• Tidak ada hasil yang ditemukan

Electrophoretic deposition of multi-walled carbon nanotubes on

N/A
N/A
Protected

Academic year: 2023

Membagikan "Electrophoretic deposition of multi-walled carbon nanotubes on"

Copied!
11
0
0

Teks penuh

(1)

Electrophoretic deposition of multi-walled carbon nanotubes on

porous anodic aluminum oxide using ionic liquid as a dispersing agent

F. Hekmat

a

, B. Sohrabi

a,∗

, M.S. Rahmanifar

b

, A. Jalali

a

aDepartmentofChemistry,SurfaceChemistryResearchLaboratory,IranUniversityofScienceandTechnology,P.O.Box16846-13114,Tehran,Iran

bFacultyofBasicScience,ShahedUniversity,Tehran,Iran

a r t i c l e i n f o

Articlehistory:

Received16August2014 Receivedinrevisedform 29December2014 Accepted20February2015 Availableonline28February2015

Keywords:

Vertically-alignedcarbonnanotubes Electrophoreticdeposition Anodicaluminumoxide Ionicliquid

Electrochemicaldoublelayercapacitor

a b s t r a c t

Multi-wallcarbonnanotubes(MW-CNTs)havebeenarrangedinnanochannelsofanodicaluminumoxide template(AAO)byelectrophoreticdeposition(EPD)tomakeavertically-alignedcarbonnanotube(VA- CNT)basedelectrode.WellorderedAAOtemplateswerepreparedbyatwo-stepanodizingprocessby applyingaconstantvoltageof45Vinoxalicacidsolution.ThestabilizedCNTsinawater-solubleroom temperatureionicliquid(1-methyl-3-octadecylimidazoliumbromide),weredepositedintheporesof AAOtemplateswhichwereconductivebydepositionofNinanoparticlesinthebottomofpores.In ordertoobtainidealresults,differentEPDparameters,suchasconcentrationofMWCNTsandionic liquidonstabilityofMWCNTsuspensions,depositiontimeandvoltagewhichareappliedinEPDprocess andalsooptimalconditionsforanodizingoftemplatewereinvestigated.Thecapacitiveperformanceof preparedelectrodeswasanalyzedbymeasuringthespecificcapacitancefromcyclicvoltammogramsand thecharge–dischargecurves.Amaximumvalueof50Fg−1atthescanrateof20mVs−1wasachievedfor thespecificcapacitance.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

EversincetheirdiscoverybyIijimain1991[1],carbonnano- tubes(CNTs)areanovelgenerationofmaterialswhichwidelyused tomakeavarietyofadvancednanostructures,includingelectron fieldemissiondevices[2,3],storageofhydrogen[4,5],batteries[6], supercapacitors[7,8],electrochemicalsensors[9],andelectrome- chanicalactuators[10],becauseoftheiruniqueelectrical,optical, andmechanicalproperties,suchassuperiormechanicalstrength, metal-likeelectricalconductivity,andextremeaspectratios[11].

SupercapacitorsorElectrochemicaldoublelayercapacitors(EDLCs) areelectrochemicalenergystoragedevicesthatcanprovidealarge amountofelectricalenergyinashortperiodoftime[12].Because theEDLCsstorechargesintheelectricdoublelayerformedatthe electrode/electrolyteinterface,maximizingtheamountofsurface areaofelectrodesplayanimportantroleinsupercapacitors[13].

Recentresearchesdemonstratedtheimprovedratecapabilityfor alignedCNTsoverrandomlyentangledCNTs,somanyresearchers havetriedtodevelopmethodstocontrolandalignCNTsindesire direction[14–16].

Correspondingauthor.Tel.:+9877240540x6275.

E-mailaddress:sohrabib@iust.ac.ir(B.Sohrabi).

Twoclassesofalignmenttechniquescanbedistinguished:one attemptgrowingthetubesalongagivendirection,eitherwithin thesubstrateornormal bundles [14].Amongthemanykindof CNTsynthesismethods,chemicalvapordeposition(CVD),espe- ciallyplasmaenhancedchemicalvapordepositionwhichiscalled PECVD,iseffectiveforVA-CNTvolumeproduction[17].Inanother methodwhich is knownas post-growthmethod,a purification and aneffectivedispersionofCNTsin asuitable solventbyaid of adisparent (surfactants orpolymers) isrequired toobtaina homogenouswelldispersedCNTsuspension,whichisplayakey roleincontrollingmanipulationofCNTs[14,18].Severalinteresting approacheshavebeendevelopedtoalignCNTsaftertheirsynthe- sized.Jin etal.reportedthealignment ofCNTsbystretchingof polymer/CNTfilm[19].Bendiab andco-workersusedauniaxial pressure(∼10kbars)toalignCNTs[20].Bythedoctorbladetech- nique,theembeddedCNTsinpolymerfilm,warmedtobesoftand thenrubbedwithabladeinadesiredirectiontoinducetheelastic forcewhichcanalignCNTs[14].Bulkacousticwaves(BAWs)are usedtoalignMWCNTsinpolymercompositematerialsbyHaslam andRaeymaekers[21].Itisnoticeablethatinallofthesemethods, CNTsarehighlysurroundedbyapolymernetworkandthusCNTs willnotbeabletoexpressalloftheiruniqueproperties.During thefiltrationmethod,dispersedCNTscrossingthroughamicro- porefiltertopreparealignedCNTs[22].Alongfiberdrawingor spinningmethod,CNTsforcedtobealignedwithinthefibersdue http://dx.doi.org/10.1016/j.apsusc.2015.02.142

0169-4332/©2015ElsevierB.V.Allrightsreserved.

(2)

tothecombinationofshearforcesandtheliquidcrystallinephase [21,23].Lungmuir–Blodgett(LB)techniqueisgentlydonebysink- ingatemplateintoaCNTssuspensionandpullingitoutslowlyto produceathinandhomogenouslayerofCNTsontemplate[14].

Successofthesemethodstightlydependsonprecisioninspeed, directionandintensityofappliedmechanicalforce.Amongmany methodshave beenreportedforcontrollingalignment ofCNTs, applyinganexternal magneticor/andelectricfieldwerewidely usedforvariousapplications.Unlikeothermethods,thesetwolast mentionedmethodscausedminimumstructuraldamagewithout considerablechangesincharacteristicpropertiesofCNTs.Byusing apowerfulmagneticfield(>7T)awelldispersedCNTsuspensionis developonsubstrate.Despitetheefficiencyofthismethod,itsdis- advantageiscostsandpreparationofastrongmagneticfield[14].

