Online ISSN: 2382-9931
Journal of Water and Irrigation Management
Homepage: https://jwim.ut.ac.ir/
University of Tehran Press
Effect of Biochar Application on Lettuce Yield and Water Productivity in Deficit Irrigation Conditions
Jaefar Nikbakht1 | Arezoo Parvizi2 | Taher Barzegar3
1. Corresponding Author, Department of Water Engineering, Agricultural Faculty, University of Zanjan, Zanjan, Iran. E-mail: [email protected]
2. Department of Water Engineering, Agricultural Faculty, University of Zanjan, Zanjan, Iran. E-mail:
3. Department of Horticultural Sciences, Agricultural Faculty, University of Zanjan, Zanjan, Iran. E-mail:
Article Info ABSTRACT
Article type:
Research Article
Article history:
Received: 27 May 2022 Received in revised form:
15 September 2022
Accepted: 29 September 2022 Published online:
25 December 2022
Keywords:
Drought stress,
Irrigation water managment, Plant wet mass,
Soil moiture content.
This study was done as a pot experiment to investigate the effect of biochar applying in drought stress conditions on yield and water productivity of French lettuce. It was carried out from November 2019 to February 2020 in the greenhouse of Zanjan University Research Farm as a factorial experiment based on randomized complete blocks design with three replications. The experimental treatments included biochar at three levels (zero (B0), one (B1) and two (B2) percent w/w) and irrigation at two levels (70 (I70) and 100 (I100) percent of crop water requirement). The water requirements of the control treatment crops were determined by weight method. Based on the results, application of deficit irrigation significantly reduced means of plant canopy diameter, shoot dimeter, plant hight, chlorophyll content, relative water content and plant wet mass (yield) compared to the control treatment (8.0, 19.8, 26.1, 13.6, 6.20 and 21.1 percent, respectively). Application of one and two percent biochar significantly increased means of plant canopy diameter (13.1 and 7.8 percent, respectively), shoot dimeter (31.9 and 15.5 percent, respectively), plant hight (26.1 and 12.5 percent, respectively), chlorophyll content (25.5 and 13.7 percent, respectively), relative water content (11.61 and 5.30 percent, respectively), plant wet mass (yield) (23.6 and 12.1 percent, respectively) and water productivily (24.6 and 12.3 percent, respectively) compared to the control treatment (B0). Based on the results of the treatments interaction effects, maximum and minimum mean of water productivity were in I70B2 and I70B0 (27.30 and 20.02 kg.m-3, respectively) as well as in the yield they were in I100B2 and I70B0 (15.54 and 10.39 t.ha-1, respectively).
Cite this article: Nikbakht, J., Parvizi, A., & Barzegar, t. (2022). Effect of Biochar Application on Lettuce Yield and Water Productivity in Deficit Irrigation Conditions. Journal of Water and Irrigation Management, 12 (4), 859-871.
DOI: http://doi.org/ 10.22059/jwim.2022.342723.997
© The Author(s). Publisher: University of Tehran Press.
DOI: http://doi.org/ 10.22059/ jwim.2022.342723.997
هﺎﮕﺸ اد تارﺎﺸ ا نا
یرﺎﯿآ و بآ
Homepage: https://jwim.ut.ac.ir/
:ﯽﯿوﺮ !ﻟا #ﺎﺷ ۹۹۳۱ - ۲۳۸۲
1 2 |
3 |
1 . ! "
. ! :$
2 . ! "
. ! :$
3 . '( ) * +, ! "
. ! :$
!" #
$% &
: () - ./ 01 2
* + , - : 06 / 03 / 1401
* + . : 24 / 06 / 1401
* + / 0 : 07 / 07 / 1401
* + 12 # : 04 / 10 / 1401
% 34
$5#
:
8 9 :
; 8 <) = >?
@) <
:
@ . A B 9- ./
$)
$) + 9 C D
) 8 9 : E F G @) ) @HI: ) J
) +K, . F L ! " : 2@2?: $, M $ N+ O - @
$) 9
; +) P = Q1 R S > O C D T : U : $ O V: S -
1398 ) TD) Z[ $ G @) S F 9 - K@: .<O * ! ) \ (B0
) (B1
(B2
) Z[ @) (; 8 D 70
) (I70
100 ) K@: ) @ . ) ( ) @ D (I100
$>O ^ ) . F _@@`: a $) - F b -
` 9- c, ) @)
@ @ d : [R _@"
' >? _@" @ e ) S@O + f8 F _@" @ @ g T: _@" @ $R [R _@" @
$)) - F K@: $) <' ( +K,) @ : _@" @ e ) M@ $) Q@: :
0 / 8 8 / 19 1 / 26 6 / 13
20 / 6 1 / 21 QL G @) D \ ) . F ( D
` 9 MO @ d : [R _@" @
) 1 / 13 8 / 7
$) D ) $R [R _@" @ (Q@: : 9
/ 31 5 / 15
$) D @ g T: _@" @ (Q@: :
) 1 / 26 5 / 12
$) D
$)) e ) S@O + f8 F (Q@: : Q@: :
5 / 25 7 / 13
>? _@" @ ( D
$)) e ) ' Q@: :
61 / 11 30 / 5 ) ( +K,) @ : _@" @ ( D 6
/ 23 1 / 12 D
$) ) (Q@: :
$)) Q@: : 6 / 24 3 / 12 $) <' ( D S) 2> @HI: i > ^ ) . FB0
9@) 9 - K@:
b _ : ) _@" @ _ : - K@:
I70B2 I70B0
$)) Q@: :
30 / 27 20 / 20 +@
$) +K, _@" @ (Q` > ) * - K@: Q@: :
I100B2 I70B0
) 54 / 15 39 / 10 ( > - _:
. )
627#
, :
@
<N' .d / M . ) j ) 1401 .(
H ) )
@ G ) +K, ) -
F E b )@
@) < $ .
