JournalofPolicyModeling42(2020)1049–1063
ScienceDirect
Threshold effects of liquidity risk and credit risk on bank stability in the MENA region
Nesrine Djebali
∗, Khemais Zaghdoudi
LaboratoryofNaturalandCulturalPatrimonyValorization,FacultyofLaw,EconomicsandManagementofJendouba, UniversityofJendouba,Tunisia
Received24June2019;receivedinrevisedform25November2019;accepted5January2020 Availableonline9March2020
Abstract
Thispaperstudiestherelationshipsbetweenbothliquidityandcreditrisksonbankstabilityforapanel datasetof75conventionalbanksbelongingto11countriesoftheMENAregionobservedduringtheperiod 1999–2017.ByperformingaPanelSmoothThresholdRegression(PSTR)modeldevelopedbyGonzalez etal.(2005), estimationresultsshow thattherelationshipsbetweenbank stability-creditrisk andbank stability-liquidityriskarenon-linearandcharacterizedbythepresenceoftwooptimalthresholdswhichare equalto13.16%forcreditriskand19.03%forliquidityrisk.Contrarytotheirpositiveeffectsbelowthese optimalthresholds,creditriskandliquidityriskbecomedetrimentaltobankstabilityinhighregime.
Toensuretheirstability,banksareencouragedtorevisetheprimacygiventocreditactivityanddiversify theiractivitiestoimproveprofitability.Theyarealsorecommendedtostrengthentheirownfundsandopt forappropriaterestructuringtoeasetheirsmallsize.AsfortheStatesoftheselectedcountries,theyhaveto deeplyreformtheirfinancialsystemsanddevelopthelegalframeworkrelatingtonewtechniquesofexternal managementofbankingrisksincludingsecuritizationanddefeasance.Likewise,thesestatesarefortifiedto ensurepoliticalstability,whichisakeyfactorforbankingandfinancialstability.
©2020TheSocietyforPolicyModeling.PublishedbyElsevierInc.Allrightsreserved.
JELclassification: F3;G21;G28;O16;F36;O53
Keywords: Liquidityrisk;Creditrisk;Bankstability;PSTRmodel;MENAregion
∗Correspondingauthor.
E-mailaddresses:[email protected](N.Djebali),[email protected](K.Zaghdoudi).
https://doi.org/10.1016/j.jpolmod.2020.01.013
0161-8938/©2020TheSocietyforPolicyModeling.PublishedbyElsevierInc.Allrightsreserved.
1. Introduction
Bankstability isdifficult todefineandevenharder tomeasure.A bankingsystem canbe describedasunstableinthepresenceofexcessivevolatilityofassetsorcrises.Suchadefinition of banking stability is simpleto formulate, butdoes not capture the positive contributionto understandthestability of thebanking andfinancialsystem. Bankstabilityisacharacteristic offinancialstability.Ingeneral,abankisconsideredstableifitmeetstwobasicrequirements:
improvingeconomicperformanceandeliminatingimbalancescausedbyendogenousfactorsof unforeseenorunwantedeventsfromdifferentbankingrisks.
In most countries, especially developing ones, banks play a vital role in financing their economiesandpromotingtheireconomicgrowth.Hence,theneedtoensuretheirstability.Thisis why,inrecentyears,severalstudieshaveexaminedthefactorsthatensurethestabilityofbanksor thosewhodestabilizethem.Inparticular,creditriskandliquidityriskareretainedbythemajority ofauthorswhoconsideredthemasmajorrisks.
Thedebateontherelationshipbetweentheserisksandbankstabilityisnotconclusivesince theempiricalresultsfoundaredivergent.Thesefindingscanbedividedintothreetypes.Thefirst onesupportsthenegativeimpactofthesetworisksonthestabilityofbanks.Thesecondtype,on theotherhand,showsthepositiveeffectofbothrisksonthestabilityofbanks.Thethirdcurrent ofliteratureprovestheinsignificantimpactofliquidityandcreditrisksonbankstability.
Ontheonehand,thesestudieshavethemeritofadoptingdifferentempiricalapproaches,but ontheotherhand,theyassumealinearrelationshipbetweenrisksandbankingstability.This linearityhypothesis canlead toerroneousresults that canmislead decision-makers andbank managers,sincethesignofrisksonbankstabilitydoesnotchange;negativeorpositive.
