ContentslistsavailableatScienceDirect
Pattern Recognition Letters
journalhomepage:www.elsevier.com/locate/patrec
Distributed discrete-time event-triggered algorithm for economic dispatch problem
Renyun Jin, Haifeng Qiu
∗, Liguo Weng
State Grid Hangzhou Xiaoshan Power Supply Company, Hangzhou 311200, China
a rt i c l e i n f o
Article history:
Received 1 May 2020 Revised 13 August 2020 Accepted 15 August 2020 Available online 16 August 2020 MSC:
41A05 41A10 65D05 65D17 Keywords:
Distributed discrete-time algorithm Economic dispatch problem Convex optimization Equality constraint
Event-triggered communication
a b s t r a c t
Inthispaper, adistributed discrete-timeevent-triggered algorithmis proposed todealwith the eco- nomicdispatchproblemwithequalityconstraint.Thecommunicationcanbereducedandtheenergyof systemscanbesavedbyadoptingevent-triggeredcommunicationmechanism.TheZenobehaviorisnat- urallyexcludedbasedondiscreteiterationscheme.Moreover,theproposedalgorithmhasbeenproved tobeexponentiallyconvergentwiththeaidofconvexoptimizationandLyapunovstabilitytheorythat theoptimalvalueisobtainedwithdiscreteexponentialconvergencerate.Finally,theeffectivenessofthe proposedalgorithmisverifiedviaanumericalexample.
© 2020ElsevierB.V.Allrightsreserved.
1. Introduction
Recently,manyresearchershavedevotedtostudyingeconomic dispatchproblem(EDP)insmart grids,whichaims tohandlethe power allocation among generators under satisfying the condi- tions oftotalload[1,2,5–7,11–15,18].Generally,EDPcan becasted as a constrained optimization problem, that is, the total genera- tion cost is minimizedby allocating the generation powerunder theloadconstraint, i.e., thesumofactivepowergeneratedby all generators equaltothe totalloaddemand.Traditionalcentralized method, such as Lagrange multiplier method, can solve the EDP, whichdemand powerfulcentral processorstoobtain globalinfor- mation and deal with a large number of data, see for example [8,13,16] and references therein. However, with the development of networkscience, renewable resources, clean energyandsmart grids, network scale anddata volumewill continueto grow. The centralized methodwill be restricted,its processingcapacitywill bereduced,andthecommunicationcostwillbegreatlyincreased.
Therefore,distributedalgorithmisagoodchoicetodealwithEDP, whichcanincreaseprocessingcapacity,efficiencyandreliability.It
∗ Corresponding author.
E-mail address: [email protected] (H. Qiu).
alsohasgoodapplicationsinlargeimagedataprocessing,machine learningandotherfields[9,10].
Each generator does not need to obtain all variable informa- tion based on distributedeconomic dispatch algorithm. The core ideaistotransformthecentralizedoptimizationproblemintosev- erallocal optimization problems. Onthe basis oflocal optimiza- tion,theglobaloptimalresultcanbeobtainedbyexchanginglocal informationthroughthecommunicationnetwork.Aclassofimpor- tantdistributed algorithmsforsolving EDP areconstructed based on theidea of consensus, which are consensus-based distributed economic dispatch approaches. Forinstance, by selecting the in- crementalcostofeach generation unit astheconsensus variable, the incremental cost consensus algorithm wasable to solve EDP in a distributed manner in [20]. The authors in [2] studied not onlytheEDPwithgeneratorconstraintsbutalsotheactualsitua- tionoftransmissionlinelossesinthesystem.In[19],anovelcon- sensusbasedalgorithmwithatacticalinitial setupwasproposed to solve EDP in a distributed fashion under strongly connected communicationgraph.Toavoidinitialization,aninitialization-free distributed algorithm was designed over a strongly connected, weight-balanceddigraphin[7],startingfromanyinitialpoweral- location.Tosolvethe rapidityofeconomic dispatch,a distributed andfasteconomicdispatchalgorithmwasprovidedin[5],andthe optimalvalue wasachievedinthefinite-time,whichmakes more https://doi.org/10.1016/j.patrec.2020.08.016
0167-8655/© 2020 Elsevier B.V. All rights reserved.
