• Tidak ada hasil yang ditemukan

Distributed discrete-time event-triggered algorithm for economic dispatch problem

N/A
N/A
Protected

Academic year: 2023

Membagikan "Distributed discrete-time event-triggered algorithm for economic dispatch problem"

Copied!
6
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Pattern Recognition Letters

journalhomepage:www.elsevier.com/locate/patrec

Distributed discrete-time event-triggered algorithm for economic dispatch problem

Renyun Jin, Haifeng Qiu

, Liguo Weng

State Grid Hangzhou Xiaoshan Power Supply Company, Hangzhou 311200, China

a rt i c l e i n f o

Article history:

Received 1 May 2020 Revised 13 August 2020 Accepted 15 August 2020 Available online 16 August 2020 MSC:

41A05 41A10 65D05 65D17 Keywords:

Distributed discrete-time algorithm Economic dispatch problem Convex optimization Equality constraint

Event-triggered communication

a b s t r a c t

Inthispaper, adistributed discrete-timeevent-triggered algorithmis proposed todealwith the eco- nomicdispatchproblemwithequalityconstraint.Thecommunicationcanbereducedandtheenergyof systemscanbesavedbyadoptingevent-triggeredcommunicationmechanism.TheZenobehaviorisnat- urallyexcludedbasedondiscreteiterationscheme.Moreover,theproposedalgorithmhasbeenproved tobeexponentiallyconvergentwiththeaidofconvexoptimizationandLyapunovstabilitytheorythat theoptimalvalueisobtainedwithdiscreteexponentialconvergencerate.Finally,theeffectivenessofthe proposedalgorithmisverifiedviaanumericalexample.

© 2020ElsevierB.V.Allrightsreserved.

1. Introduction

Recently,manyresearchershavedevotedtostudyingeconomic dispatchproblem(EDP)insmart grids,whichaims tohandlethe power allocation among generators under satisfying the condi- tions oftotalload[1,2,5–7,11–15,18].Generally,EDPcan becasted as a constrained optimization problem, that is, the total genera- tion cost is minimizedby allocating the generation powerunder theloadconstraint, i.e., thesumofactivepowergeneratedby all generators equaltothe totalloaddemand.Traditionalcentralized method, such as Lagrange multiplier method, can solve the EDP, whichdemand powerfulcentral processorstoobtain globalinfor- mation and deal with a large number of data, see for example [8,13,16] and references therein. However, with the development of networkscience, renewable resources, clean energyandsmart grids, network scale anddata volumewill continueto grow. The centralized methodwill be restricted,its processingcapacitywill bereduced,andthecommunicationcostwillbegreatlyincreased.

Therefore,distributedalgorithmisagoodchoicetodealwithEDP, whichcanincreaseprocessingcapacity,efficiencyandreliability.It

Corresponding author.

E-mail address: [email protected] (H. Qiu).

alsohasgoodapplicationsinlargeimagedataprocessing,machine learningandotherfields[9,10].

Each generator does not need to obtain all variable informa- tion based on distributedeconomic dispatch algorithm. The core ideaistotransformthecentralizedoptimizationproblemintosev- erallocal optimization problems. Onthe basis oflocal optimiza- tion,theglobaloptimalresultcanbeobtainedbyexchanginglocal informationthroughthecommunicationnetwork.Aclassofimpor- tantdistributed algorithmsforsolving EDP areconstructed based on theidea of consensus, which are consensus-based distributed economic dispatch approaches. Forinstance, by selecting the in- crementalcostofeach generation unit astheconsensus variable, the incremental cost consensus algorithm wasable to solve EDP in a distributed manner in [20]. The authors in [2] studied not onlytheEDPwithgeneratorconstraintsbutalsotheactualsitua- tionoftransmissionlinelossesinthesystem.In[19],anovelcon- sensusbasedalgorithmwithatacticalinitial setupwasproposed to solve EDP in a distributed fashion under strongly connected communicationgraph.Toavoidinitialization,aninitialization-free distributed algorithm was designed over a strongly connected, weight-balanceddigraphin[7],startingfromanyinitialpoweral- location.Tosolvethe rapidityofeconomic dispatch,a distributed andfasteconomicdispatchalgorithmwasprovidedin[5],andthe optimalvalue wasachievedinthefinite-time,whichmakes more https://doi.org/10.1016/j.patrec.2020.08.016

0167-8655/© 2020 Elsevier B.V. All rights reserved.

