• Tidak ada hasil yang ditemukan

Distribution network reconfiguration using a genetic algorithm with varying population size

N/A
N/A
Protected

Academic year: 2023

Membagikan "Distribution network reconfiguration using a genetic algorithm with varying population size"

Copied!
3
0
0

Teks penuh

(1)

ElectricPowerSystemsResearch142(2017)9–11

ContentslistsavailableatScienceDirect

Electric Power Systems Research

jou rn al h om e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e p s r

Distribution network reconfiguration using a genetic algorithm with varying population size

Morad Abdelaziz

DepartmentofElectricalandComputerEngineering,UniversitéLaval,Québec,Canada

a r t i c l e i n f o

Articlehistory:

Received29February2016 Receivedinrevisedform2May2016 Accepted21August2016

Keywords:

Distributionnetwork Feederreconfiguration Geneticalgorithms Populationsize

a b s t r a c t

Geneticalgorithm(GA)hasbeenshowntobeaneffectivewaytosolvethecomplexcombinatorial,and constrainednon-linearmixedintegeroptimizationproblemofdistributionnetworkreconfiguration.

ExtensiveworkhasbeendoneintheliteraturetoefficientlyapplyGAtothereconfigurationproblem.

Nonetheless,todate,allthepreviousworkinthisareahavepresupposedthattheGApopulationsize shouldremainconstantthroughouttheevolutionofthesearchprocess.Inthispaper,weproposethe applicationofageneticalgorithmwithvariablepopulationsize(GAVAPS)tothereconfigurationproblem.

Wedemonstratethatallowingthepopulationsizetoadaptivelygrowandshrinkaccordingtothestatus oftheGAsearchcanallowforamoreefficientsolution,comparedtostandardgeneticalgorithm.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Distributionnetworkreconfigurationistheprocessofchang- ingthetopologicalstructureofdistributionfeedersbyupdating theopen/closestatusofthenetworksectionalizesandtieswitches.

Reconfigurationisaneffectivewaytoimprovetheperformanceof powerdistributionnetworks.Byupdatingtheswitchesopen/close status,adistributionnetworkreconfigurationalgorithmchanges the topological structure of distribution feeders in a way that optimizesthesystemperformancewhilesatisfyingitsoperational constraints.Giventhenonlinearcharacteristicsofthedistribution systemconstraints,aswellasthelargenumberofsystemswitch- ingelements,thedistributionnetworkreconfigurationproblemis acomplex,nonlinearandconstrainedmixed-integeroptimization problemwhereintegervariablesrepresentthesystemswitches andcontinuousvariablesrepresentthedistributionnetwork.The complexnatureofthedistributionnetworkreconfigurationprob- lem,makesitprohibitivetoadoptmostoftheexactoptimization methodstosolveit[1].Ontheotherhand,heuristictechniques havebeenshowntobeparticularlysuitabletohandlethecom- plexoptimizationproblemofdistributionsystemreconfiguration.

Inparticular,extensiveworkhasbeendonetoefficientlyapply geneticalgorithm (GA) to thereconfiguration problem(see for instance[1–4]andreferencestherein). Nonetheless,todate,all the previous work in this area have presupposed that the GA populationsizeshouldremainconstantthroughouttheevolution

E-mailaddress:[email protected]

ofthesearchprocess.Inthispaper,weproposetheapplicationof ageneticalgorithmwithvariablepopulationsize(GAVAPS)tothe reconfigurationproblem.Wedemonstratethatallowingthepopu- lationsizetoadaptivelygrowandshrinkaccordingtothestatusof theGAsearchcanallowforamoreefficientsolution,comparedto standardgeneticalgorithm(SGA)thatmaintainsaconstantpopu- lationsize.