senseinrealapplications.Moreover,considering thattheincrease ofnetworkscale will increasethe communicationburden, event- triggered communication mechanism can effectively reduce this communication burden. A distributed event-triggered algorithm was proposed in [22] to solve a convex quadratic optimization problem under undirected and connected topologies, which had appeared in the economic dispatch, the resources allocation, the optimalportfolio,andsoon.The event-triggeredcommunication- based scheme for EDP had been investigated in [12], where the economicdispatchprocedurewasinvolvedincontinuous-timeop- timization and discrete-time communication. To reduce required capacities for information exchanges in micro-grids, a novel dis- tributedevent-based algorithm was proposed in [21]for optimal energymanagementinamicro-gridwithconsideringpowerlosses.
Continuous-timeevent-triggeredalgorithmmustexcludetheZeno behaviortoavoidcontinuouscommunication,thatis,toavoidinfi- nitecommunicationinlimitedtime.Becauseofthis,thealgorithm designedinthispaperadoptsdiscreteiterativescheme.
Motivated by the distributed algorithm in [4], a distributed discrete-timeevent-triggered algorithm is proposed to solve EDP inthispaper.Theburdenofcommunicationisreducedandtheen- ergyofsystemsissavedviaevent-triggeredcommunicationmech- anism,andtheZenobehavior isnaturallyexcluded basedon dis- crete iteration scheme.The exponential convergence of the algo- rithm is proved with the aid of convex optimization and Lya- punov stability theory. The main contributions of this paper in- clude:(1)Adistributeddiscrete-timeoptimizationalgorithmisde- signedtosolveaclassofEDPbasedonevent-triggeredcommuni- cationmechanism. Thedesignedalgorithm hastheadvantagesto reducethecommunicationandsavetheenergyofsystems,andthe Zenobehavioris naturallyexcluded;(2)The optimalvalueofthe totalgenerationcostisobtainedwithdiscreteexponentialconver- gencerate.
The paper is organized as follows.Firstly, some preliminaries andproblemformulationaregiveninSection2.Section3provides adistributed discrete-timeevent-triggered algorithm andconver- genceanalysis.Numericalsimulations aregiveninSection4.Sec- tion5concludesthispaper.
Notation: In thispaper,Rn denotes thesetof n× 1realvec- tors;Rn×ndenotesthesetofn×nrealmatrices;0n/1ndenotesan n×1columnvectorofallzeros/ones;Indenotesann-dimensional identitymatrix;
·denotestheEuclideannorm;[χ
]denotesthelargestintegernomorethan
χ
;Letλ
2(L)andλ
max(L)bethemini- malpositiveandmaximaleigenvalueofLaplacianmatrixL,respec- tively.C:Rn→Rn is the gradient ofC; 2C:Rn→Rn×n is the HessianmatrixofC.2. Preliminariesandproblemformulation 2.1.Algebraicgraphtheory
Acommunicationnetworkofnnodesisdenotedbyaweighted undirectedgraphG=
{
V,E,A}
,inwhichV={
1,2,...,n}
denotingthe network nodes and the edge set E⊆V × V representing the communicationlinks. Anundirected edge(i, j) ∈E indicates that nodei andnode jcan exchangeinformationwitheachother.De- finetheweightedadjacencymatrixA=[ai j]∈Rn×nwithai j=aji>
0if(i,j)∈Eandai j=0otherwise.NotethatGissaidtobeundi- rectedandconnectedif(j, i)∈E implies(i,j) ∈E forarbitraryi, j ∈V. The set ofcommunicationneighbors ofagent i is denoted by Ni=
{
j∈V|
(j,i)∈E}
. The Laplacian matrix L[li j]∈Rn×n of graphGis definedasli j=−ai j when i = j andlii=nj=1ai j.For an undirected and connected graph, 0 is a simple eigenvalue of theLaplacianmatrixLwiththe eigenvector1n,andall theother eigenvaluesarepositive.