ThelastmethodwhichiscalledEPD,allowscontrollingofthickness andshapeofdepositedfilmbyusinganelectricfield[17].However, thereareavarietyofpost-growthmethodstoalignCNTs,butthe successofEPDistothefactthatitisfast,costeffectivetechnique usuallyrequiringsimpleequipment[24].

BecauseofthestrongvanderWaalsinteractionbetweentubes, CNTshave extremely poorsolubilityinmostof solvents and it makestheircharacterizationandprocessingdifficult,whichisthe majorlimitationtotheirpractical applications[25].Specifically, CNTsexistasheavilyentangledaggregatesofbundles[26,27]con- taininghundredsofcloselypackedCNTs[26].

Recentlyroomtemperatureionicliquids(RT-ILs),withunique physicochemicalpropertiessuchaswideliquidtemperaturerange, highthermalstability,negligiblevaporpressure,non-flammability, increasedelectrochemicalwindow,andrelativelyhighioniccon- ductivity have beenwidely appliedas excellent green reaction media[28,29].ModificationofCNTswithILsisexpectedtoimprove theircompatibilityandstability[30].NowadaysdispersingCNTs withILsseemstobecomeaninterestingtopicandattractedmuch attention,sosomestudieshavebeendoneinthisfield.Imidazolium basedILs,suchas1-butyl-3-methylimidazoliumtetrafluoroborate triggeredsinglewalledcarbonnanotubes(SWCNTs)toformgel called“Buckygel”[29].Kocharovaetal.demonstratedthatCNTs couldbestablydispersed inwater withaidofsmallamountof 1-dodecyl-3-methylimidazolium bromide [31]. Crescenzo and co-workersindicatedthat1-hexadecyl-3-vinyl-imidazoliumbro- mideisagoodagenttodispersingSWCNTs[31].Liuetal.found thationic-liquid-typeGeminiimidazoliumsurfactant([Cn-C4-Cn

im] Br2, n=12, 14) can effectively disperse MWCNTs even at verylowconcentration[32].Gaoandco-workersdiscussedthat electrostatic repulsion, hydrophobic interactions, cation–␲, and n–␲interactionsplayedimportantrolesindispersionofMWCNTs byPoly(1-glycidyl-3-methylimidazoliumchloride)(PGMIC)[33].

Lu et al. reported that MWCNTs can be effectively dispersed in aqueous solution by alkyl-triphenyl phosphonium bromide (CnTPB,n=12and14)[25].Despitemanyresearcheswerecarried out,therearestillsignificantchallengestoobtainwell-separated CNTswithaidofroomtemperatureionicliquidstoachievedense arrayof vertically aligned carbon nanotubes (VA-CNTs)in post growthaligningmethods.Inthiswork,weusedasmallamountof 1-methyl-3-octadecylimidazoliumbromidetodisperseMWCNTs inaqueoussolution.Asalreadymentioned,thehomogeneousdis- tributionofCNTswithinasuspensionplaysakeyroleininflicting manyimportantpropertiesduringthepost-growthmethodsfor aligningCNTs.Inrecentyears,varioustechniquesweresuggested toobtainaquantitativeassessmentforexfoliatedCNTsconcen- trationinsuspensions.Incomparewithcommonmethodssuch asRamanspectroscopyandatomicforcemicroscopy(AFM)which possessagoodabilityondeterminationofdispersionqualityand exfoliationstate,butthesecannotgiveanyquantitativeinforma- tiononexfoliatedCNTconcentration[34].TheUV–visapproachis asimpleandeffectivemethodforcalculatingtheconcentrationof

surfactant-dispersedCNTsinsolution[34–37].Inthisstudy,we followedamethodproposedbyLiuetal.[35]forquantifyingdis- persionofCNTswhichisbasedonasimpleultracentrifugeprocess.

AfterdispersingCNTsbythislongchainIL,welldispersedCNTs arealignedondesiredtemplatebyapplyingelectricfield.EPDis achievedviathemotionofchargedCNTsdispersedinIL,toward aconductingelectrode underanappliedelectricfield. Thefinal goalisproductionofafilmwheremostCNTsarealignedtocertain direction[14].

ElectrophoreticmotionofchargeddispersedCNTsduringEPD resultsintheaccumulationofCNTs,whichareencapsulatewithin anILmicelleandformationofhomogenousandrigiddepositatthe relevantelectrode[17,24].Inthisstudyweusedaperiodicporous anodicaluminumoxide(AAO)electrode,whichisbeingconduc- tivesubstratebyelectrochemicaldepositionofNinanoparticlesas catalystinthebottomofthenanoholesofAAOtemplatetoalign individualdispersedCNTs.ThestructureofAAOtemplatecanbe describedasclose-packedhexagonalarraysofparallelcylindrical nanoporousperpendiculartothesurfaceonthetopoftheunder- lyingAlsubstrate[38].

WereporthereaVA-CNTbasedelectrodepreparedbytheEPD technique,whichhastheadvantagesoffastandsimpleformation.

Theelectrodesbuiltfromsuchmethodshaveexhibitedacceptable electrochemicalresults,whichindicatethatthispost-growthtech- niqueisaneffectivemethodinfabricatingCNTelectrodesforEDLCs andothersimilardevices.

2. Experimental 2.1. Chemicals

The ionic liquid was 1-methyl-3-octadecylimidazolium bro- mide([C18C1im]Br)(>98%),whichhasbeenpurchasedfromKimia Exir(Iran)andusedasreceived.TheMWCNTs(length0.1–10␮m, outer mean diameter10–15nm, mean number of walls 5–15), weresuppliedbyArkemaCo.Ltd.(France).High-purity(99.9995%) 0.3mm thickness, 30mm width aluminum foil was purchased fromMerckKGaA(Germany).Othersolventsandreagents,except chromicanhydrate,obtainedfromMerck(Germany)andtheyused asreceived.ChromicanhydratewaspurchasedfromKANTOChem- icalCo.,Inc.(Japan).Finally,doublyionizedwaterwasobtained fromanOESwaterpurificationsystem(USA).

2.2. Equipments

Carbonnanotubesweredispersedstablyinwaterinpresence ofsmallamountoflongchainILbyusinga UP400Sultrasound processor fromHielscherUltrasoundGmbH (Teltow,Germany).

DispersedMWCNTswerecharacterizedbyUV–visonacomputer- controlledspectrophotometer (UVmini1240,Shimadzu,Japan).

