• Tidak ada hasil yang ditemukan

Evaluation of Entropy Theory Based on Random Forest in Quality Monitoring of Ground Water Network Fatemeh Bageri

N/A
N/A
Protected

Academic year: 2024

Membagikan "Evaluation of Entropy Theory Based on Random Forest in Quality Monitoring of Ground Water Network Fatemeh Bageri"

Copied!
17
0
0

Teks penuh

(1)

Online ISSN: 2382-9931

Journal of Water and Irrigation Management

Homepage: https://jwim.ut.ac.ir/

University of Tehran Press

Evaluation of Entropy Theory Based on Random Forest in Quality Monitoring of Ground Water Network

Fatemeh Bageri1 |Keivan Khalili2 | Mohammad Nazeri Tahroudi3

1. Department of Civil Engineering, Saba Institute of Higher Education, Urmia, Iran. E-mail: [email protected] 2. Corresponding Author, Department of Water Engineering, Urmia University, Urmia, Iran. E-mail: [email protected] 3. Department of Water Engineering, Shahrekord University, Shahrekord, Iran. E-mail: [email protected]

Article Info ABSTRACT

Article type:

Research Article

Article history:

Received: August 11, 2022 Received in revised form:

October 12, 2022

Accepted: October 23, 2022 Published online: April 14, 2023

Keywords:

Entropy Theory,

Information Transformation, Quality Monitoring, Random Forest.

The quality monitoring of groundwater networks is of great importance due to its importance in different sectors of agriculture, drinking, industry, etc., and the necessity of its periodic use leads to the recognition of quality changes of water resources in different periods. In this study, the entropy theory based on random forest was used to quality monitoring of electrical conductivity (EC) and total dissolved solids (TDS) in the groundwater of 12 wells in the Tasouj plain located in south of Lake Urmia from 2002 through 2019. In order to investigate the interaction of wells in the aquifer area, the conventional method (multivariate regression) and the random forest algorithm were used. By comparing the performance of the two mentioned models in simulating EC and TDS values in a 12-variable mode, the results showed that the random forest model has a better performance and a lower error rate than the multi-variable regression model. On average, the random forest algorithm reduced the error rate by 40 percent and 56 percent in simulation EC and TDS values, respectively, in the studied aquifer. The ranking results of the studied wells showed that the Qara Tape well has the highest rank and the Amestjan well has the least important rank among the studied wells, which indicates the importance of the information extracted from the Qara Tape well. According to the zoning of the information transformation index in the aquifer area, the results showed that there is no limitation in monitoring of EC values in the aquifer, and the scattering of the wells is the best. There is no shortage of wells in terms of exchange of salinity information in the study area. Regarding the TDS values, a lack of wells was observed in the central areas and the eastern and western border areas.

Cite this article: Bageri, F., Khalili, K., & Nazeri Tahroudi, M. (2023). Evaluation of Entropy Theory Based on Random Forest in Quality Monitoring of Ground Water Network. Journal of Water and Irrigation Management, 13 (1), 123-139. DOI: https://doi.org/ 10.22059/jwim.2022.347038.1010

© The Author(s). Publisher: University of Tehran Press.

DOI: https://doi.org/ 10.22059/jwim.2022.347038.1010

(2)

نا هﺎﮕﺸ اد تارﺎﺸ ا

یرﺎﯿآ و بآ

Homepage: https://jwim.ut.ac.ir/

:ﯽﯿوﺮ !ﻟا #ﺎﺷ ۹۹۳۱ - ۲۳۸۲

! " #

|1

2 3 |

1 . !

"

# : # . [email protected]

2

& ' # . (

) *

+

"

"

: # . #

[email protected]

3 . (

) *

+

* - -

*

: # . #

[email protected]

! "#

$ %&

: ( . /0 1 2

)

* + )

* , : 20 / 05 / 1401

)

* + - . : 20 / 07 / 1401

)

* + /0

* 1 : 01 / 08 / 1401

)

* + ) 23 : 25 / 01 / 1402

$4 : 5

9 :; & 2<

="* ># 0

0 < ) '?

. @ A? B+ C

- ="* ># 0 " # ( ) .

D B"

>ED F" . FG ! ( - ) * HI<E ) .

=< J K D L D #M D F" . "N ( OD ="* 9 ""P? FL - QC )

HI<E ) . ) # < F# . # 2 ="* ># 0 F C G S T# . -

B* (EC

) & IV C " # ( (TDS

12 " W # & - OX Y ? F- V W 2IZ

) @ A? B+ C D < 0 < ) '?

98 - 1382 ] D F C . - =<

W BD 2<

" ) J ED V .

"P< W B+ C ^<# + ( @ A?

" - - # & I # 2 D . - =<

# 2 )

EC

F Z TDS

12 "P<

) SL K" < D I @ A? B+ C & * _# <

^*

? " & D F )

"P< W .F L D

D

; . * D `@ @ A? B+ C ^<# + a <

>

40 ) !

" - # 2 ) >. * EC

56

" - ) ! # 2 )

ED TDS

G S . -

? _# <

W ) D ) . D W *

X c?

^* d< W ? T# ? D F" .

T# ?

W T"D ? ) .