12 ) 4 ( 859 - 871 . DOI:http://doi.org/10.22059/jwim.2022.342723.997
. : " C > $ l : F
. ©
1 . !
?
<
F m) E
+R
@ K \ 8
@
$K
\ 8 9N) ) b B
@
` >
MO 9 ) A 2:
n(
) * M1 -
b- a G -
_ )@
<
PoD * R F
@ -
$ ) M R@
p
)@
2: < L )
! .
a - MO 9 )
b )@
$ <
)@
- O A ) H 1 :
@ qnB F
)
Nikbakht et al., 2020
9- ./ .(
b H `> - ) @)
) +K, ML +K, 9- ./ .< $>O R 9 q V
Jiménez-Arias et al.
) ) @) Z[ K, ) (2019
95 ( > ) , <@O r D 70
2 ( > D
>? :
) ( 8 9 : K, `) $>T- G) e ) ' @ ( 8 9 : K, `) $>T- $ ) q V
$) - Q@: : 290 185 ( : ) * 91
80 ) D (RWC
3 / 7 0 / 4 ) Q` > ) * +@
(WUE
$) + 9 . <
Paim et al.
)
< ) +K, 2 (2020
$) ( : P [ K, H <
: @) ) @) C T>
100 ( > ) ; 8 g 'F $[2 D 90
80 G > K@: @) m[R > D
$) (<F ) S'R Q@: :
84 105 75 102 . ) *
Taheri et al.
) - ./ (2020
C T> P [ @HI:
) @) 100 80 60 _@" @ S +K, _@" @ i > ^ ) . ) - @ ) ( @ ) @ D
) _@" @ @ d : [R _@" @ @ g T:
- F K@: $) <' 8 9 : - K@: q V
$) Q@: : 17 10 $ 9F ) D
(I80
35 19 14 ) D < - * ! + 9 .<O 9- (I60
E : $>O
Tafi et al.
) ) S +K, _@" @ (2021
@) C T> P [ @HI: <?: - q V
) 100 85 75
$) ( @ ) @ D Q@: :
82 / 79 $: ) ) * 28
/ 27 ) * +@
) Q` >
(I100
5 / 59 ) *
$: ) 07 / 20 ) Q` > ) * +@
(I85
28 / 53 $: ) ) * 96
/ 17 ) Q` > ) * +@
$) (I75
. <
"
T> -
) 9 MO ) @8 - ; 8 $) G @) MO q V
$) , m' sTB :I _@
1 ) F
@ PoD .
@K@F M@O - ; 8
F )
)
Dehghani Ahmadabadi et al., 2021
.(
G @) 1 V?
( C B $ < _)
<
: -
G e )
\ $JT?
- ) $> ) ^ >
B 2 SD B b F
.
VVN: t ?1 $) :
) G @ M!:
$ : B 1
F <?:
E
?
<
.@
- b
: 700 $L
>
$) <
)
Bitarafan et al., 2018
.(
) / $) $L : )
G @ M!: ) )
$
$) J $
_
)
`> nO _>F 2 )
^ @
> @ ( :
$) b@2> = :
"
$) ; 8 C D
MO C +) 9
- )
Gavili et al., 2016
.(
=
Woldetsadik et al.
) Z[ G ) H (2018
TD) G @) 10
20 30 <O ) ) ; 8 ( > - _:
) C T>
* 1 >+@ S1
- ) ( F * 1S2
; 8 @ : 9 _ . )
$) S1
Q@: : 155 170 210 205 ; 8 + *
S2
$) Q@: : 28 103 115 125
$) + * 9- ./ = . <
Yoo et al.
) G @) @1 : H (2021
9@) 9 _ i > . ) - +K, ML +K, ) Co( C ` A b _ :
_ :
$) e ) u , = $R \ 8 $R : F @1 : G @) D i / ) - K@: Q@: :
500
9@)) $L Co( C ` A D i / ) (_ :
b )
$) C TD _ 2 $ F - (_ : Q@: :
05 / 3 24± / 107 74 / 7 78± / 32 ($R : ) @ * 69
/ 0 31± / 9 * 90 / 0 92± / 2 ($R \ 8 )
72 / 0 72± / 19 54 / 2 88± / 12
>
e ) =) >
( 30 / 0 67± / 12
>
>
. ) (e ) u ,) )Asri
) (2022
jo>8 H ) TD) G @) C T> P [
10 20 30 40
$L ML K@R ) SD B ( > - _:
" O
9@) <O $!@> - \ 8 : ) ; 8 ) b _ :
$) @ : _ : - K@: Q@: :
B30 B10
$)) Q@: : 40 36 9@) ( @ * b _ :
@ \ 8 _ :
$) - K@: Q@: :
B0
$))B30
Q@: :
1 / 5 7 / 3 . ) ( @ *
- )
Lactuca sativa L.