(2)

senseinrealapplications.Moreover,considering thattheincrease ofnetworkscale will increasethe communicationburden, event- triggered communication mechanism can effectively reduce this communication burden. A distributed event-triggered algorithm was proposed in [22] to solve a convex quadratic optimization problem under undirected and connected topologies, which had appeared in the economic dispatch, the resources allocation, the optimalportfolio,andsoon.The event-triggeredcommunication- based scheme for EDP had been investigated in [12], where the economicdispatchprocedurewasinvolvedincontinuous-timeop- timization and discrete-time communication. To reduce required capacities for information exchanges in micro-grids, a novel dis- tributedevent-based algorithm was proposed in [21]for optimal energymanagementinamicro-gridwithconsideringpowerlosses.

Continuous-timeevent-triggeredalgorithmmustexcludetheZeno behaviortoavoidcontinuouscommunication,thatis,toavoidinfi- nitecommunicationinlimitedtime.Becauseofthis,thealgorithm designedinthispaperadoptsdiscreteiterativescheme.

Motivated by the distributed algorithm in [4], a distributed discrete-timeevent-triggered algorithm is proposed to solve EDP inthispaper.Theburdenofcommunicationisreducedandtheen- ergyofsystemsissavedviaevent-triggeredcommunicationmech- anism,andtheZenobehavior isnaturallyexcluded basedon dis- crete iteration scheme.The exponential convergence of the algo- rithm is proved with the aid of convex optimization and Lya- punov stability theory. The main contributions of this paper in- clude:(1)Adistributeddiscrete-timeoptimizationalgorithmisde- signedtosolveaclassofEDPbasedonevent-triggeredcommuni- cationmechanism. Thedesignedalgorithm hastheadvantagesto reducethecommunicationandsavetheenergyofsystems,andthe Zenobehavioris naturallyexcluded;(2)The optimalvalueofthe totalgenerationcostisobtainedwithdiscreteexponentialconver- gencerate.

The paper is organized as follows.Firstly, some preliminaries andproblemformulationaregiveninSection2.Section3provides adistributed discrete-timeevent-triggered algorithm andconver- genceanalysis.Numericalsimulations aregiveninSection4.Sec- tion5concludesthispaper.

Notation: In thispaper,Rn denotes thesetof n× 1realvec- tors;Rn×ndenotesthesetofn×nrealmatrices;0n/1ndenotesan n×1columnvectorofallzeros/ones;Indenotesann-dimensional identitymatrix;

·

denotestheEuclideannorm;[

χ

]denotesthe

largestintegernomorethan

χ

;Let

λ

2(L)and

λ

max(L)bethemini- malpositiveandmaximaleigenvalueofLaplacianmatrixL,respec- tively.C:RnRn is the gradient ofC; 2C:RnRn×n is the HessianmatrixofC.

2. Preliminariesandproblemformulation 2.1.Algebraicgraphtheory

Acommunicationnetworkofnnodesisdenotedbyaweighted undirectedgraphG=

{

V,E,A

}

,inwhichV=

{

1,2,...,n

}

denoting

the network nodes and the edge set EV × V representing the communicationlinks. Anundirected edge(i, j) ∈E indicates that nodei andnode jcan exchangeinformationwitheachother.De- finetheweightedadjacencymatrixA=[ai j]∈Rn×nwithai j=aji>

0if(i,j)∈Eandai j=0otherwise.NotethatGissaidtobeundi- rectedandconnectedif(j, i)∈E implies(i,j) ∈E forarbitraryi, jV. The set ofcommunicationneighbors ofagent i is denoted by Ni=

{

jV

|

(j,i)E

}

. The Laplacian matrix L[li j]∈Rn×n of graphGis definedasli j=−ai j when i = j andlii=n

j=1ai j.For an undirected and connected graph, 0 is a simple eigenvalue of theLaplacianmatrixLwiththe eigenvector1n,andall theother eigenvaluesarepositive.