G S

* Q * . + "D *

Y E< 9 :; F"

W - X

c?

0 D C ? D . - D * _# < ED V 9 :; & 2< eL - ) D

# 2 ># 0 W * 0 C ED <# V EC

F Z T# < D D . . - D

f".

& ? g K" W * 2S ) - 9 :;

G S h Z . -

# 2 i AL . - . D N X - ) )K* Z W *TDS

6 : 73 X D .j ) IL

"I .k l ) ? J ) ) 1402 .(

# D 0 <

'?

)

<

D B+ C

@ A?

0

#

>

*

"

= - (

#

"

# .

) "D ( F# # 13

) 1 ( 123 - 139 DOI:https://doi.org/10.22059/jwim.2022.347038.1010.

: -

? + 9 < m

.

©

. #

(3)

1 .

&'

" # ( - ="* ># 0 D

B"

ED F# # F" . C ? D # .

>. /0 QIC L D

9 ! " HI<E n 2 =I<E 9 G S i AL T# .F

& <@

.F - o K" =I<E ) .

& T# # 0 < ) '? .

) - D

Nazeri Tahroudi et al., 2019

) '? T# .(

D B"

eL - o ) .

<E ? . ED 9 :; + K@ # * # - #M D # ? HI +< # ) D

W . +# K" .

eL - ) '? T# ^ ) . # D F T# * - D

.F * K# < .

>. /0 <D 0 < ) '? 9 G S ) .

Jaynes

)

1957

(

Shannon

)

1948

( 9 G S p0 . -

& .F@ X D =I<E 1948

) - q S ># 0 rVD 0 < ) '? K"

Shannon,

1948

.(

Chapman

)

1986

( 0 < ) '?

D F"GSX J eL - .

D D * =< s#t ". )

] h:*

D ) . ) D HI<E eL -

.

""P? D 0 < ) '? * " d"< T# D 0 < ) G?

h:*

. _# <

o ? =<

Krstanovic. *

1988 ) ( +< # - D # ) D 0 < ) '?

) . D _

F # o"

K

#

#

# . * =<

+< D . +< # 9 :; ) ) .

D _ D

"I

?

# p . aD o Q T# . * o < . L ) . - 0 < ) '? i AL ?

Singh

)

1997

( ) '?

) 0 <

^" ? ) D 2

. - D # D ) 0 < ) '? =< D # . * o D ^. n SL )

D d

>. /0 _# < .FL 0 ) .

. ID X

"

F - D # 0 < ) '? )M D . D Z ;

Ozkul et al.

)

2000

( L ="* ># 0 - D # ) D 0 < ) '?

. * =<

Mogheir and Singh 2002 )

( ="* ># 0 - Z ; ) D (

@ G G ? 2< 0 < ) '? " #

=< D F# . * 2

. 0 < ) )

D # ="* ># 0 - (

>. /0 . * o " # ) .

< ) '? h D - #

<L 0 ># 0 - Z ; D + . - D 0 Z .

*

Mogheir et al.

)

2006

(

. * o i AL T# ? =< G S

Mogheir et al.

)

2006

( =< D KN " # ( - ># 0

. J d 0 < ) '?

. ) D g ( W W . I j . T"D SD D #

. G@

"

F . D # 0 )

. "0 0 < ) '? =<

eL - . 9 G S * * o 0 < ) '? i AL ) D * ) .

>. /0 a ? ) GD .F@ X =< =I<E

Chen et al.

2008 ) ( ) D u "d# *

# D

. W T# W ". D ) D

d # ? T "- 2S -

GD D ) 5

/ 7

× 5 / 7 . * =< < I"*

) D 9 :; & 2< 0 < F#

# F D +< # )

" D - * _# < . * =< D ) . T#

. " +< # >- G? D 2S

Lee

)

2013

( - D ) D ( E<

"

0 n 2

#

>

*

"=

"

F (

"

^<

. )

? h D (:w @

' ) 0 <

0

"

* 0 & .

"

) D &

# D

* .

) O C ) n 2 - F- D

D

; 2 . D 9 :; B* *

"

T . ) O C ) - .

) x* Z D HI<E + =< D

#

^<

< t

"

s )

GA

D ( ) 0

#

>

*

"

=

"

F E< ( ( - 0 & .

"

) D ) # s

"

^<

- (:w @ )

sW * .

D * ^g ># 0 ^< "

.

Leite et al.

)

2021

( +< # T"D 9 :; & 2< D F C ) '? d D ) .

. * =< 0 <

<

# _

0 *

"

) ? D D D L

"

T F Z . )

? SL

# K

# d *

V

# F .

#

"

K o

* * D

; 0 D n D

"

y

"

"

& + D ?

"

T . ) D )

h D .F

# T

<

# _

. ) C

# ) IV? B

"

B @

# D ) =<

. ) D ?

"

T D ) K@ j . D

#

>

ID X

"

F E ?

"

e W SL

"

T

V

"

a 0

"

y

"

) 0

"

- F .

(4)

Shi et al.

