ElectricPowerSystemsResearch142(2017)9–11
ContentslistsavailableatScienceDirect
Electric Power Systems Research
jou rn al h om e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e p s r
Distribution network reconfiguration using a genetic algorithm with varying population size
Morad Abdelaziz
DepartmentofElectricalandComputerEngineering,UniversitéLaval,Québec,Canada
a r t i c l e i n f o
Articlehistory:
Received29February2016 Receivedinrevisedform2May2016 Accepted21August2016
Keywords:
Distributionnetwork Feederreconfiguration Geneticalgorithms Populationsize
a b s t r a c t
Geneticalgorithm(GA)hasbeenshowntobeaneffectivewaytosolvethecomplexcombinatorial,and constrainednon-linearmixedintegeroptimizationproblemofdistributionnetworkreconfiguration.
ExtensiveworkhasbeendoneintheliteraturetoefficientlyapplyGAtothereconfigurationproblem.
Nonetheless,todate,allthepreviousworkinthisareahavepresupposedthattheGApopulationsize shouldremainconstantthroughouttheevolutionofthesearchprocess.Inthispaper,weproposethe applicationofageneticalgorithmwithvariablepopulationsize(GAVAPS)tothereconfigurationproblem.
Wedemonstratethatallowingthepopulationsizetoadaptivelygrowandshrinkaccordingtothestatus oftheGAsearchcanallowforamoreefficientsolution,comparedtostandardgeneticalgorithm.
©2016ElsevierB.V.Allrightsreserved.
1. Introduction
Distributionnetworkreconfigurationistheprocessofchang- ingthetopologicalstructureofdistributionfeedersbyupdating theopen/closestatusofthenetworksectionalizesandtieswitches.
Reconfigurationisaneffectivewaytoimprovetheperformanceof powerdistributionnetworks.Byupdatingtheswitchesopen/close status,adistributionnetworkreconfigurationalgorithmchanges the topological structure of distribution feeders in a way that optimizesthesystemperformancewhilesatisfyingitsoperational constraints.Giventhenonlinearcharacteristicsofthedistribution systemconstraints,aswellasthelargenumberofsystemswitch- ingelements,thedistributionnetworkreconfigurationproblemis acomplex,nonlinearandconstrainedmixed-integeroptimization problemwhereintegervariablesrepresentthesystemswitches andcontinuousvariablesrepresentthedistributionnetwork.The complexnatureofthedistributionnetworkreconfigurationprob- lem,makesitprohibitivetoadoptmostoftheexactoptimization methodstosolveit[1].Ontheotherhand,heuristictechniques havebeenshowntobeparticularlysuitabletohandlethecom- plexoptimizationproblemofdistributionsystemreconfiguration.
Inparticular,extensiveworkhasbeendonetoefficientlyapply geneticalgorithm (GA) to thereconfiguration problem(see for instance[1–4]andreferencestherein). Nonetheless,todate,all the previous work in this area have presupposed that the GA populationsizeshouldremainconstantthroughouttheevolution
E-mailaddress:[email protected]
ofthesearchprocess.Inthispaper,weproposetheapplicationof ageneticalgorithmwithvariablepopulationsize(GAVAPS)tothe reconfigurationproblem.Wedemonstratethatallowingthepopu- lationsizetoadaptivelygrowandshrinkaccordingtothestatusof theGAsearchcanallowforamoreefficientsolution,comparedto standardgeneticalgorithm(SGA)thatmaintainsaconstantpopu- lationsize.
2. DistributionnetworkreconfigurationbyGAVAPS
ThetheoryofGAVAPS wasoriginallyintroducedtothefield of Evolutionary Computationsin [5]. Reference[5] presented a non-elitistGAVAPStomaximizenon-linearmulti-modalmathe- maticalfunctions.Inthispaper,webuildontheworkin[5]and proposeanelitistGAVAPStosolvethepowerdistributionnetwork reconfiguration problem. The proposed GAVAPS searches for a solutiontothereconfigurationproblemusinga populationthat evolves through successivegenerations. Each individual in the populationrepresentsapossiblesolutionandistermeda“chro- mosome”.Achromosomeiscodedasageneticstringcontaining thelocationsofopenswitchesinthepowerdistributionnetwork.
Eachchromosomeisassignedalifetimeparameteratitscreation.
Ateach generation,anoffspring populationis createdfromthe currentpopulationusinggeneticselection,mutationandcrossover operators.Chromosomesinthecurrentpopulation,whoseage(i.e., thenumberofgenerationsthechromosomehasbeenalive)does notexceedtheirlifetimeparameter,arepassedtothenextgen- erationalongwiththeoffspringpopulation.Chromosomeswhose ageexceedtheirlifetimeparameterdieandleavethegeneticpool.
http://dx.doi.org/10.1016/j.epsr.2016.08.026 0378-7796/©2016ElsevierB.V.Allrightsreserved.