2.2. Usefullemma
Lemma1([17].). Forany vectorsx,y∈Rn andonepositivedefinite matrixH∈Rn×n,thefollowinginequalityholds
2xTy≤xTHx+yTH−1y. (1)
2.3. Problemformulation
In this subsection, let us consider a smart grid of n genera- tors. LetPi denotes the active power generated by the generator i,whereeachgeneratorhasagenerationcostCi(Pi),whichisonly known by generator i. The total generation cost C(P) is the sum of the all local objective functions, i.e., C(P)=n
i=1Ci(Pi), where Ci(Pi)=
α
iPi2+β
iPi+γ
i.Thetargetofeconomicdispatchistomini- mizethetotalgenerationcostwhilesatisfyingthebalancebetween demandandsupply,i.e. MinC(
P)
=ni=1
α
iPi2+β
iPi+γ
i, s.t.n
i=1Pi=PD, (2)
whereP=[P1,P2,...,Pn]T∈Rn is adecision vector;
α
i,β
iandγ
irepresentthecostcoefficients;PD isaglobalconstraintvariable.
The above economic dispatch problem can be solved by the conventional centralized method, that is, the Lagrange multiplier method. The optimal Lagrangian multiplier is obtained, i.e.,
λ
∗=PD+n i=1 βi
2αi n
i=1 1
2αi ,andtheoptimalsolutionPi∗=λ∗2−αβi
i .Socentralizedal- gorithm can solve this problem easily when all parameters can be processedcentrally. The purposesof thisworkis toprovide a distributed discrete-time algorithm to solve the above economic dispatchproblem via event-triggeredcommunicationmechanism, whichcanreducingthecommunicationburdenonlargescalenet- works.
Assumption 1. The objective function C(P) is twice continu- ously differentiable, strongly convex with convexity parameters ≥
σ
>0 such thatσ
In≤∇
2C(P)≤In.Assumption 2. The communication topology is undirected and connected.
Assumption3. Thecommunicationenvironmentissecure,reliable andwithoutdelayanddisturbanceincommunicationprocess.
2.4. Event-triggeredcommunicationmechanism
Before proposing distributed event-triggered algorithm, we first make a brief introduction to event-triggered communica- tionmechanism. xi(k)(i=1,2,...,n,k=0,1,2,...) representsthe transportable variable in the communication network. xˆi(k)= xi(kiti),kit
i≤k<kit
i+1 representstheinformationto betransmitted atevent-triggeredtimeinstantkit
i.Fi(k,xi(k))denotestriggerfunc- tion fornode i.Only whenthe triggerfunction Fi(k, xi(k))> 0is satisfied,thenodeitransmitsits currentinformationtoitsneigh- boring nodes immediately. The sequence of event-triggered dis- creteinstants
{
kiti}
fornodeiisdefinediterativelyaskiti+1=inf
{
k:k>kti