2. DistributionnetworkreconfigurationbyGAVAPS

ThetheoryofGAVAPS wasoriginallyintroducedtothefield of Evolutionary Computationsin [5]. Reference[5] presented a non-elitistGAVAPStomaximizenon-linearmulti-modalmathe- maticalfunctions.Inthispaper,webuildontheworkin[5]and proposeanelitistGAVAPStosolvethepowerdistributionnetwork reconfiguration problem. The proposed GAVAPS searches for a solutiontothereconfigurationproblemusinga populationthat evolves through successivegenerations. Each individual in the populationrepresentsapossiblesolutionandistermeda“chro- mosome”.Achromosomeiscodedasageneticstringcontaining thelocationsofopenswitchesinthepowerdistributionnetwork.

Eachchromosomeisassignedalifetimeparameteratitscreation.

Ateach generation,anoffspring populationis createdfromthe currentpopulationusinggeneticselection,mutationandcrossover operators.Chromosomesinthecurrentpopulation,whoseage(i.e., thenumberofgenerationsthechromosomehasbeenalive)does notexceedtheirlifetimeparameter,arepassedtothenextgen- erationalongwiththeoffspringpopulation.Chromosomeswhose ageexceedtheirlifetimeparameterdieandleavethegeneticpool.

http://dx.doi.org/10.1016/j.epsr.2016.08.026 0378-7796/©2016ElsevierB.V.Allrightsreserved.

(2)

10 M.Abdelaziz/ElectricPowerSystemsResearch142(2017)9–11

0 1

2

3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 28

29 30 31

25 26 27

1 2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17 21

20 19 25 26 27 28

29 30 31 32

32 22

23 24

22 23 24

18

33

34

35 36 37

V0=1.05 p.u.

Fig.1.Distributiontestsystem[6],(Vbase=12.66kVandSbase=10MVA).

Thegenerationssucceedoneanotheruntilthesearchconverges oramaximumnumberoffitnessfunctionevaluationsisattained.

TheimplementationproceduresoftheproposedGAVAPSpro- cesscanbegivenasfollows;atgenerationt;Step1:determinethe sizeoftheoffspringpopulationNoffspringas

Noffspring(t)=max(round(N(t)∗),˛) (1)

whereN(t)isthesizeofthepopulationatgenerationt,isthe reproductionrateparameter,and˛istheelitecountparameter.

Step2:thefirst˛chromosomes intheoffspringpopulationwill betheelitechildrenselecteddirectlyfromthecurrentpopulation basedontheirfitnessvalues.Step3:ifNoffspring(t)>˛,thesubse- quentˇchromosomesintheoffspringpopulationwillbecrossover children,

ˇ(t)=round((Noffspring(t)−˛)∗) (2) andisacrossoverfractionparameter.Similarly,theremaining chromosomeswillbemutationchildren;

(t)=Noffspring(t)−˛−ˇ(t) (3)

Eachchromosomeinthecurrentpopulationcanbechosento parentcrossoverandmutationchildrenwithequalprobabilityand irrespectiveofitsfitnessvalue.Step4:foreachofthegenerated crossoverandmutationchildrendeterminethefitnessvalue(based onthesystempowerlosses)and feasibility(basedonthecon- straintssatisfaction)bysolvingtheloadflowproblem.Amutation orcrossoverchildisincludedintheoffspringpopulation,onlyif itpassesthefeasibilitytests.Otherwise,therespectivecrossover ormutationoperatorisrepeatedtogenerateafeasiblealternative.

Step5:selectivepressureisappliedthroughthechromosomelife- timeparameter.Thelifetimeparameterforeachchromosomecin theoffspringpopulationiscalculatedaccordingto

Lifetime(c)=min

MinLT+fitness(c)

AvgFit ,MaxLT

(4) whereMinLTandMaxLTaretheminimumandmaximumallowable lifetimeparameters,=0.5(MaxLT−MinLT),fitness(c)isthefitness ofthecthchromosomeintheoffspringpopulationandAvgFitis theaveragefitnessvalueofthecurrentpopulation.Step6:increase theageofeachchromosomeinthecurrentpopulationbyone.Step 7:formthepopulationforgenerationt+1tocompromisetheoff- springpopulationaswellasallthechromosomesinthecurrent populationtwhose agedidnotexceedtheirlifetimeparameter andthatarenotpresentintheoffspringpopulation.