10 M.Abdelaziz/ElectricPowerSystemsResearch142(2017)9–11
0 1
2
3 4 5
6 7 8 9 10 11 12 13 14 15 16 17
18 19 20 21 28
29 30 31
25 26 27
1 2 3 4 5
6 7 8 9 10 11 12 13 14 15 16 17 21
20 19 25 26 27 28
29 30 31 32
32 22
23 24
22 23 24
18
33
34
35 36 37
V0=1.05 p.u.
Fig.1.Distributiontestsystem[6],(Vbase=12.66kVandSbase=10MVA).
Thegenerationssucceedoneanotheruntilthesearchconverges oramaximumnumberoffitnessfunctionevaluationsisattained.
TheimplementationproceduresoftheproposedGAVAPSpro- cesscanbegivenasfollows;atgenerationt;Step1:determinethe sizeoftheoffspringpopulationNoffspringas
Noffspring(t)=max(round(N(t)∗),˛) (1)
whereN(t)isthesizeofthepopulationatgenerationt,isthe reproductionrateparameter,and˛istheelitecountparameter.
Step2:thefirst˛chromosomes intheoffspringpopulationwill betheelitechildrenselecteddirectlyfromthecurrentpopulation basedontheirfitnessvalues.Step3:ifNoffspring(t)>˛,thesubse- quentˇchromosomesintheoffspringpopulationwillbecrossover children,
ˇ(t)=round((Noffspring(t)−˛)∗) (2) andisacrossoverfractionparameter.Similarly,theremaining chromosomeswillbemutationchildren;
(t)=Noffspring(t)−˛−ˇ(t) (3)
Eachchromosomeinthecurrentpopulationcanbechosento parentcrossoverandmutationchildrenwithequalprobabilityand irrespectiveofitsfitnessvalue.Step4:foreachofthegenerated crossoverandmutationchildrendeterminethefitnessvalue(based onthesystempowerlosses)and feasibility(basedonthecon- straintssatisfaction)bysolvingtheloadflowproblem.Amutation orcrossoverchildisincludedintheoffspringpopulation,onlyif itpassesthefeasibilitytests.Otherwise,therespectivecrossover ormutationoperatorisrepeatedtogenerateafeasiblealternative.
Step5:selectivepressureisappliedthroughthechromosomelife- timeparameter.Thelifetimeparameterforeachchromosomecin theoffspringpopulationiscalculatedaccordingto
Lifetime(c)=min
MinLT+fitness(c)
AvgFit ,MaxLT
(4) whereMinLTandMaxLTaretheminimumandmaximumallowable lifetimeparameters,=0.5(MaxLT−MinLT),fitness(c)isthefitness ofthecthchromosomeintheoffspringpopulationandAvgFitis theaveragefitnessvalueofthecurrentpopulation.Step6:increase theageofeachchromosomeinthecurrentpopulationbyone.Step 7:formthepopulationforgenerationt+1tocompromisetheoff- springpopulationaswellasallthechromosomesinthecurrent populationtwhose agedidnotexceedtheirlifetimeparameter andthatarenotpresentintheoffspringpopulation.
Table1
ComparisonofSGAandGAVAPSresults.
Initialpopulationsize 10 15 20 25 30
Averagenumberofpowerflows
SGA 435 591 787 901 1114
GAVAPS 310 333 383 385 427
3. Testandresults
TheproposedGAVAPSforpowerdistributionnetworkrecon- figuration wastested onthewell-known Baran reconfiguration testsystem,showninFig.1.Inthiswork,weinvestigateasingle- objective loss reduction problem formulation. However, other possibleformulationsmaybereadilyadoptedwiththeproposed GAVAPS.Theperformanceoftheproposedapproachhasbeencom- paredtoSGA.Inordertoallowforanobjectivecomparison,theGA parameters,codificationaswellasgeneticmutationandcrossover operatorswereidenticalforbothSGAandGAVAPS.Mutationand crossoveroperatorssimilartotheonespresentedin[3]and[1], respectively,havebeenadoptedinthiswork.Ontheotherhand, thegeneticselectionoperator,whichrepresentsoneofthemain differencesbetweentheproposedGAVAPSandSGA, wasdiffer- ent.WhileinGAVAPSalltheindividualsinthecurrentpopulation haveequalprobabilitytoparentmutationandcrossoverchildren (i.e.,irrespectiveoftheirfitness),inSGAtheselectionofparentsis basedonthefitnessvalue(i.e.,individualsofhigherfitnesshave higherprobabilityofbeingselectedasparentsformutationand crossoverchildren).Initialpopulationsizesof10,15,20,25and30 weretestedwithbothSGAandGAVAPS.IncaseofSGA,thesizeof initialpopulationremainedconstantthroughouttheevolutionof theGAsearch.InthecaseofGAVAPS,areproductionrateof0.4, aminimumandmaximumlifetimeparametersof1and7,respec- tively,wereappliedandthepopulationsizeevolvedthroughthe searchprocess.Acrossoverfractionof0.8andanelitecountof2 wereappliedforbothSGAandGAVAPS.Populationswereinitial- izedatrandom,and50independentrunswereperformedoneach initialpopulationsize.Thenumberofpowerflowsrequiredwere averagedoverthese50runsgivingthereportedresults.Thebest solutionpresents114.271kWlosses,withthefollowingbranches open:7, 12,31, 35and 37. Table1shows theaveragenumber ofpowerflowevaluationsrequiredineachcasestudiedtoreach thebestconfiguration.TheresultsinTable1demonstratethatthe adoptionofavariablepopulationsizecansignificantlydecreasethe computationalcostofthereconfigurationalgorithmandallowfor abetterexplorationofthesolutionspaceaswellaslesssuscep- tibilitytotheinitialpopulationsize.Hereitisworthmentioning thattheapplicationofGAVAPStotheelectricdistributionnetwork
M.Abdelaziz/ElectricPowerSystemsResearch142(2017)9–11 11
Table2
Comparisonwithpreviouslypublishedalgorithms.