i,Fi(k,xi(k))>0
}
(ti=0,1,2,...). Itisworthnotingthat the Zeno behavior is naturallyexcluded because ofthe discrete-time scheme.3. Algorithmdesignandconvergenceanalysis 3.1. Distributeddiscrete-timeevent-triggeredalgorithm
Decentralizedtriggerfunctionsaredefinedas
Fi
(
k,xi(
k))
=e2i(
k)
−γ α
[ωk], (3)Gi
(
k,yi(
k))
=ς
i2(
k)
−μβ
[σk], (4)where ei(k)=xˆi(k)−xi(k); xˆi(k)=xi(kiti),kti
i≤k<kit
i+1;
ς
i(k)=ˆ
yi(k)−yi(k);yˆi(k)=yi(kisi),kis
i≤k<kis
i+1;
α
,β
,ω
,σ
∈(0,1)andγ
,μ
>0aredesignparameters.Based ontheabove decentralizedtriggerfunctions(3)-(4)and Assumptions 1–3, the following distributed discrete-time event- triggered algorithmisproposed to solveeconomic dispatchprob- lem(2)
⎧ ⎪
⎪ ⎪
⎨
⎪ ⎪
⎪ ⎩
yi
(
k+1)
=yi(
k)
+ε
j∈Ni
ai j
ˆ
xi
(
k)
−xˆj(
k)
, Pi
(
k)
=j∈Ni
ai j
ˆ
yj
(
k)
−yˆi(
k)
+Pi
(
0)
, xi(
k)
=∂
Ci(
Pi(
k))
∂
Pi(
k)
,(5)
where
ε
> 0isconstant.Weseethattheneighboringnodesneed toexchangetheinformationofauxiliaryvariablesxi(k)andyi(k).Suppose that there is one node knows global constraintvari- able PD, it can start from PD while the others start from 0,then n
i=1Pi(0)=PD. For undirected and connected graph G, n
i=1Pi(k)=n i=1
j∈Ni
ai j
ˆ
yj(k)−yˆi(k)
+n
i=1Pi(0)=PD. There- fore,the economic dispatchproblem(2)can be transformedinto thefollowingunconstrained convexoptimizationproblemofvari- ableyˆ(k)
MinC
(
yˆ(
k))
= ni=1
Ci
j∈Ni
ai j
ˆ
yj
(
k)
−yˆi(
k)
+Pi
(
0)
. (6)
Remark 1. Note that the gradient of C(P) can be described as
∇
C(P)=x(k)=[x1(k),x2(k),...,xn(k)]T∈Rn. According to algo- rithm(5),wegetthegradientofC(yˆ)as∇
C(yˆ(k))=−LT∇
C(P)=−LTx(k),whereyˆ(k)=[yˆ1(k),yˆ2(k),...,yˆn(k)]T∈Rn.Itisobvious that theHessianmatrixofC(yˆ)satisfies
∇
2C(yˆ)=LT∇
2C(P)L.For the unconstrained convex optimization problem (6), the optimal valuey∗canbeobtainedwhen∇
C(yˆ(k))=0n(k→∞).3.2. Convergenceanalysis
Theorem 1. Under Assumptions 1–3, if the parameter
ε
satisfy-ing 0<
ε
< 1 1+2λˆ, the distributed discrete-time event-triggered al- gorithm (5) solves economic dispatch problem (2)with trigger func- tions(3)and(4),andtheZenobehaviorisnaturallyexcluded,where
λ
ˆ=λ
2max(L),λ
max(L)denotesthelargesteigenvalueoftheLaplacian matrixL,and>0istheconvexityparameterinAssumption1.Proof. Fortheconvenienceofproof,thealgorithm(5)canbewrit- teninmatrixform
y(
k+1)
=y(
k)
+ε
Lxˆ(
k)
, P(
k)
=−Lyˆ(
k)
+P(
0)
, x(
k)
=∇
C(
P(
k))
,(7)
where xˆ(k)=x(k)+e(k), yˆ(k)=y(k)+
ς