Thewavelength range from200to 800nm wasusedto exam- inetheabsorbanceofMWCNTsuspensions.Beforemeasurements, each samplewasdilutedby di-ionized watertotheconcentra- tionofone-fifteenthofitsinitialconcentration,andsimultaneously thecorrespondingILaqueoussolutionwithoutCNTswasusedas thebulk.TheinteractionsbetweenMWCNTsandILswerestud- iedbyInfraredspectrometer(8400S,Shimadzu,Japan).Thezeta potentialmeasurementsweredonebyusingaMalvernZetaSizer 3000HAS(Malverninstruments,UK),Becauseof themostnec- essaryprerequisiteforsuccessfulEPDisdependsonpreparation ofastabledispersionofCNTs,whichhavea highzetapotential [39].

DCpowersuppliers(MP6003,Megatek, Germany)wereused in order toapply electric field in preparation of AAO template andalsotodepositionofdispersedCNTsduringtheEPDprocess.

ThemorphologyoftheresultantAAOtemplatesbeforeandafter

(3)

Fig.1.SchematicproceduresforproductionofILstabilized-MWCNTsuspension:(a)randomlyentangledCNTs,(b)1-methyl-3-octadecylimidazoliumbromide,and(c)well dispersedMWCNTsinaqueoussolutionby[C18C1im]Br.

depositionofCNTshasbeeninvestigatedbyusingofascanning electron microscopy(TESCAN, VEGA,Czech Republic) and their EDXanalysiswereobtainedwithascanningelectronmicroscope (FE-SEM/EDX) (TESCAN,MiraIILMU,CzechRepublic). Different electrochemicaltechniqueswereusedtocharacterizethecapac- itiveperformanceofaspreparedelectrodes.Cyclicvoltammetry (CV)andcharge–dischargegalvanostaticexperimentswerecon- ductedElectroanalyzersystemSAMA500(Iran)and Kimiastat (Iran),respectively.Alloftheelectrochemicaltestswerecarriedout in1.0MNa2SO4aqueoussolutionatroomtemperatureinathree electrodesconfigurationusingasaturatedAg/AgClasthereference electrodeandagraphitecounterelectrode.

2.3. PreparationofCNTsuspensionforEPD

Thesuspensions ofMWCNTswere preparedbyadding 4mg MWCNTsinto10mlof1-methyl-3-octadecylimidazoliumbromide aqueoussolutions,andthenthesolutionsweresonicatedfor10min byprobesonicatorwithapowerdensityof80Wcm−2.Inorder tosedimentationoflargetubebundles,thesuspensionofMWC- NTswasstoredatroomtemperaturefor24h,Afteroneday,the resultingsuspensionwerecentrifugedfor10minwith2000rpm, inordertoseparatetheprecipitationfromthebulksolutions.Fig.1 schematicallyillustratesthedispersingprocessofCNTsbyusing smallamountof[C18C1im]Brasdisparent.Toevaluatethequan- titative characterization of CNTs dispersions, thesuspension of MWCNTsin[C18C1im]Braqueoussolution(C0)waspreparedwith themethodwhichwasmentionedabove.SincetheBeer-Lambert lawisnotobeyedinthestrongabsorptionwhichisattributedtothe highanalyteconcentration[34],aseriesofdilutedsampleswith concentrationsofC0/2,C0/4, C0/8, C0/16,C0/32,andC0/64were prepared.Preparedsampleswerecentrifugedforvariedperiodof time(1,2,5,10,30,60min)with14,000rpm[35],thenaUV–vis basedmethodwereusedforthesemiquantitativecharacterization ofpreparedCNTsuspensions.

2.4. PreparationofAAOtemplate

TheAAOtemplateisfabricatedbyusingatwo-stepanodization processasshowninFig.2.First,ahigh-purityaluminumsheetwith dimensionsof30mm×30mm×0.3mmwasdegreasedinacetone ultrasoundandrinsedinanethanolsolution,followedbyannealing at500Cfor5h[40].Beforeanodizing,theannealedsamplewas electropolishedina1:4volumemixtureofperchloricacid(60wt%) andethanol(96wt%)at3C,andconstantDCvoltageof20Vfor 1minwereappliedtoobtainmirrorfinish.Thetwo-stepanodiza- tionwaschosentoprepareanorderedporousAAOtemplate.The firstanodizingprocesswascarriedoutunderaconstantvoltageof

45Vdcina0.3Moxalicacidsolutionat5Cfor20h.TheAAOfilm waschemicallyetchedinamixtureofchromicacid(1.8wt%)and phosphoricacid(6wt%)at75Cfor3h,thenthesecondanodizing processwasdonefor1h,underthesameconditionsasthefirst anodizationprocessmentionedabove,whichresultedinforma- tionofahighlyorderedporousAAOtemplatewithaporedepthof about2␮m[41,42].Inordertofacilitatetheuniformelectrodepo- sitionofNinanoparticlesascatalyst,thevoltagewasdroppedfrom 45to14Vattherateof0.5Vmin−1,whichwasdoneimmediately attheendofthesecondanodization.Becausethethicknessofthe barrierlayerisproportionaltoappliedvoltage,thebarrierlayer wasalmostcompletelyremovedwhenthevoltagereached14V [43,44].

Aftereliminationofthebarrierlayer,theremainingAlsubstrate wasremovedinasaturatedcoppersulphate(CuSO4)aqueoussolu- tioninchloridricacid(HCl)atroomtemperature[45].Finally,the resultingAAOtemplatewasimmersedina1.0Maqueousphos- phoricacidsolutionatroomtemperaturefor40mintoeliminate thebarrierlayeronthebottom side,andsimultaneouslywiden thepores[40].Onesideof AAOmembrane wassputtered with a layerof Auasa workelectrode. The Nicatalyst waselectro- chemicallydepositedattheporebottomoftheAAOtemplatein athree-electrodeelectrochemicalsystemfromanaqueoussolu- tionof0.32MNiSO4·6H2O,0.08MNiCl2·7H2O,and0.28MH3BO3, whichiscalledWattbath[45].Inordertohavethebetterresults inelectrodepositionofNicatalystsinthebottomofpores,thepH valueoftheelectrolytewasadjustedtoabout2.0with0.1MH2SO4 solution[45].TheelectrochemicaldepositionofNicatalystwasper- formedbyusingAAOtemplate,whichsputteredwithalayerofAu asworkingelectrode,platinumascounterelectrode,andAg/AgClas referenceelectrode,andallofthepotentialsrefertothereference electrode.