2.2. Usefullemma

Lemma1([17].). Forany vectorsx,yRn andonepositivedefinite matrixHRn×n,thefollowinginequalityholds

2xTyxTHx+yTH−1y. (1)

2.3. Problemformulation

In this subsection, let us consider a smart grid of n genera- tors. LetPi denotes the active power generated by the generator i,whereeachgeneratorhasagenerationcostCi(Pi),whichisonly known by generator i. The total generation cost C(P) is the sum of the all local objective functions, i.e., C(P)=n

i=1Ci(Pi), where Ci(Pi)=

α

iPi2+

β

iPi+

γ

i.Thetargetofeconomicdispatchistomini- mizethetotalgenerationcostwhilesatisfyingthebalancebetween demandandsupply,i.e.

MinC

(

P

)

=n

i=1

α

iPi2+

β

iPi+

γ

i

, s.t.n

i=1Pi=PD, (2)

whereP=[P1,P2,...,Pn]TRn is adecision vector;

α

i,

β

iand

γ

i

representthecostcoefficients;PD isaglobalconstraintvariable.

The above economic dispatch problem can be solved by the conventional centralized method, that is, the Lagrange multiplier method. The optimal Lagrangian multiplier is obtained, i.e.,

λ

=

PD+n i=1 βi

2αi n

i=1 1

2αi ,andtheoptimalsolutionPi=λ2αβi

i .Socentralizedal- gorithm can solve this problem easily when all parameters can be processedcentrally. The purposesof thisworkis toprovide a distributed discrete-time algorithm to solve the above economic dispatchproblem via event-triggeredcommunicationmechanism, whichcanreducingthecommunicationburdenonlargescalenet- works.

Assumption 1. The objective function C(P) is twice continu- ously differentiable, strongly convex with convexity parameters

σ

>0 such that

σ

In

2C(P)In.

Assumption 2. The communication topology is undirected and connected.

Assumption3. Thecommunicationenvironmentissecure,reliable andwithoutdelayanddisturbanceincommunicationprocess.

2.4. Event-triggeredcommunicationmechanism

Before proposing distributed event-triggered algorithm, we first make a brief introduction to event-triggered communica- tionmechanism. xi(k)(i=1,2,...,n,k=0,1,2,...) representsthe transportable variable in the communication network. xˆi(k)= xi(kiti),kit

ik<kit

i+1 representstheinformationto betransmitted atevent-triggeredtimeinstantkit

i.Fi(k,xi(k))denotestriggerfunc- tion fornode i.Only whenthe triggerfunction Fi(k, xi(k))> 0is satisfied,thenodeitransmitsits currentinformationtoitsneigh- boring nodes immediately. The sequence of event-triggered dis- creteinstants

{

kiti

}

fornodeiisdefinediterativelyaskit

i+1=inf

{

k:

k>kti

i,Fi(k,xi(k))>0

}

(ti=0,1,2,...). Itisworthnotingthat the Zeno behavior is naturallyexcluded because ofthe discrete-time scheme.

3. Algorithmdesignandconvergenceanalysis 3.1. Distributeddiscrete-timeevent-triggeredalgorithm

Decentralizedtriggerfunctionsaredefinedas

(3)

Fi

(

k,xi

(

k

))

=e2i

(

k

)

γ α

[ωk], (3)

Gi

(

k,yi

(

k

))

=

ς

i2

(

k

)

μβ

[σk], (4)

where ei(k)=xˆi(k)xi(k); xˆi(k)=xi(kiti),kti

ik<kit

i+1;

ς

i(k)=

ˆ

yi(k)yi(k);yˆi(k)=yi(kisi),kis

ik<kis

i+1;

α

,

β

,

ω

,

σ

∈(0,1)and

γ

,

μ

>0aredesignparameters.