(k), xˆ(k)= [xˆ1(k),xˆ2(k),. . .,xˆn(k)]T, y(k)=[y1(k),y2(k),...,yn(k)]T, P(k)=[P1(k),P2(k),...,Pn(k)]T.Supposethattheuniqueoptimalsolutionfortheunconstrained convex optimization problem (6) is denoted by y∗, then C(y∗)≤ C(yˆ(k)).Thediscrete-timeLyapunovfunctionisselectedas V
(
k)
=C(
yˆ(
k))
−C(
y∗)
. (8)The difference of V(k) is given by V(k+1)=V(k+1)− V(k)=C
ˆ y(k+1)
−C
ˆ y(k)
.It followsfromthestrongconvexity property[3]that
C
ˆ y
(
k+1)
−C
ˆ y
(
k)
=
∇
TC(
yˆ(
k))
ˆ
y
(
k+1)
−yˆ(
k)
+1 2
yˆ(
k+1)
−yˆ(
k)
T∇
2C(
y¯)
ˆ
y
(
k+1)
−yˆ(
k)
, (9)
where y¯=yˆ(k)+
θ
ˆ
y(k+1)−yˆ(k)
with
θ
∈ (0, 1). In addition, accordingtoalgorithm(7),wehaveV
(
k+1)
=−xT(
k)
Lε
L(
x(
k)
+e(
k))
+ς (
k+1)
−ς (
k)
+1 2
ε
L(
x(
k)
+e(
k))
+ς (
k+1)
−ς (
k)
TLT
∇
2C(
P¯)
×L
ε
L(
x(
k)
+e(
k))
+ς (
k+1)
−ς (
k)
. (10)
ForundirectedandconnectedgraphG,one gets LT=L.More- over,byapplyingLemma1,onehas
V
(
k+1)
≤ −ε
xT(
k)
LLTx(
k)
+ε
22xT
(
k)
LLTx(
k)
+λ
ˆ2eT
(
k)
e(
k)
+ε
22xT
(
k)
LLTx(
k)
+ 12
ε
2ς (
k+1)
−ς (
k)
2+
ˆ
λ
2
ε
LT(
x(
k)
+e(
k))
+ς (
k+1)
−ς (
k)
2≤ −
ε
−(
1+2λ
ˆ) ε
2xT
(
k)
LLTx(
k)
+λ
ˆ2+2
λ
ˆ2ε
2×eT
(
k)
e(
k)
+ 1 2ε
2+λ
ˆς (
k+1)
−ς (
k)
2, (11)where
λ
ˆ=λ
2max(L),λ
max(L) denotesthelargest eigenvalueofthe LaplacianmatrixL,and > 0is theconvexity parameterin As- sumption1. Moreover, accordingto trigger functions(3) and(4), wehaveeT(k)e(k)≤ nγ α
[ωk] andς
(k+1)−ς
(k)2≤4nμβ
[σk].Substitutingthesetwoinequalitiesbackinto(11)yields V
(
k+1)
≤−ξ
xT(
k)
LLTx(
k)
+μ
1α
[ωk]+μ
2β
[σk],=−
ξ ∇
C(
yˆ(
k))
2+μ
1α
[ωk]+μ
2β
[σk], (12) whereξ
=ε
−(1+2λ
ˆ)ε
2>0,μ
1=nγ
ˆλ2+2
λ
ˆ2ε
2and
μ
2= 4nμ
12ε2 +
λ
ˆ.
Accordingto the strongconvexity property [3]andRef. [4], it iseasytoget
∇
C(yˆ(k))2≥12σλ
22 C(yˆ(k))−C(y∗)=12
σλ
22V(k), whereσ
istheconvexityparameteroffunctionCinAssumption1,and
λ
2 representsthesmallestpositiveeigenvalueoftheLaplacian matrixL.Inaddition,[
ω
k]denotes thelargestinteger nomorethanω
kwith
ω
∈(0,1),thus,α
[ωk]≤α
ωk−1= 1α(α
ω)k.Meanwhile,β
[σk]≤β
σk−1=β1(β
σ)k.Then,onegets V(
k+1)
≤−12
ξσλ
22V(
k)
+μ
1α ( α
ω)
k+μ
2β ( β
σ)
k. (13) Letν
=1−12ξσλ
22∈(0,1),onehasV
(
k)
≤ν
V(
k−1)
+μ
1α ( α
ω)
k−1+μ
2β ( β
σ)
k−1 ...
≤
ν
kV(
0)
+μ
1α
k
i=1
ν
k−i( α
ω)
i−1+μ
2β
k
i=1
ν
k−i( β
σ)
i−1=
ν
kV(
0)
+μ
1α ν
k−( α
ω)
kν
−( α
ω)
+μ
2β ν
k−( β
σ)
kν
−( β
σ)
=
V
(
0)
−μ
1α ( α
ω−ν )
−μ
2β ( β
σ−ν ) ν
k+
μ
1α ( α
ω−ν ) ( α
ω)
k+μ
2β ( β
σ−ν ) ( β
σ)
k. (14)Fig. 1. Communication network.