)

2018

( 0 < ) '? F t OX L ="* * - ># 0 D F C

. * =<

<

# _ *

# T ( W W ?

D . ) I

0

#

>

Sw )

IV? h D

"

B

#

#

^. F 9 SL Z ; T" W

# O

? ] Z z X {V D

"

. * 2

# D

# . ) Z ; -

># 0 . = C

"

^

#

#<

G? D *

"

^ #

<@

"

K X rVD F@

.

Nazeri

Tahroudi et al.

)

2019

( F C Z ; D 0

#

>

( -

#

"

( C 2 F- D N

# W

"

D D g GX G?

"

F W . ) D

"

D ) - 9 :; & 2<

) )

EC

D ( ( |S

#

"

= . )

#

"

* =< 0 < ) '?

< .

# _ eL - . ) 0 <

- * * ED

#

- g 9 :;

)

& - D N * C ED

"

=Z D ) C W

# )

# T D 2S ) 0

#

>

X"

`

2

EC # .

>. /0 J * "P< W " # 0 D + . 0 < D '? =< i AL - # ) .

- D F i AL T#

+< . * ) "P< W " . W . G S # 2 T"D

o D IS _# < - D ^* # - D <- C

^. . * D T" W ) "0 SD FD ] C B"

>"D

" - ? D "P< W " .F - D FD ] T# D )

B"

>"D aD D ?

>. /0 - D aD ) . ) L D .F <@ X =< ># 0 ) .

Ramezani et al., 2018;

Shahidi et al., 2019; Khashei-Siuki et al., 2020

. (

* -

^. # . D " W

& "< 0

< W " T#K+# C "P< W ) ) . * F - G G S T# .F - "P

" - i AL K" @ A? B+ C # 2 )

EC TDS

+< # BD 2< ] B G?

D . - D .

># 0 @ A? B+ C "P< W " D < 0 < ) '? I G S T# h T#

# ( ="*

) - 9 :; ># 0 i AL Y ? F- "

.F <@ X D TDS

2 . )

*

2S G S

T#

>. /0 OX Y ? w Z # ED

& -

* ( N d# D } < & -

D N

& - W #

"

- D FZ

D D D Y ? w Z # 559

I"*

OD <

FZ D D D ED 277

I"*

OD <

D D D K" Y ? F- ED a"V . - D 106

< I"*

T# . - D # 2 G S

EC TDS

) "

G? - 12

) W 2IZ

98 - 1382 . - =<

2S F"GX G S

B - q - D

) 1 ( ) 9 AE ) .

D & C q - D )

1 ( o - .

2 . 1 .

D ) G D FP 0 < ) '?

HI<E 9 G S 0 < ) '? =I<E H# G? .F g o

- .F

0 < ) '?

D ) D =<

# s

& KD )

D g =<

>"D ? C 9 :;

=<

-

)

Harmancioglu et al., 1999

9 G S D T" ) '? T# .(

Shannon

)

1948

( 9 G S T" . - "D

. D F"GSX J rVD 0 < ) '? =< i AL D D

F :;

C 9

#

? GSX J

"

F .

>. * .

eL - 0 < ) '? ) . D ?

0 < 0 < <

"

2? <

"

^

Harmancioglu )

and Alpaslan, 1992

(.

(5)

Figure 1. Location of studied wellsin Iran and Lake Urmia Basin

Table 1. Statistical characteristics of the investigated data in the Tasouj aquifer

Well Min Max Mean STD

Almas 435.0 799.00 659.57 84.96

Emstjan 1018.5 1400.0 1277.9 99.32

Tasouj 962.0 1523.5 1340.40 174.18

Angeshtjan 648.0 1020.5 839.68 126.03

Topchi 1177.0 2390.3 2007.94 259.39

Til 1064.5 2564.0 1754.99 478.28

Cheshmeh Konan 1280.0 3300.0 2047.31 608.55

Chehregan 563.0 2299.7 1268.31 554.05

Dizaj Sheikh Marjan 508.5 726.0 611.09 56.94

Gholmansara 1273.5 2755.0 1850.84 559.13

Qareh Tapeh 1650.0 2930.0 2144.31 410.33

Gezelcheh 2500.0 329.0 3012.90 203.74

s#

P<

"

0 @ A?

"

? OD ? D <

#

& <Z +W O

f(x)

# "+D g

# T 9 !

& <Z T#

*

x

i

- D D T"

F 9 :

SD 1 (

2

2

( ) ( ) ( )

2 2

i

i

x x

i i i i

x x

x x

P x P x x x f x dx

X D

p(x)

G

l i

i

i p x

x p k x

H( ) ( )ln ( )

) 0 < SD D

9 ! D . L #

)

Shannon, 1948

:(

(6)

SD 2 ( ( ) ( ) ln ( )

H x f x f x dx





 

M D SD

H

D

"

*

"D F"GSX J T# * F F"GSX J 2 s# i AL 9 :; * K" *

^< "

F

"P< k < 0 < .

x y

D

H(x, y)

"D . -

x y

:F D D - D < D "N

SD 3 ( ( , ) ( ) ( )

H x y H x H y

*

H(x) H(y)

) 0 <

x y

- D K" < D F Z . D

9 ! # : - D

SD 4 ( ( , ) ( , )ln ( , )

H x y   f x y f x y dxdy

 

 

 

*

f(x, y)

k < & <Z +W

x y

F . ; - 0 < F Z 0 < ) '? .