Based ontheabove decentralizedtriggerfunctions(3)-(4)and Assumptions 1–3, the following distributed discrete-time event- triggered algorithmisproposed to solveeconomic dispatchprob- lem(2)

⎧ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎩

yi

(

k+1

)

=yi

(

k

)

+

ε

jNi

ai j

ˆ

xi

(

k

)

xˆj

(

k

)

, Pi

(

k

)

=

jNi

ai j

ˆ

yj

(

k

)

yˆi

(

k

)

+Pi

(

0

)

, xi

(

k

)

=

Ci

(

Pi

(

k

))

Pi

(

k

)

,

(5)

where

ε

> 0isconstant.Weseethattheneighboringnodesneed toexchangetheinformationofauxiliaryvariablesxi(k)andyi(k).

Suppose that there is one node knows global constraintvari- able PD, it can start from PD while the others start from 0,then n

i=1Pi(0)=PD. For undirected and connected graph G, n

i=1Pi(k)=n i=1

jNi

ai j

ˆ

yj(k)yˆi(k)

+n

i=1Pi(0)=PD. There- fore,the economic dispatchproblem(2)can be transformedinto thefollowingunconstrained convexoptimizationproblemofvari- ableyˆ(k)

MinC

(

yˆ

(

k

))

= n

i=1

Ci

jNi

ai j

ˆ

yj

(

k

)

yˆi

(

k

)

+Pi

(

0

)

. (6)

Remark 1. Note that the gradient of C(P) can be described as

C(P)=x(k)=[x1(k),x2(k),...,xn(k)]TRn. According to algo- rithm(5),wegetthegradientofC(yˆ)as

C(yˆ(k))=−LT

C(P)=

LTx(k),whereyˆ(k)=[yˆ1(k),yˆ2(k),...,yˆn(k)]TRn.Itisobvious that theHessianmatrixofC(yˆ)satisfies

2C(yˆ)=LT

2C(P)L.For the unconstrained convex optimization problem (6), the optimal valueycanbeobtainedwhen

C(yˆ(k))=0n(k→∞).

3.2. Convergenceanalysis

Theorem 1. Under Assumptions 1–3, if the parameter

ε

satisfy-

ing 0<

ε

< 1 1

+2λˆ, the distributed discrete-time event-triggered al- gorithm (5) solves economic dispatch problem (2)with trigger func- tions(3)and(4),andtheZenobehaviorisnaturallyexcluded,where

λ

ˆ=

λ

2max(L),

λ

max(L)denotesthelargesteigenvalueoftheLaplacian matrixL,and>0istheconvexityparameterinAssumption1.

Proof. Fortheconvenienceofproof,thealgorithm(5)canbewrit- teninmatrixform

y

(

k+1

)

=y

(

k

)

+

ε

Lxˆ

(

k

)

, P

(

k

)

=Lyˆ

(

k

)

+P

(

0

)

, x

(

k

)

=

C

(

P

(

k

))

,

(7)

where xˆ(k)=x(k)+e(k), yˆ(k)=y(k)+

ς

(k), xˆ(k)= [xˆ1(k),xˆ2(k),. . .,xˆn(k)]T, y(k)=[y1(k),y2(k),...,yn(k)]T, P(k)=[P1(k),P2(k),...,Pn(k)]T.

Supposethattheuniqueoptimalsolutionfortheunconstrained convex optimization problem (6) is denoted by y, then C(y)C(yˆ(k)).Thediscrete-timeLyapunovfunctionisselectedas V

(

k

)

=C

(

yˆ

(

k

))

C

(

y

)

. (8)

The difference of V(k) is given by V(k+1)=V(k+1)V(k)=C

ˆ y(k+1)

C

ˆ y(k)

.It followsfromthestrongconvexity property[3]that

C

ˆ y

(

k+1

)

C

ˆ y

(

k

)

=

TC

(

yˆ

(

k

))

ˆ

y

(

k+1

)

yˆ

(

k

)

+1 2

yˆ

(

k+1

)

yˆ

(

k

)

T

2C

(

y¯

)

ˆ

y

(

k+1

)

yˆ

(

k

)

, (9)

where y¯=yˆ(k)+

θ

ˆ

y(k+1)yˆ(k)

with

θ

∈ (0, 1). In addition, accordingtoalgorithm(7),wehave

V

(

k+1

)