2.5. ElectrophoreticdepositionofCNTs

AsitshowninFig.3theEPDwasdoneinatwo-electrodesystem, whereresultingconductiveAAOtemplatebydepositionofNicata- lyst,withexposedareaof1cm×1cmwereusedascathode,andNi paperelectrodewithanexposedareaof2cm×2cmwereusedas anode.Thesetwoelectrodeswereusedinanelectrophoreticdepo- sitioncellwithanelectrodegapof7mm.Carewastakenthatthese twoelectrodeswereparalleltoeachother.TheDCelectrophoretic depositionofVA-CNTswasconductedat100Vfor1min.Aftercom- pletingthedeposition,theAAOmembranewasdriedunderroom temperatureindesiccatorsfor24h.Thenpreparedelectrodeplaced atroomtemperatureinNaOHetchingsolutiontoremovingtheAAO templatepartiallyandtheresultingtemplateimmersedindilute waterimmediately.

(4)

Fig.2.SchemeofAAOprocess:(a)highpurityaluminumsheet,(b)electropolishedaluminumsheet,(c)Firstanodizedaluminumsheet,(d)chemicaletchedaluminalayer, (e)preparedAAOafteratwo-stepanodizationprocess,(f)AAOtemplateafterremovingexcessaluminumlayer,(g)AAOtemplatewithdepositedAulayer,and(h)resulting conductiveAAOtemplatebyelectrochemicaldepositionofNiparticles.

3. Resultsanddiscussion

3.1. DispersionofMWCNTsby1-methyl-3-octadecylimidazolium bromideIonicLiquid

Fig.4ashowstheMWCNTsinaqueoussolutionbeforeadding 1-methyl-3-octadecylimidazolium bromide ([C18C1im] Br). We noticed that even after 1hr of ultrasound, MWCNTs hardly agglomerate in aqueous solution. In contrast, after adding 1- methyl-3-octadecylimidazoliumbromideintothesameaqueous solution, a black homogenous dispersion was obtained, which couldkeepstableformorethan10months.Becauseaddingsmall amountof1-methyl-3-octadecylimidazoliumbromideintoaque- oussolution(only0.4mMinFig.4b)todispersetheMWCNTs,we canclaimthat1-methyl-3-octadecyleimidazoliumbromideisan excellentdispersantfordispersingCNTs.

In this work, we studied the effect of 1-methyl-3- octadecylimidazolium bromide concentration on dispersion

ofMWCNTsin aqueoussolution.UV–visisusuallyusedtoesti- mate thestability of dispersedCNTs, It hasbeen reportedthat there is almost no absorption bandin UV–vis regionfor bun- dled CNTs, however individual CNTs are active in this region and strongabsorptioncan beobserved[32].Fig.5ashows that 1-methyl-3-octadecylimidazolium bromide aqueous solutions displayonlynegligibleabsorptionsinthewavelengthrangefrom 200to800nm,sotheeffectofILsontheabsorptionsofMWCNT suspensionsinUV–visregioncanbeignored[32].Fig.5bshows thattheMWCNTsuspensionshavestrongUV–visadsorption,and themaximumabsorbanceappearedaround260nm,whichisin agreementwithpreviousreports[32].

On theotherhand,becauseof theUV–visregionis scarcely activatedbybundledCNTs,whileitcanbeactivatedbyindividual CNTs,sowithincreasingofindividualCNTsconcentrationinaque- oussuspension,itcanbeexpectedthattheabsorbanceofCNTsat thesamewavelengthbeingincreased[33].Accordingtotheseevi- dences,wecanjudgeabouttheamountofindividuallydispersed

(5)

Fig.3.SchematicdiagramofanEPDcellforelectrophoreticdepositionofwelldispersedCNTsonthecathode(aspreparedAAOtemplate).

CNTsbasedontheintensityofUV–visabsorptionpeaks,andwe candeterminetheabilityofdifferentconcentrationsof1-methyl- 3-octadecylimidazoliumbromidetodisperseMWCNTsbyUV–vis spectra.

Fig. 6a shows the absorbance of different concentrations of MWCNTsuspensions,andinFig.6bshownthatthereisnolinear relationshipbetweentheabsorbanceintensityofMWCNTsandIL concentration.

Asitcanbeexpected,thebestconcentrationof1-methyl-3- octadecylimidazoliumbromidetodisperseCNTsisaroundcritical micelle concentration (CMC), so we investigated dispersion of CNTsbyusing[C18C1im]BraroundCMCofionicliquid,andthe curvesinFig.6,suggestthatthebestconcentrationof1-methyl-3- octadecylimidazoliumbromidetodisperse4mgofMWCNTswas 0.4mM.

Fig.4.AqueousMWCNTdispersions:(a)withoutIL,imagedafter1hr(b)with 0.4mMof1-methyl-3-octadecylimidazoliumbromide,imagedafter10months.

Semi-quantitativecharacterizationofCNTdispersionwasdone byusingasimpleultracentrifugemethodforevaluatingthesta- bilityofCNTsuspensions[35].Fig.7ashowstheUV–visspectra of diluted 1-methyl-3-octadecylimidazolium bromidestabilized MWCNTdispersions (C0/16,C0/32,and C0/64)which werecen- trifugedfordifferentperiods(0,1,2,5,10,30,60min).Asitcan beseeninFig.7a,theabsorbanceofsuspensionwhichreferstothe individualCNTsweredecreasedbydecreasingtheinitialconcen- trationandalsodecreasedwithincreasingthecentrifugationtime [35].Absorbanceattwoarbitrarywavelength(260and600nm) wasplottedversustheircorrespondingconcentrationvalues(the insetofFig.7a),whichfollowingtheLambert–Beer’slaw[35,46].

Theabsorbancediagramsoftheseriesdiluted[C18C1im]Br- stabilizedMWCNTsuspensions centrifugedfordifferentperiods oftime at=600nm,A(Cd,t),againsttheirabsorbancewithout centrifugation,A(Cd,t=0),atthesamewavelengtharelinear(the insetofFig.7b).Liuetal.derivealogicalrelationshipbetweenthe absorbanceA(Cd,t)andA(Cd,t=0)asfollows:

A(Cd,t)=F(t)A(Cd,t=0) (1)

Fig. 5. UV–vis spectra of MWCNT suspensions (a) 0.4mM of 1-methyl-3- octadecylimidazoliumbromideaqueoussolutionand(b)0.004gMWCNTsdispersed in10mlof0.4mMof1-methyl-3-octadecylimidazoliumbromideaqueoussolution.

