevehiclesbecomes capabletochangetheirroutesandservicingmorecustomersina moreefficientway.Itisobviousthatbyobtainingtothispointfor thecapacity,thenumberofvehiclesinvolvedinroutesdecreases.
Itispointedoutthatthenumberofvehiclesandtheircapacitiesare
interdependent.AsitisseeninFig.6,theproblemcanbesolvedby eitherthreevehiclesorfourvehiclesbeforereachingtothecapacity of55tons.Inotherwords,threevehiclesarecapabletoanswerall thecustomersdemand;however,theydothatinawayconsuming morefuel.Thus,fourvehiclesaremoreefficientforthecapacityup to55tons.Asthecapacityreachesto55tons,threevehicleschange theirroutesinthewaythatobjectivefunctionvaluesbecomesim- ilartotheobjectivefunctionvalueinwhichfourvehiclesareused forsolvingtheproblem.
6. Conclusion
Thispaperconsidersanewtimewindowpickup-deliverypol- lutionroutingproblem(TWPDPRP)andintroducesanewrobust mixedintegerlinearprogramming(MILP)modelunderuncertainty basedontherecentextensionsintherobustoptimizationtheory.
Anewvehicleroutingproblemisrepresentedthatnotonlycon- siderstheenvironmentalissuesbutalsothinksthroughthekindof vehiclerouting problem,namedpickup-deliveryvehiclerouting problemtoreducetheeconomic and ecologicmatters simulta- neously.Thepresentedmodelimpactsonpickuparrivaltimesin awaythatdecreasesthetardinessand evenearlinessofarrival timesinordertosettheminrighttimeanddependthemonthe arrivaltimesindeliverycustomersindirectlywhichareconsidered intimewindowsconstraints.Ontheotherhand,themodelconsid- erstheenvironmentalfactors,suchastheslopofroads,andfriction forces.Thenit triestodeclinetheamountofCO2 emission and fuelconsumptionwhichmayincreasethecostdependedoneco- nomicfactors.Thegoalofthemodelistostrikeabalancebetween economicandenvironmentalfactors.Inaddition,a robustopti- mizationapproachispresentedforuncertainparameterstomodel theTWPDPRP,suchasfuelconsumptionscost,CO2emissionscost, traveltimeandservicetime.Therobustnessofthemodelmakesit flexibletowarduncertaintyandpreventsthemodelfromproducing infeasiblesolutions.
Theseveralsensitivityanalyseshaveemphasizedthatthenum- berofpickupanddeliverycustomerscanaffectontheobjective functionvalue,andanoptimizedsetofthemisabletogivethe best(i.e.,minimum)valueofobjectivefunctionamongresultsof othersets.Also,thevehiclescapacityimpressivelytakeseffectson thecustomersetsassociatedtovehiclesandthenumberofvehi- clesassociatedtotheroutes.Asa directionfor futureresearch, morephysical conditionsrelated toroadscanbe consideredin theTWPDPRPproblem.Moreover,heterogeneousfleetandtheir mechanicalfeatures,thecost ofvehiclessetup,andtherelated analysisofeconomiccostsandbenefitsforusingvehiclescanbean importantissuetospot.
References
[1]NationalResearchCouncil(NRC).Advancingthescienceofclimatechange.
Washington,DC,USA:TheNationalAcademiesPress;2010.
[2]OhnishiH.Greenhousegasreductionstrategiesinthetransportsector:pre- liminaryreport.Tech.rep.,OECD/ITFJointTransportResearchCentreWorking
GrouponGHGreductionstrategiesinthetransportsector.Paris:OECD/ITF;
2008. http://www.internationaltransportforum.org/Pub/pdf/08GHG.pdf [accessed11.02.11].
[3]Mousavi SM, Tavakkoli-Moghaddam R, Jolai F. A possibilistic program- ming approach for a location problem of multiple cross-docks and vehicle routing scheduling under uncertainty. Engineering Optimization 2013;45(10):1223–49.
[4]MousaviSM,Tavakkoli-MoghaddamR.Ahybridsimulatedannealingalgorithm forlocationandroutingschedulingproblemswithcross-dockinginthesupply chain.JournalofManufacturingSystems2013;32:335–47.
[5]VahdaniB, Tavakkoli-MoghaddamR, ZandiehM,RazmiJ. Vehiclerouting schedulingusinganenhancedhybridoptimizationapproach.JournalofIntel- ligentManufacturing2012;23:759–74.
[6]FungRYK,LiuR,JiangZ.Amemeticalgorithmfortheopencapacitatedarc routingproblem.TransportationResearchPartE:LogisticsandTransportation Review2013;50:53–67.
[7]NagataY,BräysyO,DullaertW.Apenalty-basededgeassemblymemetic algorithmforthevehicleroutingproblemwithtimewindows.Computers&
OperationsResearch2010;37:724–37.
[8]ZachariadisEE,TarantilisCD,KiranoudisCT.Ahybridmetaheuristicalgorithm forthevehicleroutingproblemwithsimultaneousdeliveryandpick-upservice.
ExpertSystemswithApplications2009;36:1070–81.
[9]JeonH,LeepR,YoungShimJ.Avehicleroutingproblemsolvedbyusingahybrid geneticalgorithm.Computers&IndustrialEngineering2007;53:680–92.
[10]SerdarTasanA,GenM.Ageneticalgorithmbasedapproachtovehiclerout-
ing