=−xT

(

k

)

L

ε

L

(

x

(

k

)

+e

(

k

))

+

ς (

k+1

)

ς (

k

)

+1 2

ε

L

(

x

(

k

)

+e

(

k

))

+

ς (

k+1

)

ς (

k

)

TLT

2C

(

P¯

)

×L

ε

L

(

x

(

k

)

+e

(

k

))

+

ς (

k+1

)

ς (

k

)

. (10)

ForundirectedandconnectedgraphG,one gets LT=L.More- over,byapplyingLemma1,onehas

V

(

k+1

)

≤ −

ε

xT

(

k

)

LLTx

(

k

)

+

ε

2

2xT

(

k

)

LLTx

(

k

)

+

λ

ˆ

2eT

(

k

)

e

(

k

)

+

ε

2

2xT

(

k

)

LLTx

(

k

)

+ 1

2

ε

2

ς (

k+1

)

ς (

k

)

2

+

ˆ

λ

2

ε

LT

(

x

(

k

)

+e

(

k

))

+

ς (

k+1

)

ς (

k

)

2

≤ −

ε

(

1+2

λ

ˆ

) ε

2

xT

(

k

)

LLTx

(

k

)

+

λ

ˆ

2+2

λ

ˆ2

ε

2

×eT

(

k

)

e

(

k

)

+

1 2

ε

2+

λ

ˆ

ς (

k+1

)

ς (

k

)

2, (11)

where

λ

ˆ=

λ

2max(L),

λ

max(L) denotesthelargest eigenvalueofthe LaplacianmatrixL,and > 0is theconvexity parameterin As- sumption1. Moreover, accordingto trigger functions(3) and(4), wehaveeT(k)e(k)≤ n

γ α

[ωk] and

ς

(k+1)

ς

(k)

2≤4n

μβ

[σk].

Substitutingthesetwoinequalitiesbackinto(11)yields V

(

k+1

)

≤−

ξ

xT

(

k

)

LLTx

(

k

)

+

μ

1

α

[ωk]+

μ

2

β

[σk],

=−

ξ

C

(

yˆ

(

k

))

2+

μ

1

α

[ωk]+

μ

2

β

[σk], (12) where

ξ

=

ε

(1+2

λ

ˆ)

ε

2>0,

μ

1=n

γ

ˆλ

2+2

λ

ˆ2

ε

2

and

μ

2= 4n

μ

1

2ε2 +

λ

ˆ

.

Accordingto the strongconvexity property [3]andRef. [4], it iseasytoget

C(yˆ(k))

212

σλ

22

C(yˆ(k))C(y)

=12

σλ

22V(k), where

σ

istheconvexityparameteroffunctionCinAssumption1,

and

λ

2 representsthesmallestpositiveeigenvalueoftheLaplacian matrixL.

Inaddition,[

ω

k]denotes thelargestinteger nomorethan

ω

k

with

ω

∈(0,1),thus,

α

[ωk]

α

ωk−1= 1α(

α

ω)k.Meanwhile,

β

[σk]

β

σk1=β1(

β

σ)k.Then,onegets V

(

k+1

)

≤−1

2

ξσλ

22V

(

k

)

+

μ

1

α ( α

ω

)

k+

μ

2

β ( β

σ

)

k. (13) Let

ν

=1−12

ξσλ

22(0,1),onehas

V

(

k

)

ν

V

(

k−1

)

+

μ

1

α ( α

ω

)

k−1+

μ

2

β ( β

σ

)

k−1 ..

.

ν

kV

(

0

)

+

μ

1

α

k

i=1

ν

ki

( α

ω

)

i1+

μ

2

β

k

i=1

ν

ki

( β

σ

)

i1

=

ν

kV

(

0

)

+

μ

1

α ν

k

( α

ω

)

k

ν

( α

ω

)

+

μ

2

β ν

k

( β

σ

)

k

ν

( β

σ

)

=

V

(

0

)

μ

1

α ( α

ω

ν )

μ

2

β ( β

σ

ν ) ν

k

+

μ

1

α ( α

ω

ν ) ( α

ω

)

k+

μ

2

β ( β

σ

ν ) ( β

σ

)

k. (14)

(4)

Fig. 1. Communication network.