Algorithm ProposedGAVAPS Reference[7] Reference[8] Reference[4] Reference[9] Reference[10] Reference[11]
Averagenumberofpowerflowevaluationrequired 310 450 705 525 1600 640 433
reconfigurationproblemisnotlimitedtotheGAprocesspresented inSection2.Advancedencodingandcodificationalgorithmspre- viouslyadoptedwithSGA(seeforinstance[1–4])canbereadily adoptedwithGAVAPS.Table2presentsacomparisonofthenum- berofpowerflowevaluationsrequiredbytheproposedGAVAPS withthoserequiredbyothertechniquesavailableintheliterature.
4. Conclusion
Existingliteratureinvestigatingdistributionnetworkreconfig- urationusingGAhaveallpresupposedthattheGApopulationsize shouldremainconstantthroughouttheevolutionofthesearchpro- cess.Inthispaper,weamendthispresuppositionandproposean alternativeapproachthatallowsthepopulationsizetochangesize adaptivelythroughtheprogressinggenerationsbasedonthesearch status. It is demonstrated that a GAof varying populationsize canyieldlowercomputationalcostsinsolvingthereconfiguration problem.
References
[1]E.Carreno,R.Romero,A.Padilha-Feltrin,Anefficientcodificationtosolvedistri- butionnetworkreconfigurationforlossreductionproblem,IEEETrans.Power Syst.23(4)(2008)1542–1551.
[2]H. de Macedo Braz, B. de Souza, Distribution network reconfiguration usinggeneticalgorithmswithsequentialencoding:subtractiveandadditive approaches,IEEETrans.PowerSyst.26(2)(2011)582–593.
[3]Y.-T.Hsiao,Multiobjectiveevolutionprogrammingmethodforfeederrecon- figuration,IEEETrans.PowerSyst.19(1)(2004)594–599.
[4]J.Mendoza,R.Lopez,D.Morales,E.Lopez,P.Dessante,R.Moraga,Minimal lossreconfigurationusinggeneticalgorithmswithrestrictedpopulationand addressedoperators:realapplication,IEEETrans.PowerSyst.21(2)(2006) 948–954.
[5]J.Arabas,Z.Michalewicz,J.Mulawka,GAVaPS–ageneticalgorithmwithvary- ingpopulationsize,in:ProceedingsoftheFirstIEEEConferenceonEvolutionary Computation,June,1994.
[6]M.Baran,F.Wu,Networkreconfigurationindistributionsystemsforlossreduc- tionandloadbalancing,IEEETrans.PowerSyst.4(3)(1989)1401–1407.
[7]B.Enacheanu,B.Raison,R.Caire,O.Devaux,N.Hadjsaid,Radialnetworkrecon- figurationusinggeneticalgorithmbasedontheMatroidtheory,IEEETrans.
PowerSyst.23(1)(2008)186–195.
[8]E.Romero,A.Gomez,J.Riquelme,F.LLorens,Path-baseddistributionnetwork modeling:applicationtoreconfigurationforlossreduction,IEEETrans.Power Syst.20(2)(2005)556–564.
[9]R.SrinivasaRao,S.V.L.Narasimham,M.RamalingaRaju,A.SrinivasaRao,Opti- malnetworkreconfigurationoflarge-scaledistributionsystemusingharmony searchalgorithm,IEEETrans.PowerSyst.26(3)(2011)1080–1088.
[10]C.-C.Chu,M.-S.Tsai,Applicationofnovelchargedsystemsearchwithrealnum- berstringfordistributionsystemlossminimization,IEEETrans.PowerSyst.28 (4)(2013)3600–3609.
[11]C.Wang,Y.Gao,Determinationofpowerdistributionnetworkconfiguration usingnon-revisitinggeneticalgorithm,IEEETrans.PowerSyst.28(4)(2013) 3638–3648.