(6)

Fig.6.(a)UV–visspectraofaqueousMWCNTsuspensionwithdifferentconcentrationof1-methyl-3-octadecylimidazoliumbromide,(b)absorptionofMWCNTsdispersions at260nmwithincreasingILconcentration(0.004gMWCNTsdispersedin10mlofdifferentconcentrationof[C18C1im]Brinaqueoussolutions).

where F(t)issedimentation factor, whichcan beused tochar- acterizedthesedimentationbehaviorofagivendispersion[35].

Fig.7billustratedthevariationofsedimentationfunctionwithcen- trifugationtime.AsitcanbeseeninFig.7b,thesedimentation functionisdecreasedbyraiseofthecentrifugationtime.Whena shorttimeultrasonication(10min)wereusedforpreparingawell dispersedCNTssuspension,itclearlyindicatedthatcannotdam- agethestructure(shorteningorcutting)ofCNTs[35,46],whichis stronglydesiredinpreparationofwelldispersedCNTsforusingin supercapacitors.

The zeta potential measurement is a common means to evaluatethestabilityof colloidalparticles inaqueoussolutions, thisimportantparametercanvisually reflectthesurfacecharge and themagnitude of electrostatic interactions [39]. Whenthe concentration of 1-methyl-3-octadecyleimidazolium bromide is only 0.4mM, zeta-potential for the surface of MWCNTs is

about 60mV, which can be attributed to the tight adsorption of 1-methyl-3-octadecylimidazoliumbromideon thesurface of MWCNTs.Thelargeaverageamountofzetapotentialfordispersed CNTs in prepared suspension (60mV), trustworthy confirmed theirstabilityagainstaging[25].Basedontheseresultsweclaim thatthestabilityofthesuspensionwasachievedbyelectrostatic repulsion.Thereforelonghydrophobicchainand imidazolering headgroupmake[C18C1im]Brasasuitabledispersingagent.

Inthispaper,theinteractionbetweenMWCNTsand1-methyl- 3-octadecylimidazolium bromide were studied with the FT-IR spectra.TheFT-IRspectraof[C18C1im]Br,whichwerecomparedto [C18C1im]Br–stabilizedMWCNTsdispersionareshowninFig.8a and b,respectively. Thepeak shifts definedthecharge transfer between[C18C1im]BrandMWCNTs[25,33].Thebandsin2916and 2851cm−1areattributedtoasymmetricandsymmetricvibration ofmethylenegroups(CH2)nof[C18C1im]Br,respectively.Because

Fig.7.(a)UV–visspectraofdiluted[C18C1im]BrstabilizedMWCNTsuspension(C0/16,C0/32,andC0/64)andcorrespondingcentrifugedsupernatants.Theinsetshows thevariationoftheabsorbanceat260and600nmvs.theCNTconcentrationoftheseriesdispersionswithoutcentrifugation,(b)sedimentationfunctionof1-metyl-3- octadecylimidazoliumbromidestabilizedCNTssuspensions.TheinsetrepresentstheplotofA(Cd,t)vs.A(Cd,t=0)at600nm.

(7)

Fig.8.FT-IRspectraof(a)1-methyl-3-octadecylimidazoliumbromide,comparing with(b)[C18C1im]Br-stabilizedMWCNTdispersion.

ofthehydrophobicinteractionbetweenMWCNTsandhydrocarbon chainsof1-methyl-3-octadecylimidazoliumbromide,theup-shift ofbandscanbeseeninthespectraofMWCNTsandILmixture [33].ThebendingvibrationofN-CinILat1571.88showsanup shiftinmixture.Allthepeakshiftsdemonstratedthat1-methyl-3- octadecylimidazoliumbromidecantightlyadsorbonthesurfaceof MWCNTs.

AccordingtotheUV–vis,FT-IR,andzeta-potentialresults,we canclaimthatwhen1-methyl-3-octadecylimidazoliumbromide

andcross-sectionalviewsofAAOtemplateaftertwo-stepanodiz- ingandporeswideningtreatment.Wecanseethestraightparallel pores,perpendiculartotheAAOtemplatesurface.

ForbothSEMimagesinFig.9,theEDXspectraconfinedtheexist- enceofAluminum,oxygen,andAu(asconductinglayersputtered ontheonesideoftheAAOtemplates)inthetemplate,thatreferred toformationaperiodichexagonalclose-packedmembranewhich iscalledAAOtemplate(Fig.9c).

Fig.10aandbillustratestheSEMimagesofthesurfaceandcross- sectionalviewsoftheAAOtemplateafterelectrodepositionofNiin thebottomofpores.TheEDXdataanalysisofcanddareaswhich remarkedinFig.10bwereshowninFig.10candd,respectively.

TheEDXresultsaretrustworthyevidencethatasmallamountof Ninanoparticleswereuniformlyelectrodepositedatthebottomof theporesintheAAOtemplate,whichcouldplayanimportantrole indepositionofCNTsinthenanochannelsofAAOtemplate.

Fig.11aillustratesthearrangementofwelldispersedCNTson theAAOtemplateafterapplyinganexternalfield.Asitcanbeseen, theporousstructureofAAOtemplateandthesuperiorabilityof [C18C1im]BrindispersingCNTsresultedinauniquestructureof CNTbasedelectrode(withoutanybundlesofCNTsontheupper

Fig.9.SEMimagesof(a)plane,(b)cross-sectionalviewofporestructuresofanodizedaluminumoxide(AAO)template.InsetshowstheEDXspectrumobtainedfromregion whichremarkedwithc,and(c)isitsEDXanalysis.

(8)

Fig.10. SEMimagesof(a)surfacemorphology,(b)cross-sectionalimagesofporestructuresofAAOtemplate,afterNinanoparticlesdeposition,respectively.Insetshows theEDXspectrumobtainedfromregionswhichremarkedwithcandd,(c)and(d)aretheEDXquantitativeresultsofremarkedregionsinFig.10b.

surfaceofthetemplate)whichcangranteeagoodwetabilityof electrodewhenitusedinEDLCs.Fig.11arepresentsthecrosssec- tionalviewofalignedCNTswhichfabricatedinthenanoporesof AAOtemplate.Incomparewiththecrosssectionalviewofpre- paredAAOtemplatebeforedepositionofCNTs(seeFig.9c),itcan clearlyseenthatthenanochannelsofAAOtemplatehavebeenfilled withCNTsduringtheEPDprocess.Theinsetisahighmagnifica- tionimageofCNTswhichhavebeendepositedintheporesofAAO template.Fig.11billustratesEDXanalysisoftheregionwhichwas shownintheinsetofFig.11a.Itisevidentthatthematerialconsists ofC,Al,O,Au,andNielements.ThepresenceofAuandNielements isattributedtotheAAOtemplatecoatedwithanAulayerandbeing conductivewithNinanoparticleswhichhavebeendepositedinthe bottomofAAOpores.Accordingtotheresults,theEPDofwelldis- persedCNTsontheAAO nanoporesfilter,leadstoalignment of CNTsintheporesofAAOtemplate.