Table 1

Parameters αi, βi, γiof C i.

C i 1 2 3 4 5 6

αi 0.096 0.072 0.105 0.082 0.078 0.090 βi 1.22 3.41 2.53 4.02 2.90 2.72

γi 51 31 78 42 57 49

Fig. 2. Trajectories of P i( t ).

Because

ν

,

α

ω,

β

σ ∈ (0, 1), V(k) exponentially converge to 0. Thus, the function C(yˆ(k)) exponentially converges to C(y).

In other words, the optimal value y can be obtained by the designed distributed discrete-time event-triggered algorithm (5). Inthatway,theoptimalvaluePoftheoriginaleconomicdispatch problem(2)canalsobeobtained, i.e.,P=−Ly+P(0).Moreover, the Zeno behavior is naturally excluded under discrete iterative

scheme.

4. Simulationresults

Inthissection,an exampleisinvestigatedtoillustrate thedis- tributeddiscrete-time event-triggered algorithm proposed in this paper.The correspondingcommunicationnetworkisa undirected andconnectedgraphas showninFig. 1.The parameters ofeach costfunctionCi(Pi)arelistedinTable1([22]).

Case1:AlgorithmSimulation

The parameters in ouralgorithm are setas follows:PD=600,

ε

=0.1,

γ

=50,

μ

=100,

α

=0.85,

β

=0.79,

ω

=0.19,

σ

=0.13. The initial values are set as P(0)=[PD,0,0,0,0,0]T and y(0)= [0,0,0,0,0,0]T.ForthecommunicationtopologyinFig.1,

λ

2=1 and

λ

max=5.FortheC(P)=n

i=1Ci(Pi),twoconvexityparameters are chosen as=0.105 and

σ

=0.072. The iterativenumber of eachgeneratoris800.Thesimulationresultsunderouralgorithm (5)are shown inFigs. 2–7.

Fig. 2 shows that Pi(k),i=1,2,...,6, converge to their cor- responding optimal values: P1=97.9219,P2=115.3539,P3= 83.2905,P4=97.5672,P5=109.7500 and P6=96.1165.

Fig. 3. Trajectories of C ( P ( k )) and E ( k ).

Fig. 4. Trajectories of ˆ x (k ).

Fig. 5. Trajectories of ˆ y (k ).

Fig. 3 shows the trajectories of the total cost function C(P(k)) and error function E(k), where E(k)=C(P(k))C(P), C(P)=7162.03705. Figs. 4 and 5 show the trajectories of xˆ(k) and yˆ(k), which are transmitted in the communication net- work. They are also the values at the event-triggered instant.

The event instants of each generator, i.e.

{

kiti

}

,i=1,2,...,6 and

{

kisi

}

,i=1,2,...,6areshowninFigs.6and7.

Moreover, iterations, events and the ratios of communication to iteration for all generators are listed in Table 2. The informa- tiontransmissioninthenetworkdoesnotoccurateveryiteration time,onlyatthemomentoftheevents.Themaximumratioisonly 9.75%, which shows that event-triggered communication mecha-

(5)

Fig. 6. Events of 6 generators with variable x ( k ).

Fig. 7. Events of 6 generators with variable y ( k ).

Table 2

The number of communication events.

Generators 1 2 3 4 5 6

Iterations 800 800 800 800 800 800 Events- x ( k ) 46 44 41 34 53 33 Ratios(%) 5.75 5.5 5.125 4.25 6.625 4.125 Events- y ( k ) 78 52 61 72 59 64 Ratios(%) 9.75 6.5 7.625 9 7.375 8

nism can reduce the burdenof communicationandsave the en- ergyofsystems.

From the above simulation results, the optimal active pow- ers generated by generators can be obtained based on dis- tributeddiscrete-timeevent-triggeredalgorithm(5),andthenum- berofcommunicationissignificantlyreducedbasedontheevent- triggered communicationmechanism, which isvery beneficial to savenetworkbandwidth.

