• Tidak ada hasil yang ditemukan

Introduction to Computer Vision

N/A
N/A
Protected

Academic year: 2025

Membagikan "Introduction to Computer Vision"

Copied!
12
0
0

Teks penuh

(1)

Introduction to Computer Vision

Lecture 3

Representing Images

(2)

Images

https://hiveminer.com/Tags/desert,isfahan/Recent

(3)

Images

(4)

Images

https://hiveminer.com/Tags/desert,isfahan/Recent

(5)

Images

7 7 20 200 198 202 0 0 0

6 1 22 222 200 210 3 4 5

5 2 24 201 209 211 6 8 10

4 3 16 212 208 208 9 12 15

12 4 18 213 207 209 12 16 20

10 5 10 20 19 16 15 20 25

12 10 12 15 20 25 20 17 18

(6)

Images

https://hiveminer.com/Tags/desert,isfahan/Recent

7 7 20 200 198 202 0 0 0

6 1 22 222 200 210 3 4 5

5 2 24 201 209 211 6 8 10

4 3 16 212 208 208 9 12 15

12 4 18 213 207 209 12 16 20

10 5 10 20 19 16 15 20 25

12 10 12 15 20 25 20 17 18

2D Array!

(7)

Images

0 50 61 22 11 11

0 1 2 3 4 5

0 2 200 6 8 10

0 3 250 9 12 15

21 4 8 12 101 20

10 5 10 15 20 25

(8)

Visible Light Spectrum

https://web.pa.msu.edu/courses/2000fall/phy232/lectures/emwaves/visible.html

(9)

Photoreceptor Cells (Rod and Cone cells)

https://www.webrn-maculardegeneration.com/rods-and-cones.html

(10)

Cone cells

https://en.wikipedia.org/wiki/Cone_cell

(11)

RGB Displays

https://www.popsci.com/technology/article/2011-10/mechanical-pi xels-could-light-new-displays-using-low-power

(12)

RGB Color model

https://en.wikipedia.org/wiki/RGB_color_model

Referensi

Dokumen terkait

The features were taken from the segmented fruit region in 2D images using geometric measures such as diameter (horizontal and vertical), area, and

A Systematic Literature Review on SOTA Machine learning-supported Computer Vision Approaches to Image Enhancement Marco Klaiber1, Jonas Klopfer2 1,2Aalen University, Research Center

Original image Binarized images with different threshold levels 176 Otsu 183 70% 191 80% Number of pixels Pixel intensity 0:black, 255:white Cropped image Binarized images with