Basedonthemechanismofgrowingnano-particlesinthepores ofAAOtemplate,wesuggestthatthejunctionbetweentheelec- trodesurfaceandthebottomedgeofthetemplateporeservesasa

preferentialsiteforthedepositionofindividualCNTs,becausethe innerwallsofthenanochannelshavesurfaceadsorptionenergy [47].

Basedonourexperimentalresults,structureofdepositedfilm tightlydependsondepositiondurationandappliedvoltage,sowe studiedtheeffectoftheseparametersondepositionof[C18C1im]

Br-stabilizedMWCNTdispersion,whichareresultedthatthebest timeandvoltageare1minand100V,respectively.

3.3. Electrochemicaltests

The cyclic voltammograms (CVs) obtained from electrodes which prepared by electrophoretic deposition of MWCNT- [C18C1im]BronporousAAOtemplatein1.0MNa2SO4atdifferent scanratesareshown inFig.12a.TheCVcurvespresentregular shapesatrelativelyhighscanrate(100mVs−1),indicatingwell- developedcapacitiveproperties.Theelectrodewhichpreparedby EPDexhibitsalmostmirrorvoltagramswithrespecttothezero- current line, except for the small peaks at +0.41 and −0.24V,

(9)

Fig.11. (a)SEMmicrographsofCNTsdepositedinananodicaluminumoxidetemplatebyEPDfromsuspensionof0.004gCNTsdispersedin0.4mM[C18C1im]Br,at 100Vcm−1for1min.Inset:CrosssectionalviewofdepositedCNTsinAAOnanochannels(b)theEDXspectrumobtainedfromregionwhichshownintheinsetofImage11a, and(c)correspondingEDXresults.

attributabletotheredoxreactionscausedbythedispersantagents whichwereadsorbedonthesurfaceofMWCNTs[48].Atthescan rateof20mVs−1,capacitanceoftheVA-CNTelectrodewasfound tobe51Fgr−1.AsillustratedinFig.12b,thecapacitanceofresultant electrodedecreaseduponthescanratesincreased.Toinvestigate theperformanceof preparedVA-CNT electrodes,potential-time profilesofindividualelectrodesvs.Ag/AgClattheconstantcurrent densityof1.25Agr−1andcutoffvoltagesforcharging-discharging of−1.2to0.8Vin1.0MNa2SO4solution,werepresented.

AsshowninFig.13a,thechronopotentiogramoftheprepared VA-CNTelectrodesindicatesagoodlinearvariation ofpotential versustime,which istypicalcharacteristicofanidealcapacitor [49].AccordingtoFig.13b,thespecificcapacitanceofresultantelec- trodesslightlydecreasesfrom40to27Fgr−1,withtheincreaseof dischargecurrentdensityfrom1.25to2.5Agr−1.Sothereisdrop ofthespecificcapacitancewithincreasingthedischargecurrent density.Fig.13cillustratesthecyclicdurabilityofpreparedVA- CNTelectrodesin 1000cyclesata dischargecurrent densityof

Fig.12.(a)CVsobtainedfromaVA-CNTelectrodein1.0MNa2SO4atthescanrateincreasingfrom10to100mVs−1,and(b)showsthevariationofcapacitancewithincreasing thescanrate.

(10)

Fig.13.(a)Constantcurrentcharge/dischargecurvesforVA-CNTelectrodemeasuredat1.25Agr−1in1.0MNa2SO4solution,between−1200and400mV,and(b)Theratioof changingspecificcapacitancevaluesofpreparedelectrodeasafunctionofdischargecurrentdensitiesand(c)Capacitanceretentionratioofresultantelectrodeasafunction ofcyclenumber.

1.25Agr−1,thiscurvesclearlyshownthattheresultingelectrodes retainedacapacitiveover70%ofthefirstcycle[50–52].

4. Conclusion

We have developed an easy method to fabricate well dispersed CNTs with aid of small amount of 1-methyl-3- octadecylimidazoliumbromideby EPDinAAOsubstrate, where synthesizedbytwo-stepanodizationofAluminumat5C.TheAAO templateswerebecameconductivebyelectrochemicaldeposition ofNinanoparticlesinthebottomofpores.Thismethodenablesus toobtainverticallyalignedCNTs.Weexpectthatthismethodcan bedirectlyappliedtofabricationofaVACNTbasedelectrodeforthe CNT-basedEDLCs.EtchingofthetemplategivesusCNTswithvery similardimensions.WehavedevelopedanewgenerationofVA- CNTwith50Fgr−1specificcapacitance.Itseemstobeveryuseful toamodelstudyformanyCNT-basedapplications.

Acknowledgements

WearegratefulforfinancialsupportfromIranNationalScience Foundation(INSF),Iran(GrantNo.93/36575).

References

[1]S.Iijima,Helicalmicrotubulesofgraphiticcarbon,Nature345(1991)56–58, http://dx.doi.org/10.1038/354056a0.

[2]J.M. Bonard,J.P. Salvetat,T.Stöckli,L. Forró,A.Châtelain,Fieldemission from carbon nanotubes: perspectives for applications and clues to the emission mechanism,Appl.Phys.A69(1999)245–254,http://dx.doi.org/

10.1007/s003399900113.

[3]W.Zhu,C.Bower,O.Zhou,G.Kochanski,S.Jin,Largecurrentdensityfrom carbon nanotubefield emitters,Appl.Phys.Lett. 75(6) (1999) 873–875, http://dx.doi.org/10.1063/1.124541.

[4]A.C.Dillon,K.M.Jones,T.A.Bekkedahl,C.H.Kiang,D.S.Bethune,M.J.Heben, Storageofhydrogeninsingle-walledcarbonnanotubes,Nature386(1997) 377–379,http://dx.doi.org/10.1038/386377a0.