Table1

ComparisonofSGAandGAVAPSresults.

Initialpopulationsize 10 15 20 25 30

Averagenumberofpowerflows

SGA 435 591 787 901 1114

GAVAPS 310 333 383 385 427

3. Testandresults

TheproposedGAVAPSforpowerdistributionnetworkrecon- figuration wastested onthewell-known Baran reconfiguration testsystem,showninFig.1.Inthiswork,weinvestigateasingle- objective loss reduction problem formulation. However, other possibleformulationsmaybereadilyadoptedwiththeproposed GAVAPS.Theperformanceoftheproposedapproachhasbeencom- paredtoSGA.Inordertoallowforanobjectivecomparison,theGA parameters,codificationaswellasgeneticmutationandcrossover operatorswereidenticalforbothSGAandGAVAPS.Mutationand crossoveroperatorssimilartotheonespresentedin[3]and[1], respectively,havebeenadoptedinthiswork.Ontheotherhand, thegeneticselectionoperator,whichrepresentsoneofthemain differencesbetweentheproposedGAVAPSandSGA, wasdiffer- ent.WhileinGAVAPSalltheindividualsinthecurrentpopulation haveequalprobabilitytoparentmutationandcrossoverchildren (i.e.,irrespectiveoftheirfitness),inSGAtheselectionofparentsis basedonthefitnessvalue(i.e.,individualsofhigherfitnesshave higherprobabilityofbeingselectedasparentsformutationand crossoverchildren).Initialpopulationsizesof10,15,20,25and30 weretestedwithbothSGAandGAVAPS.IncaseofSGA,thesizeof initialpopulationremainedconstantthroughouttheevolutionof theGAsearch.InthecaseofGAVAPS,areproductionrateof0.4, aminimumandmaximumlifetimeparametersof1and7,respec- tively,wereappliedandthepopulationsizeevolvedthroughthe searchprocess.Acrossoverfractionof0.8andanelitecountof2 wereappliedforbothSGAandGAVAPS.Populationswereinitial- izedatrandom,and50independentrunswereperformedoneach initialpopulationsize.Thenumberofpowerflowsrequiredwere averagedoverthese50runsgivingthereportedresults.Thebest solutionpresents114.271kWlosses,withthefollowingbranches open:7, 12,31, 35and 37. Table1shows theaveragenumber ofpowerflowevaluationsrequiredineachcasestudiedtoreach thebestconfiguration.TheresultsinTable1demonstratethatthe adoptionofavariablepopulationsizecansignificantlydecreasethe computationalcostofthereconfigurationalgorithmandallowfor abetterexplorationofthesolutionspaceaswellaslesssuscep- tibilitytotheinitialpopulationsize.Hereitisworthmentioning thattheapplicationofGAVAPStotheelectricdistributionnetwork

(3)

M.Abdelaziz/ElectricPowerSystemsResearch142(2017)9–11 11

Table2

Comparisonwithpreviouslypublishedalgorithms.

Algorithm ProposedGAVAPS Reference[7] Reference[8] Reference[4] Reference[9] Reference[10] Reference[11]

Averagenumberofpowerflowevaluationrequired 310 450 705 525 1600 640 433

reconfigurationproblemisnotlimitedtotheGAprocesspresented inSection2.Advancedencodingandcodificationalgorithmspre- viouslyadoptedwithSGA(seeforinstance[1–4])canbereadily adoptedwithGAVAPS.Table2presentsacomparisonofthenum- berofpowerflowevaluationsrequiredbytheproposedGAVAPS withthoserequiredbyothertechniquesavailableintheliterature.

4. Conclusion

Existingliteratureinvestigatingdistributionnetworkreconfig- urationusingGAhaveallpresupposedthattheGApopulationsize shouldremainconstantthroughouttheevolutionofthesearchpro- cess.Inthispaper,weamendthispresuppositionandproposean alternativeapproachthatallowsthepopulationsizetochangesize adaptivelythroughtheprogressinggenerationsbasedonthesearch status. It is demonstrated that a GAof varying populationsize canyieldlowercomputationalcostsinsolvingthereconfiguration problem.

