• Tidak ada hasil yang ditemukan

Lec. 6: Folding & Interpolating ADCs

N/A
N/A
Protected

Academic year: 2024

Membagikan "Lec. 6: Folding & Interpolating ADCs"

Copied!
20
0
0

Teks penuh

(1)

Lec. 6:

Folding & Interpolating ADCs

Lecturer: Hooman Farkhani

Department of Electrical Engineering Islamic Azad University of Najafabad Feb. 2016.

Email: [email protected]

In The Name of Almighty

(2)

Folding ADC

لدبم رد اهتیب دادعت شیازفا اب اهرگ هسیاقم دادعت ییامن شیازفا لکشم ندومن فرطرب روظنم هب • Flash

،

یدورو ندرک ات کینکت زا Folding(

) دوش یم هدافتسا .

هدیاو کی یاج هب عجرم ژاتلو نیدنچ اب یدورو هسیاقم یارب رگ هسیاقم کی زا هدافتسا راتخاس نیا یلصا

عجرم ژاتل (

شلف راتخاس )

دشاب یم .

طسوت یدورو لانگیس ،فده نیا هب یبایتسد یارب Folding prea

mplifiers ات صخشم دادعت هب

Fold( )

دوش یم .

،دوش یم اهرگ هسیاقم دادعت هجوت لباق شهاک بجوم لمع نیا یارب شلف لدبم هکیلاح رد هکیروط هب

تقد 4 هب تیب 15

لدبم ،دراد زاین رگ هسیاقم folded

( ندروخ ات دادعت اب 2

تیب

= 4 ) هب طقف 6

ددع هسیاقم

تسا دنمزاین رگ .

(3)

Folding ADC

شزرارپ تیب ود نییعت یارب رگ هسیاقم هس MSB(

) ، ( یدومع طوطخ )

هسیاقم هس و یارب رگ­

(4)

Signal Folding

Analog pre-processing

→ folding amplifier

Folding factor (F) is equal to the number of folded segments.

Segment indicator (log2(F) bits)

Fine quantization N-log2(F) bits VFS

0 2N-1

Vi Do

1 2 3 4 5 6 7 8

(5)

Folding ADC Architecture

The fine ADC performs amplitude quantization on the folded signal.

The coarse ADC differentiates which segment Vin resides in.

2n1 Sub-Ranges

(6)

Folding ADC Example: 6-Bit

Coarse ADC determines segment, fine ADC determines level within segment

• Folding factor (FF) quantifies number of folder output segments [B. Murmann]

(7)

Folding Amplifier

Example: 2-Bit Folding Circuit

(8)

Zero-Crossing Detection

Only detect zero-crossings instead of fine amplitude quantization

→ insensitive to folder nonlinearities.

P parallel folding amplifiers are required.

F = 3, P = 4

Vi Vo

0

(9)

Offset Parallel Folding

Total # of zero-crossings = Total # of preamps = P*F

Parallel folding saves the # of comparators, but not the # of preamps

→ still large C .

F = 3, P = 4

Reference Ladder

Folder 2 V2

Folder 1 V1

Vi

VR

Folder 3 V3

Folder 4 V4

Vi

0

Vi

0

Vi

0

Vi

0

c

c

c

c

(10)

Folding ADC

یاهرگ هسیاقم هکییاجنآ زا ،درکلمع تعرس رظن هطقن زا

و LSB یم لمع نامزمه MSB

اذل ،دننک­

لدبم درکلمع تعرس Folding

هباشم دناوت یم Flash

دشاب . یلاغشا حطس و ناوت فرصم شهاک اب

یاهلدبم Folding

هب تبسن لدبم

شلف ات نشولوزر ، 10

تسا یزاس هدایپ لباق تیب .

Pros

Folding reduces the comparator number by the folding factor F, while the number of preamps remains the same.

Cons

Multiple differential pairs in the folder increases the output loading.

(11)

Interpolating ADC

Idea:

– Interpolation between preamp outputs

• Reduces number of preamps

– Reduced input capacitance

– Reduced area, power dissipation

• Same number of latches

• Important “side-benefit”

– Decreased sensitivity to preamp offset

• Improved DNL

(12)

Interpolation

Uniformly spaced zero-crossings in flash ADCs

… …

Vi

VR1

VR2

VR3

Vo1

Vo2

Vo3

Vo1 Vo2 Vo3

VR1 VR2 VR3

Ref: R. van de Grift, I. W. J. M. Rutten, and M. van der Veen, "An 8-bit video ADC incorporating folding and interpolation techniques," IEEE Journal of Solid-State Circuits, vol. 22, pp. 944-953, issue 6, 1987.

(13)

Resistive Interpolation

Intermediate zero-crossings are recovered by interpolation.

DNL is improved by voltage interpolation.

Requires overlapped linear regions b/t adjacent preamps.

Vo1 Vo2 Vo3

VR1 VR2 VR3

… …

Vi

VR1

VR3

Vo1

Vo2

Vo3

(14)

Interpolation Nonlinearity

Nonlinear TF of preamps cause errors in the interpolated zero-crossings.

Interpolation nonlinearity directly translates into DNL and INL.

Impedance mismatch due to interpolation also causes dynamic errors.

VA

VB/4+VA*3/4 VA/2+VB/2 VB*3/4+VA/4

VB

A

B

A

B

(15)

Capacitive Interpolation

K. Kusumoto, JSSC, Dec. 1993

(16)

Current Interpolation

Less accurate then voltage interpolation due to mismatch of current mirrors

Ref: M. Steyaert, R. Roovers, and J. Craninckx, "100 MHz 8 bit CMOS interpolating A/D converter," in Proceedings of IEEE Custom Integrated Circuits Conference, 1993, pp. 28.1.1-28.1.4.

(17)

Features of Interpolation

• Reduces the total number of preamps by the interpolation factor.

• Total number of latches stay the same.

• Reduces the total input capacitance (larger input BW).

• More area- and power-efficient than straight flash ADC.

• Voltage interpolation improves DNL.

• Subject to preamp nonlinearities.

• For interpolation factors >2, amplifier nonlinearity can limit the precision of zero crossings

– See e.g. Van de Plassche, p.121

(18)

Folding & Interpolating ADC: Example

[Murmann]

(19)

Folding & Interpolating ADCs (Recent Years):

Reference /Date

Technology (nm)

Resoluti on (Bit)

Speed (Gs/s)

Supply (V)

Power (mW)

ERBW

(GHz) ENOB (Bit) FOM (pJ/step)

[JSCC 2009]

Bob Verbrugen

90n 5 1.75 1 2.2mW 0.787 @DC:

4.7 0.16

[JSCC 2010]

Nakajima 90n 6 2.7 1 50mW N.A. 5.28 0.47

[JSCC 2009]

C.Taft 180n 10 1 1.8 1200mW N.A. 9.06 2.24

[ISSCC 2004]

C.Taft

180n 8 1.6 1.8 1200mW N.A. 7.26 4.89

(20)

References

Professor Boris Murmann Course slides 2012, Stanford University- EE315B course

Professor Y. Chiu course slides, Fall 2014.

Referensi

Dokumen terkait