(11)

bonnanotubeelectrodes,J.Electroanal.Chem.440(1–2)(1997)279–282, http://dx.doi.org/10.1016/S0022-0728(97)80067-8.

[10]R.H. Baughman, C. Cui, A.A. Zakhidov,Z. Iqbal, J.N. Barisci,G.M. Spinks, etal.,Carbonnanotubeactuators,Science284(5418) (1999)1340–1344, http://dx.doi.org/10.1126/science.284.5418.1340.

[11]S.K.Kim,H.Lee,H.Tanaka,P.S.Weiss,Verticalalignmentofsingle-walledcar- bonnanotubefilmsformedbyelectrophoreticdeposition,Langmuir24(22) (2008)12936–12942,http://dx.doi.org/10.1021/la802266y.

[12]H.J.Ahn,J.I.Sohn,Y.S.Kim,H.S.Shim,W.B.Kim,T.Y.Seong,Electrochemi- calcapacitorsfabricatedwithcarbonnanotubesgrownwithintheporesof anodizedaluminumoxidetemplates,Electrochem.Commun.8(4)(2006) 513–516,http://dx.doi.org/10.1016/j.elecom.2006.01.018.

[13]S.Wen,S.I.Mho,I.H.Yeo,Improvedelectrochemicalcapacitivecharacter- isticsofthecarbonnanotubesgrownonthealuminatemplateswithhigh poredensity, J.PowerSources 163(1)(2006)304–308,http://dx.doi.org/

10.1016/j.jpowsour.2006.01.064.

[14]K.Iakoubovskii,Techniquesofaligningcarbonnanotubes,Cent.Eur.J.Phys.7 (4)(2009)645–653,http://dx.doi.org/10.2478/s11534-009-0072-2.

[15]M.Chhowalla,K.B.K.Teo,C.Ducati,N.L.Rupesinghe,G.A.J.Amaratunga,Fer- rariAC,etal.,Growthprocessconditionsofverticallyalignedcarbonnanotubes usingplasmaenhancedchemicalvapordeposition,J.Appl.Phys.90(10)(2001) 5308–5317,http://dx.doi.org/10.1063/1.1410322.

[16]H.Zhang,G.Cao,Y.Yang,Z.Gu,Capacitiveperformanceofanultralongaligned carbonnanotubeelectrodeinanionicliquidat60C,Carbon46(1)(2008) 30–34,http://dx.doi.org/10.1016/j.carbon.2007.10.023.

[17]M. Lahav, T. Sehayek, A. Vaskevich, I. Rubinstein, Nanoparticle nano- tubes, Angew. Chem. 115 (2003) 5734–5737, http://dx.doi.org/10.1002/

ange.200352216.

[18]A.R.Boccaccini,C.Kaya,M.S.P.Shaffer,Electrophoreticdepositionofcarbon nanotubes(CNTs)andCNT/nanoparticlecomposites,in:J.H.Dickerson,A.R.

Boccaccini(Eds.),ElectrophoreticDepositionofNanomaterials,Springer,New York,2012,pp.157–179.

[19]L. Jin, C. Bower,O. Zhou, Alignment ofcarbon nanotubes in a polymer matrixby mechanical stretching,Appl.Phys.Lett.73(1998) 1197–1199, http://dx.doi.org/10.1063/1.122125.

[20]N.Bendiab,R.Almairac,J.L.Sauvajol,S.Rols,E.Elkaim,Orientationofsingle- walledcarbonnanotubesbyuniaxialpressure,J.Appl.Phys.93(3)(2003) 1769–1773,http://dx.doi.org/10.1063/1.1534905.

[21]M.D.Haslam,B.Raeymaekers,Aligningcarbonnanotubesusingbulkacoustic wavestoreinforcepolymercomposites,CompositesPartB60(2014)91–97, http://dx.doi.org/10.1016/j.compositesb.2013.12.027.

[22]W.A.deHeer,J.M.Bonard,K.Fauth,A.Chatelain,L.Forro,D.Ugarte,Electron fieldemittersbasedoncarbonnanotubefilms,Adv.Mater.9(1)(1997)87–89, http://dx.doi.org/10.1002/adma.19970090122.

[23]S.Zhang,K.K.Koziol,I.A.Kinloch,A.H.Windle,Macroscopicfibersofwell- alignedcarbonnanotubesbywetspinning,Small4(8)(2008)1217–1222, http://dx.doi.org/10.1002/smll.200700998.

[24]A.R.Boccaccini,J.Cho,J.A.Roether,B.J.C.Thomas,E.J.Minay,M.S.P.Shaffer,Elec- trophoreticdepositionofcarbonnanotubes,Carbon44(15)(2006)3149–3160, http://dx.doi.org/10.1016/j.carbon.2006.06.021.

[25]F.Lu,S.Zhang,L.Zheng,Dispersionofmulti-walledcarbonnanotubes(MWC- NTs)byionicliquid-basedphosphoniumsurfactantsinaqueoussolution,J.Mol.

Liq.173(2012)42–44,http://dx.doi.org/10.1016/j.molliq.2012.06.012.

[26]M.López-Pastor,A.Domínguez-Vidal,M.J.Ayora-Ca ˜nada,B.M.Simonet,B.

Lendl, M.Valcárcel,Separationofsingle-walledcarbonnanotubesby use of ionic liquid-aidedcapillary electrophoresis,Anal.Chem.80 (8) (2008) 2672–2679,http://dx.doi.org/10.1021/ac701788r.

[27]A. Thess,R. Lee,P. Nikolaev,H.Dai,P.Petit,J. Robert,etal.,Crystalline ropes ofmetalliccarbon nanotubes,Science 273(5274) (1996) 483–487, http://dx.doi.org/10.1126/science.273.5274.483.

[28]J. Wang, H.Chu,Y. Li, Whysingle-walledcarbon nanotubescanbe dis- persedinimidazolium-basedionicliquids,ACSNano2(12)(2008)2540–2546, http://dx.doi.org/10.1021/nn800510g.

[29]T. Fukushima,A. Kosaka,Y. Ishimura, YamamotoT,T. Takigawa,N.Ishii, etal.,Molecularorderingoforganicmoltensaltstriggeredbysingle-walled carbonnanotubes,Science300(5628)(2003)2072–2074,http://dx.doi.org/

10.1126/science.1082289.

(8)(2012)757–762,http://dx.doi.org/10.1007/s00396-012-2619-9.