Case2:AlgorithmComparison

Themainadvantageofthealgorithmproposed inthispaperis to save communication, andit does not need to exchange infor- mation in each iteration process. Based on event-triggered com- munication mechanism, information exchange only occurs when the trigger function is triggered. A excellent consensus basedal- gorithm [19]wasproposed tosolve EDP ina distributedfashion.

For the convenience ofstatement, we use A1 and A2 to respec- tively denotethedistributeddiscrete-timealgorithm[19]andour distributed discrete-timeevent-triggeredalgorithm (5).Algorithm

Fig. 8. Trajectories of x i( t ).

Table 3

The number of communication.

Node 1 2 3 4 5 6

Algorithm A1 200 200 200 200 200 200 Algorithm A2 124 96 102 106 112 97

A1isdescribedas

⎧ ⎪

⎪ ⎨

⎪ ⎪

λ

i

(

k+1

)

=

jNi+

pi j

λ

j

(

k

)

+

yi

(

k

)

, xi

(

k+1

)

=bi

λ

i

(

k+1

)

+ai, yi

(

k+1

)

=

jN+i

qi jyj

(

k

)

(

xi

(

k+1

)

xi

(

k

) )

,

where

=0.02,ai=−2βαii,bi= 21αi;piandqisee[19]fordetails.

Here,xi(k)denotestheactivepowergenerated.Thatis,Pi(k)inour algorithm.Fig.8showsthatthe optimalvaluesare obtainedonly after100iterationsbyusingalgorithmA1.However,thevariables xand y need to be transmitted ineach iteration process. There- fore,thenumber ofcommunicationof each node are200. It can beseenfromTable3thatthenumberofcommunicationbyusing ourdistributed discrete-timeevent-triggeredalgorithm (5) (Algo- rithmA2)arelessthanthatofAlgorithmA1.Itisundeniablethat AlgorithmA1isstillanexcellentalgorithm.

5. Conclusion

Thetarget ofeconomicdispatchin smartgrids istominimize thetotalgenerationcostwhilesatisfyingthebalancebetweende- mandandsupply.Inthispaper,adistributeddiscrete-timeevent- triggered algorithm is designed to solve the economic dispatch problem.Theoptimalvalueofthetotalgenerationcostisobtained with discrete exponential convergence rate. The designed algo- rithm hastheadvantagesto reduce the communicationandsave the energy of systems, and naturallyexclude the Zeno behavior.

The simulationresults have validatedthe correctnessof the the- oretical resultsandshownthe advantagesofthe algorithm. Con- sideringthe fast convergence ofthe algorithm, the finite-step or fixed-stepiterativealgorithm willbefurtherstudiedinthefuture work.Moreover,undertheunreliablecommunicationenvironment, howtodesignafastiterativealgorithmisalsoverymeaningful.

DeclarationofCompetingInterest

Wedeclarethat wedonothaveanycommercialorassociative interestthatrepresentsaconflictofinterestinconnectionwiththe worksubmitted.

Theauthorsdeclarethattheyhavenoknowncompetingfinan- cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

(6)

References

[1] M.A. Abido , Multiobjective particle swarm optimization for environmen- tal/economic dispatch problem, Electr. Power Syst. Res. 79 (7) (2009) 1105–1113 .

[2] G. Binetti , A. Davoudi , F.L. Lewis , D. Naso , B. Turchiano , Distributed consen- sus-based economic dispatch with transmission losses, IEEE Trans. Power Syst.

29 (4) (2014) 1711–1720 .

[3] Convex optimization, S. Boyd, L. Vandenberghe (Eds.), Cambridge University Press, 2004 .

[4] G. Chen , Z.Y. Li , A fixed-time convergent algorithm for distributed convex op- timization in multi-agent systems, Automatica 95 (2018) 539–543 .