- @ ( 8
Asteraceae
M' $+KL ) ) -
$ <
\ v 1 M@O - O @ _
9 M> >O @J -
* O ^ sTB \@1 ) >
@ * ?>
+D 92 T
)
Valizadeh Ghale Beig et al., 2015
( . ) A 2: 9 MO ) @8 -
$, M < ) +VO < ? .< $>O 9 MO $ N+ - <
9 MO q V 9- )
) < * w q V K+, m) ) . SK, $) T> Q > -
b E F - < > ) G @) T> $ b $ N+ < @)
$ < $>O R ) :
_ ) ) . ! $+ _ ) * M1 ) A B 9- ./ q -
T> H ) C T> P [
@ G '=
@
`
F E b )@
) +K, ) O - q V
. )
2 .
# T : U A B 9- ./
1398
$) + b!B) + 9 C D 20
$ - [R >@1 30
>
pK, >
35
>
$, M $ N+ ( >
) O - @ ) ! " : 2@2?:
Lactuca sativa L.
9- ./ . F L (
$)
; +) P = Q1 R S > O 9 C D S F 9 - K@: .<O * ! : $ O V: S -
b Z[ @) 70
100
$)) @ ) @ D Q@: :
I70
D \ TD Z[ $ G @) 2 (I100
$)) ; 8 Q@: :
B0 B1
(B2
)
Gavili et al., 2016
( K@: . )
I100B0
$) . F $>O J - F K@: ,
\1 ) x/ $ F $@ : $, M ; 8 9 T> ; 8 5
/ 1
>
<' ) >
) 50:50 + G @) ) S jo>8 x/ F j +N $ ) ( + - ) F $>N -
15 ) L .(* +@
1 (
$, M ; 8 @K@F M@O C VN + ; 8 _>N S'R . -
+ y >) - : $ pK, $) -
> i / F $>N ) _F >
$@ : `@'= G @) 9- ./ _ T> G @) . '- G @) ` F
) ) G $+B $) @ @ x/ @) P [ K, . F $@ : >
18 < L . F g F (< x/
$ @) @ \ $[) p = - K@: @) @ _@@`:
$' ? _@" @ xz F _@@`: - F K@: +
) L . ) $ @) 9- ./ _ . F 2
9 T> C VN ( . -
$[) 1 (
i 1 i
CWRPW (FC) PW
$ {(* +@ ) @) - + - @) @ :CWR
PWi-1(FC)
@) x/ + :
@) (* +@ ) $, M <) = B :i-1
PWi
@) S'R + : <@O r E F _@@`: ) .(* +@ ) i
+ , - F -
+ / x/
- - n) < S'R ; 8
$ ) g 'F B : - F +
@ F
> o/ ) -
@
\ - `) . F F /
+N:
@
$
>
+ + - -
@
$) + , -
F E O r
@
<
, . F $>O J _@@`: @ ) @ ) @ H qnB )
+ ; 8 $, M <@O r * ! $+B G 9 = - F -
. F <) @ F =
$) >@1 - * \ <J+( )NPK
+ $) @) C D . F -
Table 1. Physical and chemical properties of farm soil Clay
(%)
Silt (%)
Sand (%)
Soil Texture
OM (%)
K Na Ca N
(%)
EC
(dS.m-1) pH (mg.kg-1)
37 38 25 Clay Loam 0.94 200 130 120 0.1 1.49 7.42
Table 2. Results of chemical analysis of well water used
pH EC
(dS.m-1)
SAR (meq.L-1)0.5
Na K Ca Mg Cl Co3 HCo3
(mg.L-1)
6.5 2.35 0.66 50 0.0 258.45 103.7 582.2 0.0 195.2
@ ) 9 - K@: H ) < L 10
T> ) e ) S@O + f8 F - - <F ) S'R
">
$`[R >) e ) >? ' D $' ? < L . F @ SPAD
e ) @ @ -
<R ) : ) F a ) 01
/ 0 * . F @ ) C `[R xz
F
>/
9 - B
$) [2 C
24 <, E@?
:
\ xz . F R e )
d 8 [2 - F
O A <) = Z[
K> E : - n(
\ 8 F < L
$)
<
^ _ :
. F <
$) e ) C `[R C
48 <,
75
> $L
\ 8 x/ F R ' >? < F _ : F
) $[) ) e ) 2
) F $' ? (
Nikbakht et al., 2020
.(
$[) 2 (
Wet Dry 100
Turgidity Dry
M M
RWC M M
) $[) 2 ( ( D ) e ) ' >? :RWC Mwet
(* ) e ) : :
Mdry
(* ) e ) \ 8 :
MTurgidity
(* ) e ) ^ : ) - @ F S@K : x/ . F )
65
$: ) (< x/
a ) $R = S? -
xz F
$) @ - 9N) : p@R : $+@
. F @ x@1 \K ) $R = S? $R [R
$) $: ) - 9N) g T: [R >@!
E8 $+@
9 . F @
$) \ 8 _@@`: ) - @ xz C
48
) "> <, 75
$L
>
) 2 < .<O R ) $[) ) @
3 . F $' ? (
$[) 3 (
TPWM
WP TUW
$ ) :WP
(Q` > ) * +@ ) (* +@ ) @ S : :TPWM
S :TUW
q V ) (Q` > ) F
Nikbakht et al., 2020
mKL x/ .(
* T> ) - - MO
SAS9.3
SPSS22.0
.<O R S@+?: $ M!: -
Figure 1. Total amount of water used during the lettuce growth period.