x

D n -

y

D"

* "X D F"GSX J

x

D n - eE D

y

F :

SD 5 (

( ) ( )ln ( )

H x y f x y f x y dxdy

 

 

 

 

*

f(x│y)

& <Z +W O# ? OD ?

x

D n -

y

z d Bw =? D D D * 0 < +# .F 0 <

. )

- Z

"

k < 0 < ) F

"P< T"D * # 9 :; & 2< 0 <

x

Dy

9 ! "D # -

:

SD 6 ( ( , ) ( ) ( ) ( , )

T x y H x H y H x y

SD 7 ( y dxdy

f x f

y x y f

x f x

y T y x

T 

 







( ) ( )

) , ln (

) , ( )

, ( ) , (

T(x, y)

? D 9 ! k < 9 :;

x y

H# G? K"

.

"- Z 0 <

D ) BD X HI<E O# ? OD ?

D

"- Z 0 < * - D O# ? )

^" G? ) Z ) 2 # <D & ~M & "g _# ) . <@ #

D Q"? ? D 9 ! # ) - D

Nazeri Tahroudi et al., 2019

:(

2 . 2 . +, !

* -.

9 :; & 2<

^.

T" W ? =< D

# s

& 9 :; & 2< eL - D *

1ITI

- "D

:

SD 8 ( )

, (

) , (

y x H

y x ITIT

+# +< # D +< # 2< 9 :; K" *

^ eL - T# . . eL - T# ?

) '? ) .

0 <

* K" * - D 2S 9 :; + K@

2 ; . . eL - T# ) D D

9 ! & C

) 2 ( . - D

Table 2. Classification of information transfer index ITI (Mishra and Coulibaly, 2010) ITI (i)

The degree of importance of the area

0 – 0.2 Severe shortage

0.2 – 0.4 Shortage

0.4 – 0.6 Average

0.6 – 0.8 Above average

>0.8 Extra

(7)

9 :;

#

<@

a ? +< #

x

K" y

D 9 ! # G?

# H : -

SD 9 (

)

( ) , ) ( ,

( H x

y x y T x

R

+< # 9 :; K"

+< # x

y

D 9 ! H# G? # -

:

SD 10 (

)

( ) , ) ( ,

( H y

y x y T x

S

eL - F#

N(i)

? e L 9 :; eL - # D

9 !

# : - D

SD 11 (

)

( ) ( )

(i S i R i

N

eL -

N(i)

.

# +<

.

*

^*

# ? T

"

K

N(i)

+ "D

^*

# ? . ? T

"

- F

0

# >

) .

Markus et al., 2003

# 2 T" E? 0 < ) '? ) C M .(

G S W .

+< # BD 2< ] D i AL .

" J F Z * - D

"P< W =<

T# . -

" . - =< @ A? B+ C * F - G G S

"P< W D

9 ! H# G? # : -

SD 12

(

1

1

) ( ) ( )

( )

( I

j

j

j i b i

y i

a i x)

*

x(i)

D

"

* +< # ) .

i

J

x̂(i

( M D SL SD D

F . #

y(i)

?

# p J ? .

# +<

. )

# +

a(i) b(i)

. < 0 )

"

. - D

2 . 3 . 0&

+

^<#

@ A? B+ C a ?

Breiman

)

2001

( D s#

" # ) G d?

D )

< Bo D

"

- L D )

h D

A? FL G ?

^"

F - o B+ C s# .

@ A?

d )

FL . ) h .

* F . + D FL

^<#

D•KC )

< D B! Z -

. D

?

@ A? B+ C

* ? "

W FL T#

A?

^"

W FL * F T#

L .

F* - )

Friedman et al., 2001

( .

D g d#

FL

"

D•KC )

< D

"

. ) W =<

-

@ .

# A?

^"

.

IL

#

<L X ` ;

?

? - I X HX ? n - *

G?

T""

- D F #

Breiman, 2001) .(

RF

@ A? D Xn

B2< *

. D

)

@ A?

X1, X2, …, Xn-1

D D ) FL

n

J

" ?

- .

^.

T" W . D . ?

O#

F"G ? D . *

<L "

=< D d

. )

Xn

FL d - V

D D D # .

n

" ? # q - D

# )

Breiman, 2001

:(

SD 13

1( ), ( ),..., ( )2

(

n n

Xh x h x h x

SD 14 (

1 2

( , ), , ,...,

n n p

h h x X x x x x

p D s# € @ ) GD

? B+ C B"

C L FL . ) D . D

9 ! o # : -

SD 15 (

) ) )

1 2

1 ( ), 2 ( ),..., n n( ) yh x yh x yh x

€ @ SD * )

yn

FL C L

n

J . - D D ) D F C L

# . a <

>"0

"D . )

FL . V -

SL . )

>"0

"D K"

` ; SD ) 16 ( V -

.

(8)

SD 16 (

) 2

1

( )

n

i i

i

y x y

MSE n

€ @ SD )( )i

# 2 y x

? V yi

? . # 2

n

F 9 . B* G?

MSE

K"

SL ) D T"

2

#

? .

? V . .