References

[1]E.Carreno,R.Romero,A.Padilha-Feltrin,Anefficientcodificationtosolvedistri- butionnetworkreconfigurationforlossreductionproblem,IEEETrans.Power Syst.23(4)(2008)1542–1551.

[2]H. de Macedo Braz, B. de Souza, Distribution network reconfiguration usinggeneticalgorithmswithsequentialencoding:subtractiveandadditive approaches,IEEETrans.PowerSyst.26(2)(2011)582–593.

[3]Y.-T.Hsiao,Multiobjectiveevolutionprogrammingmethodforfeederrecon- figuration,IEEETrans.PowerSyst.19(1)(2004)594–599.

[4]J.Mendoza,R.Lopez,D.Morales,E.Lopez,P.Dessante,R.Moraga,Minimal lossreconfigurationusinggeneticalgorithmswithrestrictedpopulationand addressedoperators:realapplication,IEEETrans.PowerSyst.21(2)(2006) 948–954.

[5]J.Arabas,Z.Michalewicz,J.Mulawka,GAVaPSageneticalgorithmwithvary- ingpopulationsize,in:ProceedingsoftheFirstIEEEConferenceonEvolutionary Computation,June,1994.

[6]M.Baran,F.Wu,Networkreconfigurationindistributionsystemsforlossreduc- tionandloadbalancing,IEEETrans.PowerSyst.4(3)(1989)1401–1407.

[7]B.Enacheanu,B.Raison,R.Caire,O.Devaux,N.Hadjsaid,Radialnetworkrecon- figurationusinggeneticalgorithmbasedontheMatroidtheory,IEEETrans.

PowerSyst.23(1)(2008)186–195.

[8]E.Romero,A.Gomez,J.Riquelme,F.LLorens,Path-baseddistributionnetwork modeling:applicationtoreconfigurationforlossreduction,IEEETrans.Power Syst.20(2)(2005)556–564.

[9]R.SrinivasaRao,S.V.L.Narasimham,M.RamalingaRaju,A.SrinivasaRao,Opti- malnetworkreconfigurationoflarge-scaledistributionsystemusingharmony searchalgorithm,IEEETrans.PowerSyst.26(3)(2011)1080–1088.

[10]C.-C.Chu,M.-S.Tsai,Applicationofnovelchargedsystemsearchwithrealnum- berstringfordistributionsystemlossminimization,IEEETrans.PowerSyst.28 (4)(2013)3600–3609.

[11]C.Wang,Y.Gao,Determinationofpowerdistributionnetworkconfiguration usingnon-revisitinggeneticalgorithm,IEEETrans.PowerSyst.28(4)(2013) 3638–3648.

Referensi

Dokumen terkait

"I hereby declare that I have read through this report entitle "Distribution Network reconfiguration (DNR) Restoration for minimizing losses in

The parameters regulated are genetic operator probabilities inclusive of crossover and mutation whereby the results show that both GA and SIGA results in reduction of power losses

Hasil dari GA merupakan solusi dari permasalahan yang dihadapi, yakni rugi daya aktif yang paling minimal melalui perubahan konfigurasi jaringan, penempatan DG dan kapasitor bank

Step 3: Generate a number of guided initial random chromosome as an initial population according to PopSize (generation n=0). Step 4: Repair the chromosomes. Step 5: Produce

INTRODUCTION Planning and operation of distribution systems involve a long list of optimization problems, like expansion at minimum cost or network reconfiguration keeping in mind a

The present study combines the genetic algorithm and artificial neural network with Linear Predictive Coding LPC and MFCC Mel-Frequency Cepstral Coefficients to classify the babies

01, Januari 2024 20 Comparison of 5G Network Throughput on Varying Cluster Size Muhammad Yaser* Teknik Elektro, Universitas Pancasila, Jakarta *[email protected]

In this research work, the classification of LVH disease is implemented using feedforward neural network with modified weights.. The weights were modified by using a crossover operator