0 1 2 3 4 5 6
100% CWR 70% CWR
Used water-lit/pot
3 .
%& ' ()
) L 9- ./ ) C TD x $ M!: i >
3 ) L i > $) $L : ) .< F $| ( 3
P [ H (
$) ) C TD $@+ ) @) C T>
) @ \ 8 ML ) G @) y+>N 2 T> H
C TD $@+
$) ) @ \ 8 : ) G @) @) C T> P [ S) 2> H @ \ 8 ML
)
` . F
Table 3. Variance analysis of evaluated traits in lettuce Source of
variances df Plant wet mass
Plant dry mass
Plant diameter
Plant hight
Shoot diameter
Chlorophyll index
Relative water content
Water productivity
Rep 2 44.3ns 6.2ns 0.14ns 0.24ns 0.46ns 0.53ns 4.11ns 1.72ns
Irr 1 2396.6*** 0.29ns 6.6*** 33.6*** 21.8*** 22.9*** 172.9*** 0.245ns
Bio 2 980.7*** 0.40ns 5.8*** 11.5*** 17.2*** 24.3*** 202.3*** 39.8***
Irr×Bio 2 129.4** 3.1ns 0.32ns 0.36ns 0.48ns 0.33ns 7.79ns 7.63**
Error 10 28.6 0.79 0.65 0.19 0.14 0.49 8.84 1.20
C.V. (%) - 4.4 4.2 5.0 2.9 3.1 3.9 4.6 4.6
ns, *, **, ***: No significant and significant at 0.1%, 1% and 5% levels, respectively.
3 . 1 . *+
, ) - ./
0
C TD ) @) C T> P [ @HI: i >
@ ) S F F 2
$>O ^ ) .< F ( -
K, H 9 30
- - @ $) 8 9 : D @ d : [R _@" @
23 / 1
>
) >
0 / 8 ( D
$R [R _@" @ 22
/ 2
>
) >
8 / 19 @ g T: _@" @ ( D 74
/ 2
>
) >
1 / 26 S@O + f8 F ( D
e ) 26 / 2 ) B 6 / 13 e ) ' >? _@" @ ( D 20
/ 6 ( +K,) @ : _@" @ D 56
/ 2 : _
) > - 1 / 21 ) - F K@: $) <' ( D 100
` 9- ( ) @ D .<O
$ M!: Q N: c, ) 8 9 : 1
- O +
@ S M> >O 9- $!@>
)
Nikbakht et al., 2022
(
b- _@ G 9- 1 + ^ O
>
$!@
+ $` : F 9-
$) - . e ) $R -
) F
Salari
et al., 2020
R 8 9 : <?: $ - @ .(
p = 8 @/ M@ 1 + _@) }O @
<O ) MK 9 MO SR B $) -
9@) @ ) ; 8 <O ) :
:
_ $ F -
QL g A 8 9 : E F ' M@ 9-
) F
Parkhideh et al., 2018
.(
- @ ) - ./ =
Zoratipour et al.
) K, >O $!@> (2019
20 40 8 9 : D
` 9- QL _@" @
M@ $) $R [R 6
/ 17 6 / 17
$)) D _@" @ (Q@: : $: ) =
1 / 6 8 / 9 D
$)) _@" @ (Q@: : M@ $) $: ) :
5 / 15 5 / 40
$)) D . F - F K@: $) <' (Q@: :
Ghonjalipour
Goshki et al.
) (2021
= -
@
"
@ _ ' >?
e )
@
"
@ _ - * :
@ 9 : K, ) - -
8 o b F : $) <'
@ K
$) - F Q@: : 25 < - o 9 :) D b
( 32
24 F 9 :) D 9- (
<O / ) .
$
>
i 9- ./
Chaski and Petropoulos
) (2022
P [ K, )
) C T>
@ ) b 50 100 O r D
@
<
g T: - ) ($, M
@
$) Q@: : 1 / 3 1± / 28 7 / 3 3± / 28
1 / 3 9± / 26
>
>
O + f8 F
@ S
$) e ) Q@: : 5 / 1 7± / 26 1 / 2 1± / 28 6 / 1 5± / 19
@
$) Q@: :
12 7± / 402 6 / 10 4± / 437 3 / 18 1± / 363
* Z[
e )
$) Q@: : 6 / 173 4± / 5905 3 / 108 6± / 6647
9 / 134 1± / 5209
>
>
\ 8 f8 F m)
@ : ) \ 8 )
@ (
$) Q@: : 9 / 3 3± / 8 3 / 0 0± / 5
8 / 0 8± / 3 D
$)
<
.
Bozkurt et al.
) TD ^ ) - @ ) @ _@ I: ) (2009
75 100 125
^o < : `K!: @N': D
$) @ +K, _@" @ >O $!@> @) $+D O A
Q@: : 0 / 253
4 / 444 6 / 523 8 / 529
$) @ g T: _@" @ @ * Q@: :
0 / 34 6 / 37 8 / 39 1 / 39
>
_@" @ >
[R
@
$) Q@: : 7 / 28 8 / 41 2 / 44 7 / 46
>
>
_@" @
$R = [R
$) Q@: : 3 / 66 3 / 104 3 / 118 1 / 120
@+
>
_@" @ \ 8
@
$) Q@: : 3 / 4 4 / 8 4 / 9 9 / 8
*
9 . F
Valizadeh Ghale Beig et al.
