Lec. 6:
Folding & Interpolating ADCs
Lecturer: Hooman Farkhani
Department of Electrical Engineering Islamic Azad University of Najafabad Feb. 2016.
Email: [email protected]
In The Name of Almighty
Folding ADC
لدبم رد اهتیب دادعت شیازفا اب اهرگ هسیاقم دادعت ییامن شیازفا لکشم ندومن فرطرب روظنم هب • Flash
،
یدورو ندرک ات کینکت زا Folding(
) دوش یم هدافتسا .
هدیا • و کی یاج هب عجرم ژاتلو نیدنچ اب یدورو هسیاقم یارب رگ هسیاقم کی زا هدافتسا راتخاس نیا یلصا
عجرم ژاتل (
شلف راتخاس )
دشاب یم .
طسوت یدورو لانگیس ،فده نیا هب یبایتسد یارب Folding prea
mplifiers ات صخشم دادعت هب
Fold( )
دوش یم .
،دوش یم اهرگ هسیاقم دادعت هجوت لباق شهاک بجوم لمع نیا • یارب شلف لدبم هکیلاح رد هکیروط هب
تقد 4 هب تیب 15
لدبم ،دراد زاین رگ هسیاقم folded
( ندروخ ات دادعت اب 2
تیب
= 4 ) هب طقف 6
ددع هسیاقم
تسا دنمزاین رگ .
Folding ADC
شزرارپ تیب ود نییعت یارب رگ هسیاقم هس MSB(
) ، ( یدومع طوطخ )
هسیاقم هس و یارب رگ
Signal Folding
• Analog pre-processing
→ folding amplifier
• Folding factor (F) is equal to the number of folded segments.
Segment indicator (log2(F) bits)
Fine quantization N-log2(F) bits VFS
0 2N-1
…
Vi Do
1 2 3 4 5 6 7 8
Folding ADC Architecture
• The fine ADC performs amplitude quantization on the folded signal.
• The coarse ADC differentiates which segment Vin resides in.
…
2n1 Sub-Ranges
Folding ADC Example: 6-Bit
• Coarse ADC determines segment, fine ADC determines level within segment
• Folding factor (FF) quantifies number of folder output segments [B. Murmann]
Folding Amplifier
Example: 2-Bit Folding Circuit
Zero-Crossing Detection
• Only detect zero-crossings instead of fine amplitude quantization
→ insensitive to folder nonlinearities.
• P parallel folding amplifiers are required.
F = 3, P = 4
Vi Vo
0
Offset Parallel Folding
• Total # of zero-crossings = Total # of preamps = P*F
• Parallel folding saves the # of comparators, but not the # of preamps
→ still large C .
F = 3, P = 4
Reference Ladder
Folder 2 V2
Folder 1 V1
Vi
VR
Folder 3 V3
Folder 4 V4
Vi
0
Vi
0
Vi
0
Vi
0
c
c
c
c
Folding ADC
یاهرگ هسیاقم هکییاجنآ زا ،درکلمع تعرس رظن هطقن زا
و LSB یم لمع نامزمه MSB
اذل ،دننک
لدبم درکلمع تعرس Folding
هباشم دناوت یم Flash
دشاب . یلاغشا حطس و ناوت فرصم شهاک اب
یاهلدبم Folding
هب تبسن لدبم
شلف ات نشولوزر ، 10
تسا یزاس هدایپ لباق تیب .
Pros
Folding reduces the comparator number by the folding factor F, while the number of preamps remains the same.
Cons
Multiple differential pairs in the folder increases the output loading.
Interpolating ADC
Idea:
– Interpolation between preamp outputs
• Reduces number of preamps
– Reduced input capacitance
– Reduced area, power dissipation
• Same number of latches
• Important “side-benefit”
– Decreased sensitivity to preamp offset
• Improved DNL
Interpolation
Uniformly spaced zero-crossings in flash ADCs
… …
Vi
VR1
VR2
VR3
Vo1
Vo2
Vo3
Vo1 Vo2 Vo3
VR1 VR2 VR3
Ref: R. van de Grift, I. W. J. M. Rutten, and M. van der Veen, "An 8-bit video ADC incorporating folding and interpolation techniques," IEEE Journal of Solid-State Circuits, vol. 22, pp. 944-953, issue 6, 1987.
Resistive Interpolation
• Intermediate zero-crossings are recovered by interpolation.
• DNL is improved by voltage interpolation.
• Requires overlapped linear regions b/t adjacent preamps.
Vo1 Vo2 Vo3
VR1 VR2 VR3
… …
Vi
VR1
VR3
Vo1
Vo2
Vo3
Interpolation Nonlinearity
• Nonlinear TF of preamps cause errors in the interpolated zero-crossings.
• Interpolation nonlinearity directly translates into DNL and INL.
• Impedance mismatch due to interpolation also causes dynamic errors.
VA
VB/4+VA*3/4 VA/2+VB/2 VB*3/4+VA/4
VB
A
B
A
B
Capacitive Interpolation
K. Kusumoto, JSSC, Dec. 1993
Current Interpolation
Less accurate then voltage interpolation due to mismatch of current mirrors
Ref: M. Steyaert, R. Roovers, and J. Craninckx, "100 MHz 8 bit CMOS interpolating A/D converter," in Proceedings of IEEE Custom Integrated Circuits Conference, 1993, pp. 28.1.1-28.1.4.
Features of Interpolation
• Reduces the total number of preamps by the interpolation factor.
• Total number of latches stay the same.
• Reduces the total input capacitance (larger input BW).
• More area- and power-efficient than straight flash ADC.
• Voltage interpolation improves DNL.
• Subject to preamp nonlinearities.
• For interpolation factors >2, amplifier nonlinearity can limit the precision of zero crossings
– See e.g. Van de Plassche, p.121
Folding & Interpolating ADC: Example
[Murmann]
Folding & Interpolating ADCs (Recent Years):
Reference /Date
Technology (nm)
Resoluti on (Bit)
Speed (Gs/s)
Supply (V)
Power (mW)
ERBW
(GHz) ENOB (Bit) FOM (pJ/step)
[JSCC 2009]
Bob Verbrugen
90n 5 1.75 1 2.2mW 0.787 @DC:
4.7 0.16
[JSCC 2010]
Nakajima 90n 6 2.7 1 50mW N.A. 5.28 0.47
[JSCC 2009]
C.Taft 180n 10 1 1.8 1200mW N.A. 9.06 2.24
[ISSCC 2004]
C.Taft
180n 8 1.6 1.8 1200mW N.A. 7.26 4.89
References
Professor Boris Murmann Course slides 2012, Stanford University- EE315B course
Professor Y. Chiu course slides, Fall 2014.