D < 0 < & ) C F C `"2V? T#

"

"P< W : - <@ g # BZ @ A? B+ C

) =< ) . I C

EC TDS

2S G S

1 - D

•L J K 9 ! B# S? B" ? )

2 -

" ) C

"P< W

" - i AL +< # BD 2< ] )

.

3 -

" - i AL @ A? B+ C ) C +< # BD 2< ] )

.

4 -

& I D # "P< W " @ A? B+ C ) .

h D

D # ) . "G

5 - D < 0 < ) C

" - & T# ? D IZ

5

6 -

eL - D

" # ( ># 0 ="* - D 0 < ) .

3 . 12 3

2S " # ( ="* ># 0 F C 2S T#

G S ) ) - & 2< g

EC

(

TDS

W ) .

D 0 < ) '?

D T# .F@ X W BD 2< ] D F C i AL

) . D

" ) J

"P< W @ A? B+ C & (

D g 9 :; & 2< * d .F@ X

# 2

EC

T# " # ( ="* - ># 0 F C - D 9 =< +# W D . W F T TDS

0 2S <

EC

. - =< TDS

3 . 1 .

! 3

' 4

5 6 ' 7 4 EC *

" - F C # 2 # 2 )

EC

# 2 +< # .

EC

+< # # .

D 9 ! A

>"0

"D =< *

+< # BD 2< ] * T# D . - +# # D F .

<@ g " & . =< D . -

"P< W

" - @ A? B+ C # 2 )

EC

W

" - _# < . - J d Y ? w Z # C ) . )

"P< W # 2

2S EC

G S

> SL 9 GD T"+ " ‚C =< D -

H"I ? D

# 2 D _# < . -

RMSE

" - # 2 )

EC

W ) . G S

& . =< D D

D 9 ! B - ) 2 ( o - # 2 # 2 _# < .

RMSE

" - i AL # 2 )

EC

2S G S

T"D T# * 25

? 331

"

< D h W " & ) D <

"P<

T"D 23 ? 68

< D h "

"P< @ A? B+ C & ) D <

B - D C ? D . - D )

2 ( & * . ?

"

"P< W

>"D ?

" - ) SL K" T#

@ A? B+ C & W W D n D ) D n D

W W *

. - D

^*

? C ƒ"- W D n D & . K" SL K" T#

B - D C ? D . - D )

2 (

W ? * * . ?

) . G S

K"

RMSE

" - # 2 )

EC

B+ C & -

@ A?

^*

? " &

"P< W & # * D F C . - D

D

" - # 2 )

EC

(9)

>

- _# < * - =< H"I ? D

9 ! B - ) 3 ( B - _# < . - D )

3 ( & # * *

W ? @ A? B+ C ) .

D

>"D ? " &

"P< W

# * . - D @ A? B+ C &

" - # 2 )

EC

W ) . D

>"D ? 80

! " & D F * - D

"P< W

>"D ? ) SL K" ) D ! . - D

RMSE

" - @ A? B+ C & ( # 2 )

EC

" & D F

"P< W K"

D 9 ! B - ) 4 ( . BD X . - D

>"D ? _# < ) D ! T#

RMSE

B - D C ? D @ A? B+ C & - )

4 ( IN W W D n D

? . - D

B - D C ? D )

4 (

" - ) SL K"

# 2 ) ]„< EC

" & D F @ A? B+ C &

"P< W B - D C ? D .F <@ # D

) . ) 2 ( ) 3 ( ) 4 ( BD X FX ? @ A? B+ C & & X

" - )

EC

W BD 2< ] D " & D F C ) .

"P< W . * .

Figure 2. The results of investigating the error rate (RMSE) of random forest models and multivariate

regression in the simulation of electrical conductivity values in the studied stations.

(10)

Figure 3. Performance evaluation of random forest models and multivariate regression in the simulating of EC values in the studied stations using Nash-Sutcliffe statistic

Figure 4. The percentage of improvement of the simulation results of EC values due to the random forest

model compared to the multivariate regression model in the studied stations

(11)

3 . 2 .

! 3

' 4

5 6 ' 7 4 TDS *

# 2 .

EC

# 2

TDS

W ) . G S

" & =< D K"

"P< W @ A? B+ C

W BD 2< ] D F C

" - +# # D F .

" - _# < . - ) )

=< D .

RMSE

D NSE

# 2 D _# < .F@ X

" - RMSE

# 2 ) DTDS

9 ! B - ) 5 ( D . - o

B - D C ? )

5 (

" - SL K" D _# <

# 2 )

TDS

W ) . G S

9 ""P? *

RMSE

&

"

"P< W T"D

16 I"

? C ƒ"- Y +< # <" D J 509

I"

<" D J

"P< W +< #

" - _# < BD 2 . - D # 2 )

TDS

W @ A? B+ C =< D ) .

G S T"D & T# ) SL K" *

7 / 13 I"

D J ? C ƒ"- YK# W <"

72 I"

D J

"P< d< W <"

# 2 9 ""P? * D C ? D . - D & RMSE

D * _# <

" & D ) G j:<L @ A? B+ C &

"P< W

" - # 2 )

TDS

D _# < . # *

&

) . D

" - # 2 )

TDS

K"

D 9 ! B - ) 6 ( B - D C ? D . - o )

6 ( # 2 a <

NSE

W ) . G S

@ A? B+ C &

75 " & !