) K, (2015
40
` 9- c, ) - - @ $) 8 9 : D ) e ) ' >? _@" @
6 / 6
) S@O + f8 F ( D 9
/ 7 9 . F - F K@: $) <' ( D
Badvi et al.
) : _@" @ (2015
_@" @ 8 F ) _@" @ 8 F \ 8
P [ f1 8 q V 100
80 60 <@O r D
$) , Q@: : 7 / 95 2 / 89 33 / 80 $: ) * 73
/ 15 23 / 14 29 / 13 $: ) * 36
/ 13 77 / 14 75 / 17
$) Q` > ) * +@
. <
Figure 2. Effect of irrigation treatments on chlorophyll index, relative water content, shoot diameter, plant diameter, plant hight and wet mass (yield) in lettuce
a
b
0 5 10 15 20
100% CWR 70% CWR
Chlorophyll index
a
b
0 10 20 30 40 50 60 70 80
100% CWR 70% CWR
Relative water content-%
a
b
0 2 4 6 8 10 12 14 16
100% CWR 70% CWR
Shoot Diameter-cm
a
b
0 2 4 6 8 10 12 14 16 18
100% CWR 70% CWR
Plant Diameter-cm
a
b
0 2 4 6 8 10 12 14 16
100% CWR 70% CWR
Plant Hight-cm
a
b
0 2 4 6 8 10 12 14 16 18
100% CWR 70% CWR
Plant Fresh Weight-t/ha
3 . 3 . , ) - ./ *+
0
S F) A B 9- ./ i >
3 MO QL G @) D \ ) (
` 9 $) @ d : [R _@" @
$) M@
Q@: : 97 / 1 17 / 1
>
) >
1 / 13 8 / 7
$) D
$) $R [R _@" @ (Q@: : Q@: :
40 / 3 66 / 1
>
) >
9 / 31 5 / 15
$) D
$) @ g T: _@" @ (Q@: : Q@: :
74 / 2 31 / 1
>
) >
1 / 26 5 / 12 D
$) Q@: :
$) e ) S@O + f8 F ( Q@: :
02 / 4 16 / 2
$)) B Q@: : 5 / 25 7 / 13 ' >? _@" @ ( D
$) e ) Q@: : 61 / 11 30 / 5
$) ( +K,) @ : _@" @ D Q@: :
84 / 2 46 / 1 ) > - _:
6 / 23
1 / 12
$) D ) _@" @ (Q@: :
$) Q@: : 17 / 5 59 / 2
$)) Q` > ) * +@
Q@: : 6 / 24 3 / 12
. F ( G @) D TD) - F K@: $) <' ( D
b- + ; 8 T> G @) 2 9 MO i > ^ ) _@ G c, ) D $) D \ -
` 9 MO M@ $) @ d : [R _@" @
80 / 0
>
) >
9 / 4
$) D $R [R _@" @ (Q@: : 75
/ 1
>
) >
2 / 14 @ g T: _@" @ ( D 44
/ 1
>
) >
1 / 12 e ) S@O + f8 F ( D 86
/ 1 ) B 4 / 10
e ) ' >? _@" @ ( D 30
/ 6 ( +K,) @ : _@" @ D 38
/ 1 ) > - _:
2 / 10 ( D
) _@" @
58 / 2 ) Q` > ) * +@
9 / 10 . F ( D
G @) _) ( SN+N>
) 89 ( D
$) R >8 $ F )
@8U n( D ,
_ ) ) . F ) G @) )
; 8
`: 9 MO Q' : ; 8 @T LM
- r 1 "G 9-
- - SN+N: 9 MO ; 8
$!@>
SD B ; 8 M@8 ) F
Poormansour et al., 2019b
.(
) $) $L :
/ ) G @ M!: ) )
$
$) J $
_
`> nO _>F ) 2 )
^ @
> @ ( :
$) =
b@2>
:
"
$) ; 8 MO C +) C D
9 - )
Gavili et al., 2016
.(
- ./
Galadima et al.
)
$) G @) ) H (2020
$L C ` A <
$@ : " O
) 300 500
> $L
$) @ g T: _@" @ i > ^ ) . ) - ) ( : :
Q@
14 15 12
>
$)) >
> - K@: Q@: :
B300
$) e ) S@O + f8 F (B500
Q@: : 31 35 34
) @
$) +K, _@" @ m) >
Q@: : 49 / 94 71 / 81 16 / 101
$) @ * . <
Valizadeh Ghale Beig et al.
) G @) C T> P [ ) ) (2021
i / TD) 10
$8 F S K / SD B (; 8 * +@ G @) * )
$) e ) Z[ _@" @ - @ bR - < > ) o Q@: :
53 / 281 46 / 315 12 / 255
>
m) >
$) - 9N) g T: _@" @ Q@: :
40 / 16 70 / 15 50 / 14
>
_@" @ >
$) - 9N) : Q@: :
76 / 127 04 / 148 45 / 106
$) - 9N) \ 8 _@" @ * Q@: :
87 / 16 39 / 19 94 / 10
$) * <
\ TD ) ) - e ) ' >? _@" @ $R \ 8 _@" @ $R : _@" @ . D $ E : G @)
Jabborova et al.