[34]S. Attal, R. Thiruvengadathan, O. Regev, Determination of the concen- tration of single-walled carbon nanotubes in aqueous dispersions using UV–visible absorption spectroscopy, Anal. Chem. 78 (2006) 8098–8104, http://dx.doi.org/10.1021/ac060990s.

[35]T.Liu,S.Luo,Z.Xiao,C.Zhang,B.Wang,Preparativeultracentrifugemethodfor characterizationofcarbonnanotubedispersions,J.Phys.Chem.C112(2008) 19193–19202,http://dx.doi.org/10.1021/jp804720j.

[36]A.I.López-Lorente,B.M.Simonet,M.Val ´carcel,Ramanspectroscopiccharacter- izationofsinglewalledcarbonnanotubes:influenceofthesampleaggregation state,Analyst139(2014)290–298,http://dx.doi.org/10.1039/c3an00642e.

[37]D.Yoon,J.B.Choi,C.S.Han,Y.J.Kim,S.Baik,Thequantitativecharacteriza- tionofthedispersionstateofsingle-walledcarbonnanotubesusingRaman spectroscopyandatomicforcemicroscopy,Carbon46(2008)1530–1534, http://dx.doi.org/10.1016/j.carbon.2008.06.046.

[38]A.M.MdJani,D.Losic,N.H.Voelcker,Nanoporousanodicaluminiumoxide:

advancesinsurfaceengineeringandemergingapplications,Prog.Mater.Sci.

58(5)(2013)636–704,http://dx.doi.org/10.1016/j.pmatsci.2013.01.002.

[39]M.R.Mohammadi,F.Ordikhani,D.J.Fray,F.Khomamizadeh,Template-based growthoftitaniumdioxidenanorodsbyaparticulatesol-electrophoreticdepo- sitionprocess,Particuology9(2)(2011)161–169,http://dx.doi.org/10.1016/

j.partic.2010.07.026.

[40]C.G.Jin,W.F.Liu,C.Jia,X.Q.Xiang,W.L.Cai,L.Z.Yao,X.G.Li,High-filling,large- areaNinanowirearraysandthemagneticproperties,J.Cryst.Growth258(3–4) (2003)337–341,http://dx.doi.org/10.1016/S0022-0248(03)01542-2.

[41]G.Meng,A.Cao,J.Y.Cheng,A.Vijayaraghavan,Y.J.Jung,M.Shima,P.M.Ajayan, OrderedNinanowiretiparraysstickingoutoftheanodicaluminumoxidetem- plate,J.Appl.Phys.97(2005)064303,http://dx.doi.org/10.1063/1.1846942.

[42]G.D.Sulka,A.Brzózka,L.Zaraska,M.Jaskuła,Through-holemembranesof nanoporousaluminaformedbyanodizinginoxalicacidandtheirapplications infabricationofnanowirearrays,Electrochim.Acta55(14)(2010)4368–4376, http://dx.doi.org/10.1016/j.electacta.2010.01.048.

[43]W.Hu, L. Yuan, Z. Chen,D. Gong, K. Saito, Fabrication and characteri- zation ofverticallyalignedcarbon nanotubesonsiliconsubstrates using porousaluminananotemplates,J.Nanosci.Nanotechnol.2(2)(2002)203–207, http://dx.doi.org/10.1166/jnn.2002.104.

[44]K.Nielsch,F.Müller,A.P.Li,U.Gösele,Uniformnickeldepositionintoordered aluminaporesbypulsedelectrodeposition,Adv.Mater.12(2000)582–586, http://dx.doi.org/10.1002/(SICI)1521-4095(200004)12:8<582::AID-ADMA582>

3.0.CO;2-3.

[45]A.Cortés,G.Riveros,J.L.Palma,J.C.Denardin,R.E.Marotti,E.A.Dalchiele,H.

Gómez,Single-crystalgrowthofnickelnanowires:influenceofdepositioncon- ditionsonstructuralandmagneticproperties,J.Nanosci.Nanotechnol.9(3) (2009)1992–2000,http://dx.doi.org/10.1166/jnn.2009.374.

[46]Q.Wang,Y.Han,Y.Wang,Y.Qin,Z.X.Guo,Effectofsurfactantstructureonthe stabilityofcarbonnanotubesinaqueoussolution,J.Phys.Chem.B112(2008) 7227–7233,http://dx.doi.org/10.1021/jp711816c.

[47]X.Li,Y.Wang,G.Song,Z.Peng,Y.Yu,X.She,J.Li,Synthesisandgrowthmecha- nismofNinanotubesandnanowires,NanoscaleRes.Lett.4(2009)1015–1020, http://dx.doi.org/10.1007/s11671-009-9348-0.

[48]M.Opallo,A.Lesniewski,Areviewonelectrodesmodifiedwithionic liq- uids,J.Electroanal.Chem.656(1–2)(2011)2–16,http://dx.doi.org/10.1016/

j.jelechem.2011.01.008.

[49]A.Zolfaghari,F. Ataherian,M.Ghaemi,A.Gholami,Capacitivebehaviorof nanostructuredMnO2preparedbysonochemistrymethod,Electrochim.Acta 52(8)(2007)2806–2814,http://dx.doi.org/10.1016/j.electacta.2006.10.035.

[50]J.S.Lauret,C.Voisin,G.Cassabois,C.Delalande,Ph.Roussignol,O.Jost,L.Capes, Ultrafastcarrierdynamicsinsingle-wallcarbonnanotubes,Phys.Rev.Lett.90 (2003)057404,http://dx.doi.org/10.1103/PhysRevLett.90.057404.

[51]Q. Chen, K. Xue, W. Shen, F. Tao, S. Yin, W. Xu, Fabrication and electrochemicalpropertiesofcarbon nanotubearray electrodefor super- capacitors,Electrochim.Acta49(24)(2004)4157–4161,http://dx.doi.org/

10.1016/j.electacta.2004.04.010.

[52]N.Handa,T.Sugimoto,M.Yamagata,M.Kikuta,M.Kono,M.Ishikawa,A neationic liquidelectrolytebasedonFSIanionfor electricdoublelayer capacitor,J. Power Sources 185 (2) (2008) 1585–1588, http://dx.doi.org/

10.1016/j.jpowsour.2008.08.086.

Referensi

Dokumen terkait

"Menopause and COVID19 severity: The missing link", Asian Journal of Medical Sciences, 2021 Publication academic.oup.com Internet Source www.ncbi.nlm.nih.gov Internet Source