Table 1
Parameters αi, βi, γiof C i.
C i 1 2 3 4 5 6
αi 0.096 0.072 0.105 0.082 0.078 0.090 βi 1.22 3.41 2.53 4.02 2.90 2.72
γi 51 31 78 42 57 49
Fig. 2. Trajectories of P i( t ).
Because
ν
,α
ω,β
σ ∈ (0, 1), V(k) exponentially converge to 0. Thus, the function C(yˆ(k)) exponentially converges to C(y∗).In other words, the optimal value y∗ can be obtained by the designed distributed discrete-time event-triggered algorithm (5). Inthatway,theoptimalvalueP∗oftheoriginaleconomicdispatch problem(2)canalsobeobtained, i.e.,P∗=−Ly∗+P(0).Moreover, the Zeno behavior is naturally excluded under discrete iterative
scheme.
4. Simulationresults
Inthissection,an exampleisinvestigatedtoillustrate thedis- tributeddiscrete-time event-triggered algorithm proposed in this paper.The correspondingcommunicationnetworkisa undirected andconnectedgraphas showninFig. 1.The parameters ofeach costfunctionCi(Pi)arelistedinTable1([22]).
Case1:AlgorithmSimulation
The parameters in ouralgorithm are setas follows:PD=600,
ε
=0.1,γ
=50,μ
=100,α
=0.85,β
=0.79,ω
=0.19,σ
=0.13. The initial values are set as P(0)=[PD,0,0,0,0,0]T and y(0)= [0,0,0,0,0,0]T.ForthecommunicationtopologyinFig.1,λ
2=1 andλ
max=5.FortheC(P)=ni=1Ci(Pi),twoconvexityparameters are chosen as=0.105 and
σ
=0.072. The iterativenumber of eachgeneratoris800.Thesimulationresultsunderouralgorithm (5)are shown inFigs. 2–7.Fig. 2 shows that Pi(k),i=1,2,...,6, converge to their cor- responding optimal values: P1∗=97.9219,P2∗=115.3539,P3∗= 83.2905,P4∗=97.5672,P5∗=109.7500 and P6∗=96.1165.
Fig. 3. Trajectories of C ( P ( k )) and E ( k ).
Fig. 4. Trajectories of ˆ x (k ).
Fig. 5. Trajectories of ˆ y (k ).
Fig. 3 shows the trajectories of the total cost function C(P(k)) and error function E(k), where E(k)=C(P(k))−C(P∗), C(P∗)=7162.03705. Figs. 4 and 5 show the trajectories of xˆ(k) and yˆ(k), which are transmitted in the communication net- work. They are also the values at the event-triggered instant.
The event instants of each generator, i.e.
{
kiti}
,i=1,2,...,6 and{
kisi}
,i=1,2,...,6areshowninFigs.6and7.Moreover, iterations, events and the ratios of communication to iteration for all generators are listed in Table 2. The informa- tiontransmissioninthenetworkdoesnotoccurateveryiteration time,onlyatthemomentoftheevents.Themaximumratioisonly 9.75%, which shows that event-triggered communication mecha-
Fig. 6. Events of 6 generators with variable x ( k ).
Fig. 7. Events of 6 generators with variable y ( k ).
Table 2
The number of communication events.
Generators 1 2 3 4 5 6
Iterations 800 800 800 800 800 800 Events- x ( k ) 46 44 41 34 53 33 Ratios(%) 5.75 5.5 5.125 4.25 6.625 4.125 Events- y ( k ) 78 52 61 72 59 64 Ratios(%) 9.75 6.5 7.625 9 7.375 8
nism can reduce the burdenof communicationandsave the en- ergyofsystems.