)
$) (2021
Q@: : 1 / 8 48 / 9 80 / 10 72 / 11 : _@" @ ) *
($R 71 / 0 78 / 0 88 / 0 98 / 0 ($R \ 8 _@" @ ) * 89
91 93 94 _@" @ ) D (RWC
$) - ./ . <
Rivera et al.
) $ 9F $ TD) G @) C T> P [ ) ) (2022
12 _:
$8 F C ` A SD B ( > - ' ; 8 \ -
$) e ) S@O + f8 F >O $!@> S Q@: :
16 22
21 5 / 16 5 / 16
$) e ) : _@" @ Q@: :
96 / 76 83 / 103 57 / 192 33 / 194 33 / 153 _@" @ *
$) \ 8 Q@: : 49 / 1 43 / 1 69 / 1 60 / 1 60 / 1 . F *
Figure 3. Effect of biochar treatments on chlorophyll index, relative water content, shoot diameter, plant diameter, plant hight, wet mass (yield) and water productivity in lettuce.
a
b
c
0 5 10 15 20
Bio-2% Bio-1% Bio-0%
Chlorophyll index
a
b
c
0 10 20 30 40 50 60 70 80
Bio-2% Bio-1% Bio-0%
Relative water content-%
a
b
c
0 2 4 6 8 10 12 14 16
Bio-2% Bio-1% Bio-0%
Shoot Diameter-cm
a b
c
0 2 4 6 8 10 12 14 16 18 20
Bio-2% Bio-1% Bio-0%
Plant Diameter-cm
a
b
c
0 2 4 6 8 10 12 14 16
Bio-2% Bio-1% Bio-0%
Plant Hight-cm
a
b
c
0 2 4 6 8 10 12 14 16 18
Bio-2% Bio-1% Bio-0%
Plant Fresh Weight-t/ha
a
b
c
0 5 10 15 20 25 30
Bio-2% Bio-1% Bio-0%
Water productivity-kg/m3
3 . 4 . 2 !( *+
, ) - ./
0
) L i > $) $L : ) 3
) @ : <TD ) E2O 9 - K@: S) 2> H F - (
` - G S F ~ O C TD _@" @ ) - K@: @HI: i > $ F . F
- Z[ - F
` 9 MO c, ) G @) T> @) $ F - +K, _@" @
) ) +K, _@" @ 9 MO I100
$) G @) D \ Q@: :
90 / 1 36 / 1 ) > - _:
9 / 13 0 / 10
$) D (Q@: :
$) I70
Q@: :
79 / 3 55 / 1 _:
) > - 3 / 36 9 / 14
$>O ^ ) . ) ( D -
K, L ) I70
30 8 9 : D
` @() qo>8 9- @ +K, 9 MO c, ) ; 8 $) G @) D MO @ $) K@: ) (
I100B0 I100B1
$) Q@: : 52 / 0 84 / 0 - ) > - * +@
8 / 3 6 / 5 -
$) D . F (Q@: :
) S F $) $L : ) 4
9@) ( b _ : ) _@" @ _ :
- K@:
I70B2
) 30 / 27 ) * +@
(Q` >
I70B0
) 02 / 20 - . ) (Q` > ) * +@
- ; 8 $) G @) C T> 2 MO F
` 9 MO c, ) @) Z[
) _@" @ $ F
$) 9 MO I100
Q@: : 06 / 3 ( G @) D )
20 / 2 ) Q` > ) * +@ ( G @) D \ ) 9
/ 13 0 / 10
$) D (Q@: :
$) I70
Q@: : 28 / 7 99 / 2
) Q` > ) * +@
3 / 36 9 / 14
$) D . ) (Q@: :
Figure 4. Interaction effect of irrigation and biochar treatments on wet mass and water productivity in lettuce
cd d
b b bc
a
0 10 20 30
100% CWR 70% CWR
Water productivity-kg/m3
Bio-0% Bio-1% Bio-2%
c
e ab
d a
bc
0 5 10 15 20
100% CWR 70% CWR
Plant Fresh Weight-t/ha
Bio-0% Bio-1% Bio-2%
K, - K@: S) 2> @HI: i >
9- ./ +B ) F
Safahani Langeroodi et al.
) (2019
$)) $ +K, _@" @ SR B • B Q@: :
1450 542 +@
$) ( > - ) * - K@: Q@: :
I1B20
@) ) 40
D 20 MAD
( G @) > - _:
@) ) I4B0
90 D > - _: TD MAD
) _@" @ ( G @)
$)) Q@: : 37 / 0 20 / 0 (Q` > ) * +@
$) Q@: : - K@:
I2B20
@) )
60 D 20 MAD
( G @) > - _:
) $1 9 . )I4B0
2017 2018 (
Danso et al.
) (2019
$)) C U $ +K, _@" @ SR B • B C U ) Q@: :
46 / 5 64 / 3 Q@: : $) ( > - _:
- K@:
30 G @) > - _:
-
@) > - _: TD @) * ! G
- ) _@" @ b E F
$)) Q@: : 09 / 1 71 / 0 (Q` > ) * +@
$) Q@: : - K@:
30 ) > - _:
@ G - b E F _: TD
) > -
@ G -
$>O . F SD B @) * ! -
Poormansour et al.