"P< W Z

37 ! . - D

" & I

"P< W

" - # 2 )

TDS

F# w >ED " & OX . - D

"P< W

W BD 2< ] .

D D L # 2 # 2 _# < .F D " & RMSE

"P< W B+ C &

@ A?

D 9 ! B - ) 7 ( # 2 ) D ! . - o

RMSE

D F @ A? B+ C &

" &

"P< W B -

) 7 ( D . BD X q w W ? . - D

) . G S

# 2 ) D !

RMSE

BD X . @ A? B+ C & OX . - D D

D L K" F < ?

RMSE

" & D F

"P< W . . >. *

>"D ? # 2 >. * T#

RMSE

W B"? +< # D n D D

Q"? ? Z 81 / 87

32 / 87 ! . - D D

; " & D # 2 @ A? B+ C & K" a <

"P< W

B* F ?

V G S

K"

" - - RMSE

# 2 ) Z TDS

56 . . >. * ! # 2 # 2

" - ) -

EC TDS

2S G S

" & =< D

"P< W

@ A? B+ C

" - ) SL K" F < ? @ A? B+ C & * # 2 )

EC

+< # Y ? d< h ) .

ƒ"- YK# W * W B"? y0 ? d< + IN C

X c?

y KX D

Q"? ? Z 6 / 13

5 / 45 3 / 56 30 3 / 48 8 / 42 1 / 28 82 5 / 8 7 / 62 2 / 38 1 / 18

" - ) SL K" ! # 2 )

TDS

D Q"? ? Z 4 / 28 7 / 40 4 / 76 5 / 81 9 / 9 8 / 78 5 / 20 3 / 87 8 / 14 6 / 78 1 / 73 4 / 80 ED D ! "

.F

3 . 3 . ' " # 3 EC

'8 TDS 9: 8

@ A? B+ C & ( E< D F#

D

" - " ? D &

# 2 )

EC TDS

^.

T" W &

W BD 2< ] D i AL ? D W BD 2< ] Y ? V .

) '? - D +# # D F .

C 0 <

- ? . # 2 =< D .

EC TDS

^.

T" W

" - # 2 )

B+ C & =< D -

eL - @ A?

^ - D 0 < ) . eL - T# ?

) ) .

ITI

? _# < . - o (N(i)

W ) D ) .

D eL - =< D

N(i)

D 9 ! & C ) 3 ( . - o eL -

N(i)

eL - #

" ^ ) .

" # ( - ># 0 W ? eL - T# . - D

2S F" . g . # 2 . .

N(i)

F x

(12)

. W )M D F" . F- g

? D . - D & C D C

) 3 ( W ? ? 2S C ) .

G S < 0 D C ? D

EC

W & C T# D C ? D . * . TDS

X c?

? 1 .

< 0

EC TDS

_# < T# .F * Q *

? ! * . W s# - D " *

D F- j G

9 :; & ? g

EC TDS

W - @ G 2S X

c?

#K T# < D W T# T"D n ? OX . - D

W # D 2S ) .

G S

>"D ? o _# < D C ? D . - D -

# 2 ?

EC TDS

W T#

)X c?

="* "P< . ) D K" d< W . ^" G? ED B* D (

EC TDS

>"D ? Q * ? T#

* F *

. W # D W T# H"Gw n ? .

# 2 D C ? D . - D W N(i)

d< ) .

h Y ?

^*

? # 2 D C ? D ? T#

W EC

9 :; & 2< D C ? D y KX W d< ) .

TDS

^*

?

* Q * ? T#

.

Figure 5. The results of investigating the error rate (RMSE) of random forest models and multivariate

regression in the simulation of TDS values in the studied stations.

(13)

Figure 6. Performance results of random forest models and multivariate regression (Nash-Sutcliffe statistic) in the simulating of TDS values in the studied stations.

Figure 7. The percentage of improvement of the simulation results of TDS values due to the random forest

model compared to the multivariate regression model in the studied stations

(14)

Table 3. The ranking results of the studied wells based on the quality values of EC and TDS

Well N(i)-TDS N(i)-EC Rank based on EC Rank based on TDS

Almas 0.010 -0.0242 10 4

Emstjan -0.281 -0.3294 12 12

Tasouj -0.002 -0.0334 11 8

Angeshtjan 0.018 -0.0125 7 2

Topchi -0.002 0.0000 5 7

Til 0.000 0.0001 3 5

Cheshmeh Konan 0.000 0.0001 4 6

Chehregan -0.017 -0.0230 9 11

Dizaj Sheikh Marjan -0.003 -0.0192 8 9

Gholmansara 0.011 0.0002 2 3

Qareh Tapeh 0.041 0.0002 1 1

Gezelcheh -0.008 -0.0002 12 10

eL - +# # # 9 :; & 2< eL - 0 < ) '? ^ ) .

ITI

# * eL - T# . - D

9 :; + K@

EC TDS

2S ="* # 2 ># 0 " 9 :; eL - T# . .

2S

"<L X h Z W * # <- W * 2; . . "D eL - T# a ? -

^" A? F C . - < D ) "

^.