From the above simulation results, the optimal active pow- ers generated by generators can be obtained based on dis- tributeddiscrete-timeevent-triggeredalgorithm(5),andthenum- berofcommunicationissignificantlyreducedbasedontheevent- triggered communicationmechanism, which isvery beneficial to savenetworkbandwidth.
Case2:AlgorithmComparison
Themainadvantageofthealgorithmproposed inthispaperis to save communication, andit does not need to exchange infor- mation in each iteration process. Based on event-triggered com- munication mechanism, information exchange only occurs when the trigger function is triggered. A excellent consensus basedal- gorithm [19]wasproposed tosolve EDP ina distributedfashion.
For the convenience ofstatement, we use A1 and A2 to respec- tively denotethedistributeddiscrete-timealgorithm[19]andour distributed discrete-timeevent-triggeredalgorithm (5).Algorithm
Fig. 8. Trajectories of x i( t ).
Table 3
The number of communication.
Node 1 2 3 4 5 6
Algorithm A1 200 200 200 200 200 200 Algorithm A2 124 96 102 106 112 97
A1isdescribedas
⎧ ⎪
⎪ ⎨
⎪ ⎪
⎩
λ
i(
k+1)
=j∈Ni+
pi j
λ
j(
k)
+yi
(
k)
, xi(
k+1)
=biλ
i(
k+1)
+ai, yi(
k+1)
=j∈N+i
qi jyj
(
k)
−(
xi(
k+1)
−xi(
k) )
,where
=0.02,ai=−2βαii,bi= 21αi;piandqisee[19]fordetails.
Here,xi(k)denotestheactivepowergenerated.Thatis,Pi(k)inour algorithm.Fig.8showsthatthe optimalvaluesare obtainedonly after100iterationsbyusingalgorithmA1.However,thevariables xand y need to be transmitted ineach iteration process. There- fore,thenumber ofcommunicationof each node are200. It can beseenfromTable3thatthenumberofcommunicationbyusing ourdistributed discrete-timeevent-triggeredalgorithm (5) (Algo- rithmA2)arelessthanthatofAlgorithmA1.Itisundeniablethat AlgorithmA1isstillanexcellentalgorithm.
5. Conclusion
Thetarget ofeconomicdispatchin smartgrids istominimize thetotalgenerationcostwhilesatisfyingthebalancebetweende- mandandsupply.Inthispaper,adistributeddiscrete-timeevent- triggered algorithm is designed to solve the economic dispatch problem.Theoptimalvalueofthetotalgenerationcostisobtained with discrete exponential convergence rate. The designed algo- rithm hastheadvantagesto reduce the communicationandsave the energy of systems, and naturallyexclude the Zeno behavior.
The simulationresults have validatedthe correctnessof the the- oretical resultsandshownthe advantagesofthe algorithm. Con- sideringthe fast convergence ofthe algorithm, the finite-step or fixed-stepiterativealgorithm willbefurtherstudiedinthefuture work.Moreover,undertheunreliablecommunicationenvironment, howtodesignafastiterativealgorithmisalsoverymeaningful.
DeclarationofCompetingInterest
Wedeclarethat wedonothaveanycommercialorassociative interestthatrepresentsaconflictofinterestinconnectionwiththe worksubmitted.
Theauthorsdeclarethattheyhavenoknowncompetingfinan- cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.
References
[1] M.A. Abido , Multiobjective particle swarm optimization for environmen- tal/economic dispatch problem, Electr. Power Syst. Res. 79 (7) (2009) 1105–1113 .
[2] G. Binetti , A. Davoudi , F.L. Lewis , D. Naso , B. Turchiano , Distributed consen- sus-based economic dispatch with transmission losses, IEEE Trans. Power Syst.
29 (4) (2014) 1711–1720 .
[3] Convex optimization, S. Boyd, L. Vandenberghe (Eds.), Cambridge University Press, 2004 .
[4] G. Chen , Z.Y. Li , A fixed-time convergent algorithm for distributed convex op- timization in multi-agent systems, Automatica 95 (2018) 539–543 .