)
2019a
_@" @ SR B • B (
+K,
$)) ) O @) 1 : Q@: :
38 / 31 74 / 12
$) ( + * - K@: Q@: :
100
@ ) @ D -
25 / 1
G @) D 50
@ ) @ D -
) _@" @ G @) D TD
$)) Q@: : 32 / 1 55 / 0
$) (Q` > ) * +@
- K@: Q@: : 50
@ D
@ ) - 5 / 2 G @) D 50
D
@ )
@ -
TD D )
@ G i > ^ ) . F SD B
Bagheri et al.
) @ E > _@" @ SR B • B (2021
$)) K bR '1 = Q@: :
1344 729
$) (*
- K@: Q@: : 100
@ ) @ D -
24 / 0 G @) * +@
) m) >
(I3B3
60 D
@ )
@ - TD
@
* +
)
@ G ) m) >
(I1B1
) _@" @
$)) Q@: :
55 / 13 19 / 7 - K@: (Q` > ) * +@
I3B3
. )I1B1
4 . 3 () 0
$) ) +K, ) G @) T> @HI: ) J F 8 9 : E F O - @
b
$) A B 9- ./ @) 9- ./ i > . F L ! " : 2@2?: $, M $ N+ + 9 C D
b
` H @)
>? e ) S@O + f8 F @ g T: $R [R @ d : [R ) - '
@ d : [R ; 8 G @) D \ ) ) .<F - F K@: ) $ 2 ( +K,) @ : e ) ) +K, e ) ' >? e ) S@O + f8 F @ g T: $R [R - F K@: $) <'
` 9 MO ( G @) D TD) H i > .<F
: S) 2>
@ - K 9
<TD ) E2O +K,
)
` 9@) $ F b _ :
_ :
@
"
@ _
$) +K, - K@: Q@: :
I100B2
) 54 / 15
> - _:
(
I70B0
) 39 / 10
> - _:
( ) :
@ - K
I70B2
) 30 / 27
@
* +
(Q` > )
I70B0
) 02 / 20
@
* +
. ) (Q` > )
5 . 5) 6 7+
R : b- O 9- ./ _ @ G @) $ '- `@'= G @) ` * >? <
.
6 . 9: ; < =+
-
@
€
$ E : mO u `:
. L
7 . 9 ; .(?
Asri, F. Ö. (2022). Effects of biochar and fertilizer application on soil properties and nutrient status of lettuce. Chilean Journal of Agricultural Research, 82(3), 469-483.
Badvi, H., Alemzade Ansari, N., Mahmoodi sorestani, M., & Eskandari, F. (2015). Effects of drought stress and mycorrhizal fungi on some morphophysiological characteristics of lettuce (Lactuca sativa L.). Plant Productions, 38(3), 27-39. (In Persian).
Bagheri, S., Hassandokht, M.R., Mirsoleimani, A., & Mousavi, A. (2021). Effect of palm leaf biochar application on some physiological and biochemical characteristics of melon plants (Cucumis melo cv. Samsouri) under drought stress. Journal of Plant Process and Function, 10(45), 285-302. (In Persian).
Bitarafan, Z., Asghari, H., Hasanloo, T., Gholami, A., & Moradi, F. (2018). Biochar effect on seed trigonelline content of fenugreek (Trigonella foenum-graceum L.) ecotypes under deficit irrigation. Iranian Journal of Medicinal and Aromatic Plants Research, 34(1), 155- 165. (In Persian).
Bozkurt, S., Mansuroglu, G. S., Kara, M., & Onder, S. (2009). Responses of lettuce to irrigation levels and nitrogen forms. African journal of agricultural research, 4(11), 1171-1177.
Chaski, C., & Petropoulos, S. (2022). The Effects of biostimulant application on growth parameters of lettuce plants grown under deficit irrigation conditions. Biology and Life Sciences Forum, 16(1), 1-6.
Danso, E.O., Yakubu, A., Kugblenu Darrah, Y., Arthur, E., Manevski, K., Sabi, E.B., Abenney- Mickson, S., Ofori, K., Plauborg, F., & Andersen, M.N. (2019). Impact of rice straw biochar and irrigation on maize yield, intercepted radiation and water productivity in a tropical sandy clay loam. Field Crops Research, 243, 1-11.
Dehghani Ahmadabadi, M., Shahnazari, A., Ghadami Firouzabadi, A., & Ardakani, M. (2021).
The effect of irrigation management on growth and water use efficiency of maize plant under different levels of biochar. Water Management in Agriculture, 8(1), 67-76. (In Persian).
Galadima, M. M., Aziz, A. L. A., Yilmaz, E., & İlker, U. Z. (2020). Effect of biochar applications on certain quality parameters and lettuce yield (Lactuca sativa L.).
Mediterranean Agricultural Sciences, 33(3), 417-424.
Gavili, E., Mousavi, S.A.A., & Kamgar Haghighi, A.A. (2016). Effect of Cattle Manure Biochar and Drought Stress on the Growth Characteristics and Water Use Efficiency of Spinach under Greenhouse Conditions. Journal of Water Research in Agriculture, 30(2), 243-259. (In Persian).
Ghonjalipour Goshki, M., Abdollahi, F., & Sadeghi Lari, A. (2021). Effect of Mycorrhiza Fertilizer on Physiological Traits and Economical Yield of Lettuce (Lactuca sativa L.) under Water Stress Conditions. Journal of Vegetables Sciences, 5(1), 157-173. (In Persian).