[5] G. Chen , J.H. Ren , E.N. Feng , Distributed finite-time economic dispatch of a net- work of energy resources, IEEE Trans Smart Grid 8 (2) (2017) 822–832 . [6] G. Chen , Z.Y. Zhao , Delay effects on consensus-based distributed economic dis-

patch algorithm in microgrid, IEEE Trans. Power Syst. 33 (1) (2017) 602–612 . [7] A. Cherukuri , J. Cortés , Initialization-free distributed coordination for eco-

nomic dispatch under varying loads and generator commitment, Automatica 74 (2016) 183–193 .

[8] B.H. Chowdhury , S. Rahman , A review of recent advances in economic dis- patch, IEEE Trans. Power Syst. 5 (4) (1990) 1248–1259 .

[9] O. Durmaz , H.S. Bilge , Fast image similarity search by distributed locality sen- sitive hashing, Pattern Recognit. Lett. 128 (2019) 361–369 .

[10] M. Fan , Q. Zhou , T.F. Zheng , R. Grishman , Distributed representation learn- ing for knowledge graphs with entity descriptions, Pattern Recognit. Lett. 93 (2017) 31–37 .

[11] F.H. Guo , C.Y. Wen , J.F. Mao , Y.D. Song , Distributed economic dispatch for smart grids with random wind power, IEEE Trans. Smart Grid 7 (3) (2016) 1572–1583 . [12] C.J. Li , X.H. Yu , W.W. Yu , T.W. Huang , Z.W. Liu , Distributed event-triggered scheme for economic dispatch in smart grids, IEEE Trans. Ind. Inf. 12 (5) (2016) 1775–1785 .

[13] J.B. Park , Y.W. Jeong , J.R. Shin , K.Y. Lee , An improved particle swarm optimiza- tion for nonconvex economic dispatch problems, IEEE Trans. Power Syst. 25 (1) (2010) 156–166 .

[14] H. Pourbabak , J.W. Luo , T. Chen , W.C. Su , A novel consensus-based distributed algorithm for economic dispatch based on local estimation of power mismatch, IEEE Trans. Smart Grid 9 (6) (2018) 5930–5942 .

[15] P. Yi , Y.G. Hong , F. Liu , Initialization-free distributed algorithms for optimal re- source allocation with feasibility constraints and application to economic dis- patch of power systems, Automatica 74 (2016) 259–269 .

[16] A. Sashirekha , J. Pasupuleti , N.H. Moin , C.S. Tan , Combined heat and power (CHP) economic dispatch solved using lagrangian; relaxation with surrogate subgradient multiplier updates, Int. J. Elect. Power & Energy Syst. 44 (1) (2013) 421–430 .

[17] X.J. Wu , H.T. Lu , Generalized projective synchronization between two different general complex dynamical networks with delayed coupling, Phys Lett A 374 (2010) 3932–3941 .

[18] H. Xing , Y.T. Mou , M.Y.F. Minyue , Z.Y. Lin , Distributed bisection method for economic power dispatch in smart grid, IEEE Trans. Power Syst. 30 (6) (2015) 3024–3035 .

[19] S.P. Yang , S.C. Tan , J.X. Xu , Consensus based approach for economic dispatch problem in a smart grid, IEEE Trans. Power Syst. 28 (4) (2013) 4 416–4 426 . [20] Z.A. Zhang , M.Y. Chow , Convergence analysis of the incremental cost consensus

algorithm under different communication network topologies in a smart grid, IEEE Trans. Power Syst. 27 (4) (2012) 1761–1768 .

[21] T.Q. Zhao , Z.H. Li , Z.T. Ding , Consensus-based distributed optimal energy man- agement with less communication in a microgrid, IEEE Trans. Ind. Inf. 15 (2019) 6 .

[22] Z.Y. Zhao , G. Chen , M.X. Dai , Distributed event-triggered scheme for a con- vex optimization problem in multi-agent systems, Neurocomputing 284 (2018) 90–98 .

Referensi

Dokumen terkait

Bachelor’s degree of Chemistry, Universitas Negeri Jakarta COURSE PORTFOLIO Mathematical Chemistry Academic Year – 2020/2021 PLO 1 Able to apply religious attitudes, demonstrate an

Regardless of whether Billy’s time travel is real or psychological within the confines of the novel, the temporal distortions are products of Vonnegut’s imagination and personal