[5] G. Chen , J.H. Ren , E.N. Feng , Distributed finite-time economic dispatch of a net- work of energy resources, IEEE Trans Smart Grid 8 (2) (2017) 822–832 . [6] G. Chen , Z.Y. Zhao , Delay effects on consensus-based distributed economic dis-
patch algorithm in microgrid, IEEE Trans. Power Syst. 33 (1) (2017) 602–612 . [7] A. Cherukuri , J. Cortés , Initialization-free distributed coordination for eco-
nomic dispatch under varying loads and generator commitment, Automatica 74 (2016) 183–193 .
[8] B.H. Chowdhury , S. Rahman , A review of recent advances in economic dis- patch, IEEE Trans. Power Syst. 5 (4) (1990) 1248–1259 .
[9] O. Durmaz , H.S. Bilge , Fast image similarity search by distributed locality sen- sitive hashing, Pattern Recognit. Lett. 128 (2019) 361–369 .
[10] M. Fan , Q. Zhou , T.F. Zheng , R. Grishman , Distributed representation learn- ing for knowledge graphs with entity descriptions, Pattern Recognit. Lett. 93 (2017) 31–37 .
[11] F.H. Guo , C.Y. Wen , J.F. Mao , Y.D. Song , Distributed economic dispatch for smart grids with random wind power, IEEE Trans. Smart Grid 7 (3) (2016) 1572–1583 . [12] C.J. Li , X.H. Yu , W.W. Yu , T.W. Huang , Z.W. Liu , Distributed event-triggered scheme for economic dispatch in smart grids, IEEE Trans. Ind. Inf. 12 (5) (2016) 1775–1785 .
[13] J.B. Park , Y.W. Jeong , J.R. Shin , K.Y. Lee , An improved particle swarm optimiza- tion for nonconvex economic dispatch problems, IEEE Trans. Power Syst. 25 (1) (2010) 156–166 .
[14] H. Pourbabak , J.W. Luo , T. Chen , W.C. Su , A novel consensus-based distributed algorithm for economic dispatch based on local estimation of power mismatch, IEEE Trans. Smart Grid 9 (6) (2018) 5930–5942 .
[15] P. Yi , Y.G. Hong , F. Liu , Initialization-free distributed algorithms for optimal re- source allocation with feasibility constraints and application to economic dis- patch of power systems, Automatica 74 (2016) 259–269 .
[16] A. Sashirekha , J. Pasupuleti , N.H. Moin , C.S. Tan , Combined heat and power (CHP) economic dispatch solved using lagrangian; relaxation with surrogate subgradient multiplier updates, Int. J. Elect. Power & Energy Syst. 44 (1) (2013) 421–430 .
[17] X.J. Wu , H.T. Lu , Generalized projective synchronization between two different general complex dynamical networks with delayed coupling, Phys Lett A 374 (2010) 3932–3941 .
[18] H. Xing , Y.T. Mou , M.Y.F. Minyue , Z.Y. Lin , Distributed bisection method for economic power dispatch in smart grid, IEEE Trans. Power Syst. 30 (6) (2015) 3024–3035 .
[19] S.P. Yang , S.C. Tan , J.X. Xu , Consensus based approach for economic dispatch problem in a smart grid, IEEE Trans. Power Syst. 28 (4) (2013) 4 416–4 426 . [20] Z.A. Zhang , M.Y. Chow , Convergence analysis of the incremental cost consensus
algorithm under different communication network topologies in a smart grid, IEEE Trans. Power Syst. 27 (4) (2012) 1761–1768 .
[21] T.Q. Zhao , Z.H. Li , Z.T. Ding , Consensus-based distributed optimal energy man- agement with less communication in a microgrid, IEEE Trans. Ind. Inf. 15 (2019) 6 .
[22] Z.Y. Zhao , G. Chen , M.X. Dai , Distributed event-triggered scheme for a con- vex optimization problem in multi-agent systems, Neurocomputing 284 (2018) 90–98 .