Jabborova, D., Kadirova, D., Narimanov, A., & Wirth, S. (2021). Beneficial effects of biochar application on lettuce (Lactuca sativa L.) growth, root morphological traits and physiological properties. Annals of Phytomedicine, 10(2), 93-100.
Jiménez-Arias, D., Garcia-Machado, F. J., Morales-Sierra, S., Luis, J. C., Suarez, E., Hernández, M., Valdés, F., & Borges, A. A. (2019). Lettuce plants treated with L-pyroglutamic acid increase yield under water deficit stress. Environmental and experimental botany, 158, 215-222.
Nikbakht, J., Mohammadi, E., & Barzegar, T. (2020). Effect of Salicylic Acid foliar application under deficit irrigation conditions on yield and water use efficiency in cucumber (Cucumis sativus cv. Kish F1) . Iranian Journal of Soil and Water Research, 51(3), 553-561. (In Persian).
Nikbakht, J., Mohammadi, F., & Barzegar, T. (2022). Effect of using transparent plastic mulch in deficit irrigation conditions on yield and water productivity green beans. Water Management in Agriculture, 8(2), 151-166. (In Persian).
Paim, B. T., Crizel, R. L., Tatiane, S. J., Rodrigues, V. R., Rombaldi, C. V., & Galli, V. (2020).
Mild drought stress has potential to improve lettuce yield and quality. Scientia Horticulturae, 272(109578), 1-7.
Parkhideh, J., Barzegar, T., Nekonam, F., & Nikbakht, J. (2018). The evaluate of growth, yield and physiological responses of bitter apple (Citrullus colocynthis) under deficit irrigation stress condition. Journal of Crops Improvement, 20(2), 357-369. (In Persian).
Poormansour, S., Razzaghi, F., & Sepaskhah, A.R. (2019a). Wheat straw biochar increases potassium concentration, root density, and yield of faba bean in a sandy loam soil.
Communications in Soil Science and Plant Analysis, 50(15), 1799-1810.
Poormansour, S., Razzaghi, F., Sepaskhah, A., & Moosavi, A. (2019b). Wheat growth and yield investigation under different levels of biochar and deficit irrigation under greenhouse conditions. Water and Irrigation Management, 9(1), 15-28. (In Persian).
Rivera, J., Reyes, J., Cuervo, J., Martínez-Cordón, M., & Zamudio, A. (2022). Effect of biochar amendments on the growth and development of ‘Vera’crisp lettuce in four soils contaminated with cadmium. Chilean journal of agricultural research, 82(2), 244-255.
Safahani Langeroodi, A.R., Campiglia, E., Mancinelli, R., & Radicetti, E. (2019). Can biochar improve pumpkin productivity and its physiological characteristics under reduced irrigation regimes? Scientia Horticulturae, 247, 195-204.
Salari, M., Sodaeizadeh, H., Hakimzadeh Ardakani, M., & Yazdani-Biouki, R. (2020).
Investigating of kaolin in increasing of drought tolerance of Basil (Ocimum basilicum var.
purpurascens). Environmental Stresses in Crop Sciences, 13(1), 171-183. (In Persian).
Tafi, S., Hooshmand, A., & Alemzadeh Ansari, N. (2021). Effect of irrigation regimes and silica nanoparticles on yield and yield components in Vivian lettuce. Iranian Journal of Irrigation and Drainage, 15(2), 379-387. (In Persian).
Taheri, H., Soltani Mohammadi, A., & Alamzade Ansari, N. (2020). Effect of superabsorbent polymer on yield, yield components and water use efficiency of lettuce. Irrigation Sciences and Engineering, 43(1), 117-129. (In Persian).
Valizadeh Ghale Beig, A., Nemati, S., Emami, H., & Aroie, H. (2021). The effect of glayol biochar on some of morphological traits and heavy metals uptake in lettuce (Lactuca sativa L. cv Syaho) . Iranian Journal of Horticultural Science, 51(4), 773-784. (In Persian).
Valizadeh Ghale Beig, A., Nemati, S., Tehranifar, A., & Emami, H. (2015). Effects of A200 superabsorbent, bentonite and water stress on physiological traits and vitamin C of lettuce under greenhouse cultivation. Journal of Soil and Plant Interactions, 6(1), 157-168. (In Persian).
Woldetsadik, D., Drechsel, P., Marschner, B., Itanna, F., & Gebrekidan, H. (2018). Effect of biochar derived from faecal matter on yield and nutrient content of lettuce (Lactuca sativa) in two contrasting soils. Environmental Systems Research, 6(1), 1-12.
Yoo, J. H., Luyima, D., Lee, J. H., Park, S. Y., Yang, J. W., An, J. Y., Yun, Y. U. & Oh, T. K.
(2021). Effects of brewer’s spent grain biochar on the growth and quality of leaf lettuce (Lactuca sativa L. var. crispa.). Applied Biological Chemistry, 64(1), 1-10.
Zoratipour, E., Soltani Mohammadi, A., & Alamzadeh Ansari, N. (2019). Evaluation of yield and water productivity of lettuce under drought and salinity stress in greenhouse conditions.
Iranian Journal of Irrigation & Drainage, 13(2), 450-461. (In Persian).