T" W # 2 < D >#

ITI

2S G S

# 2

ITI

D n D

< 0

EC TDS

0 ) D D 9 ! B - ) . ) 8 ( ) 9 ( D Q"? ? # 2 ) D

EC TDS

. - o D C ? D

B - ) 8 ( 0 i AL # 2 ) D

EC

Y ? F- ED |S

2S B* * * . ?

G S X a < >"D a < F Z F X ? <@

* ED X - n 2 W * ) .

. ) - 9 :; & 2< g W 9 :; & 2< g g ED - )K* Z . -

D . C 2S T# W * F <@ X a < F"Gw ) - 0 g I* ;

<

EC

2S G S

W * 0 <- C ># 0 .

D D L W IG@ * 0 "W D . - D

.

2S G S

F"Gw 9 :; ?

EC

D _# < . * D 2S

* .

2S G S

# C W … Z 2S D C `; . ? w < D ># 0 F C

G S J C D

9 :; & 2< g W * K" W †Z

EC

. T" . K" 0 < ) '? ^ ) . D * # . -

d"< T# .F z w Y ? B"? T"D ) - 9 :; & 2< 2S T# W * C D .

D D L " # ( |S Z T# < .F X D D

B"

D M D " W # D # K

EC

Z T#

K"

>"D ? - Z < 0 . - D

TDS

9 =< a# - T#

B - D C ? D . - D )

9 ( ?

X - ) )K* Z < X * * .

^.

T" W & ? g Y ? ED D N ) Z

9 :;

TDS

W * W ED )K* Z . - D

G S W * 0 g a < F Z K"

.

. X

2S - ) Z

G S

^.

T" W

F C . X F Z ED X - ( C Z

2S ED " D ># 0 G S

9 :; ># 0 g Y ? F- Z # C W … Z D " TDS

u K X

" D ># 0 j . * ? ! . - D D *

- D " # ( ="* -

?

h D

C _# <

# * =Z # C ) . 9 :; & 2< * # .

^*

? . * j‚Z ^< " )

- F C W * # . W ?

- * j‚Z #M D ? * # . * # .

G?

Q W

F < D F " C .

h D

"0

Mogheir et al.

(2006)

W # * < ) .

W . * =< - ># 0 F C ( - ) .

(15)

Figure 8. Zoning of ITI index values regarding the qualitative monitoring of EC values

Figure 9. Zoning of ITI index values regarding the qualitative monitoring of TDS values

4 .

< 12

=

G S T#

*

# '?

) 0 <

? D )

># 0 2S ) Y ? ED " # ( F"="* -

# D F@ X .

# 2 i AL T#

EC TDS

" # ( 12

) W 2IZ

98 - 1382

W BD 2< ] D F C J 0 < ) '? . - =<

"P< W " +# # D F .

=<

. -

^.

T" W W BD 2< ] D @ A? B+ C ^<# + FX # *

" * .

"P< W D _# < . - D

@ A? B+ C & * . D

D L W BD 2< ] F < ? D .

" & D # 2 @ A? B+ C & # * K" *

"P< W BD 2< ] D . ED D

+< # - `@ @ A? B+ C . D

; ) SL K" a <

RMSE

" - ( +< # BD 2< ] )

.

< 0

EC TDS

D Q"? ? Z 56 40 @ A? B+ C & ( E< D . . >. * J D F !

D eL - ? D &

eL - D _# < . - D 0 < ) '? ) . ="* ># 0 D n D ITI

# 2

EC

ED IG@ F"Gw * G S

W IG@ "W D D Q * 0 g & 2< C ) .

(16)

" # ( ) - 9 :;

D D L ># 0 `"X ># 0 F C Y ? F- ED IG@ F"Gw D C ? D . -

# 2

EC

C # C W =Z D "

2 ; . # 2 i AL Q N ) D

ITI

< 0

EC

X <

W . X c?

d< W D

Q"? ? F" . D F" . ^* T# ? # 2 ># 0 i AL W T# ?

ED EC

Y ? F- # 2 ># 0 _# < . - D

TDS

eL - D C ? D Y ? F- ED

ITI

L D *

( C ) )K* n 2 h Z W * ED € - ( N

. - D g

`"X ># 0 F C ?

9 :; & 2< D

TDS

F- ED D

W =Z D "

2S # C ) . * - D

?

# 2

TDS

W # 2 . . * =< K" ( - # ? . ) .

EC

W ) . X c?

d<

D Q"? ?

F" . D

^* T# ? F" .

W T# ? ED . z w T# . - D

# 2 ^" G? ># 0 ) D * .

EC

# 2 F < D Y ? ED D TDS EC

W TDS

X c?

W . - =<

#M D ? * # .

* Q * G@

"

F d? JKI< .

# g C ) D W T# ) .

< .

^*

? L D ) . - D

W Bx # . X

c?

? *

^*

?

* Q * )

=

"

?

# - 9 :; T 0

#

? >

"

# T# ‡=Z

W ) w " # ( - . "IX 9 ""P? D C ? D . - D

^.

T" W

= F- D ># K@

># 0 .

" # ( ="* *

? D ( F"="* F" * i AL . ^< "

# ) . * * B "

^. @ T# 0 <

.F *

& " # ( ="* * 9 ""P? "IX 9 ""P? D C ? D ) .

# HI<E n 2 "L D

/#

h Z >"0 >"D " # ( ="* * ># 0 J K " W # w Z

) D * d"< . * F# # C ( OD <D |"V! F# # D ? - T#

>. /0 " D ) # o

" # ( ="* ># 0 F C +< # BD 2< ] <D * - D

. T" E? ) ?M D F"GSX FX D .

5 .

?!

* 1. Information Transfer Index

6 .

A B 9

f".

. C # T"D G@ ˆ G?

7 . A Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

Chapman, T. G. (1986). Entropy as a measure of hydrologic data uncertainty and model performance. Journal of Hydrology, 85(1-2), 111-126.

Chen, Y. C., Wei, C., & Yeh, H. C. (2008). Rainfall network design using kriging and entropy. Hydrological Processes: An International Journal, 22(3), 340-346.

Hastie, T., Friedman, J., Tibshirani, R., Hastie, T., Friedman, J., & Tibshirani, R. (2001).

Unsupervised learning .The elements of statistical learning: Data mining, inference, and prediction, 437-508.

Harmancioglu, N. B., & Alpaslan, N. (1992). Water quality monitoring network design: a problem of multi‐objective decision making 1. JAWRA Journal of the American Water Resources Association, 28(1), 179-192.

Harmancioglu, NB., Fistikoglu, O., Ozkul, S D., Singh, VP., & Alpaslan N. (1999). Water quality Monitoring Network Desighn. Kluwer, Boston, USA, 1999; 299pp.

(17)

Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical review, 106(4), 620.

Khashei-Siuki, A., Shahidi, A., Ramezani, Y., & Nazeri Tahroudi, M. (2020). Forecasting the groundwater monitoring network using hybrid time series models(Case study: Nazlochai).

Water and Soil Conversation, 27(3), 85-103 (in Persian).

Krstanovic, P. F. (1988). Application of entropy theory to multivariate hydrologic analysis.

(Volumes I and II) (Doctoral dissertation, Louisiana State University and Agricultural &

Mechanical College).

Lee, J. H. (2013). Determination of optimal water quality monitoring points in sewer systems using entropy theory. Entropy, 15(9), 3419-3434.

Leite, G. D. N. P., da Cunha, G. T. M., dos Santos Junior, J. G., Araújo, A. M., Rosas, P. A. C., Stosic, T., ... & Rosso, O. A. (2021). Alternative fault detection and diagnostic using information theory quantifiers based on vibration time-waveforms from condition monitoring systems:

Application to operational wind turbines. Renewable Energy, 164, 1183-1194.

Markus, M., Knapp, H. V., & Tasker, G. D. (2003). Entropy and generalized least square methods in assessment of the regional value of streamgages. Journal of hydrology, 283(1-4), 107-121.

Mishra, A. K., & Coulibaly, P. (2010). Hydrometric network evaluation for Canadian watersheds. Journal of Hydrology, 380(3-4), 420-437.

Mogheir, Y., & Singh, V. P. (2002). Application of information theory to groundwater quality monitoring networks. Water Resources Management, 16(1), 37-49.

Mogheir, Y., Singh, V. P., & De Lima, J. L. M. P. (2006). Spatial assessment and redesign of a groundwater quality monitoring network using entropy theory, Gaza Strip, Palestine. Hydrogeology Journal, 14(5), 700-712.

Nazeri Tahroudi, M., Khashei Siuki, A., & Ramezani, Y. (2019). Redesigning and monitoring groundwater quality and quantity networks by using the entropy theory. Environmental monitoring and assessment, 191(4), 1-17.

Ozkul, S., Harmancioglu, N. B., & Singh, V. P. (2000). Entropy-based assessment of water quality monitoring networks. Journal of hydrologic engineering, 5(1), 90-100.

Ramezani, Y., Pourreza-Bilondi, M., Yaghoobzadeh, M., & Nazeri Tahroudi, M. (2018). Qualitative Monitoring of Drinking Water Using Entropy Indices (Case Study: Central Aquifer of Birjand Plain). Iranian journal of irrigation and drainage, 12(3), 556-568. (in Persian).

Shahidi, A., Khashei-Siuki, A., & Nazeri Tahroudi, M. (2019). Designing Monitoring Network for Rain Gauge Stations Using Irregularity Theory (Case Study: Urmia Lake Basin). Iranian journal of irrigation and drainage, 13(2), 296-308. (in Persian).

Shannon, CE. (1948). A mathematical theory of communication, bell System technical Journal, 27, 379-423 and 623-656. Mathematical Reviews (MathSciNet), MR10, 133e.

Shannon, C. E., & Weiner, W. (1948). A mathematical theory of communication. Publ. Urbana, IL: University of Illinois Press.

Shi, B., Jiang, J., Sivakumar, B., Zheng, Y., & Wang, P. (2018). Quantitative design of emergency monitoring network for river chemical spills based on discrete entropy theory. Water research, 134, 140-152.

Singh, V. P. (1997). The use of entropy in hydrology and water resources. Hydrological processes, 11(6), 587-626.

Referensi

Dokumen terkait