Thispapertriestofillthisgapandcontributestotheexistingliteraturebystudyingthenon- linearrelationshipbetweenrisksandbankstabilitybyusingneweconometricapproachbasedon thePanelSmoothThresholdRegression(PSTR)modeldevelopedbyGonzalez,Terasvirta,and VanDijk(2005).
Unlikeotherworks,ourpaperseekstoshowthattherelationshipsbetweencreditandliquidity risksandbankstabilityarenon-linearandcharacterizedbythepresenceofthresholdeffects.Our paperhas theadvantagetoshow thatthe impactof bankingrisks onstabilityisnot thesame below andabove the thresholds.Asfar as weknow,thereare nopublished empiricalstudies whichapplythePSTRmodeltoinvestigatethenon-linearrelationshipbetweenrisksandbank stabilityforanimportantnumberofbanks.Thispaperisintendedtobeacontributionthatcan helpthebank’ssupervisorstomonitorandevaluatethestabilityofthebankingsystemandits determinants.Thispaperallowsustoidentifyanumberofdestabilizingfactorsthathavecreated instabilitythroughoutthesystem.
Todothis,weuseaneweconometricapproachbasedonthePSTRmodel,whichisthemost appropriateforendogenouslydeterminingtheoptimalthresholdbeyondwhichbankstabilityis affectedbyrisks.Weuseasampleof75conventionalbanksfrom11MENAcountriesobserved overtheperiod1999–2017.
Theremainderofthispaperisorganizedasfollows.Areviewofliteratureisgiveninsection2.
DataandPSTRmodelspecificationarepresentedinsection3.EmpiricalResultsandinterpretation aredevelopedinsection4,whilesection5concludes.
2. Literaturereview
IntheMENAcountries,themajorityofbankscontinuetodeveloptraditionalactivities(includ- ingtheprovisionofcreditandthecollectionofresourcesintheformofdeposits),despitereforms andtheexhaustionofmajorfactorsthathavesupportedtheseactivitiesforalongtime. These activitiescarryrisks,mainlycreditriskandliquidityrisk.
Theeffectsofcreditandliquidityrisksonthestabilityofbankshavebeenthesubjectofseveral academicworks(Acharya&Mora,2013;Adusei,2015;Amara&Mabrouki,2019;DeYoung&
Jang,2016;Ghenimi,Chaibi,&Omri,2017;Imbierowicz&Rauch,2014;Li&Zou,2014;Rajhi
&Hassairi,2013; Khemais,2019,etc.).Theirresults arenotconsensual. Thereisworks that haveshownthatthesetworiskshavedestabilizedthebanks.Ontheotherhand,asecondgroup ofauthorshighlightedthepositiveeffectofthesetworisksonthestabilityandsustainabilityof banks.Athirdgroupof studiesshowedtheneutral effectofcreditandliquidityrisksonbank stability,whichisfundamentallydependentonotherfactors.
Thenegativeeffectofcreditandliquidityrisksonbankstabilityhasbeenanalyzedinseveral studies.Ghenimietal.(2017)used49banksobservedovertheperiod2006–2013tostudythe effectsofcreditandliquidityrisksonbankstability.Thesebanksbelongtoeightcountriesinthe MENAregion:Bahrain,Jordan,Qatar,SaudiArabia,Turkey,UnitedArabEmirates,Kuwaitand Yemen.FollowingtheapproachproposedbyArellanoandStephen(1991),ArellanoandOlymia (1995)andBlundellandStephen(1998),theirresultsrevealedthattheinteractionbetweencredit andliquidityrisks(CR*LR)contributetobankinstability.
Adusei(2015)usedquarterlydatafrom2009to2013topickoutthemainfactorsdestabilizing theruralbankingsectorinGhana.Todothis,theauthorretainedthreemeasuresofbankstability whichareZ-score,risk-adjustedreturnonassets(RAROA)andrisk-adjustedequityonassets ratio(RAEA).Empiricalresultsindicatedthatcreditriskisharmfultothestabilityofbankswhen thelatterismeasuredbyRAEA.
ImbierowiczandRauch(2014)analyzedtherelationshipbetweenliquidityandcreditrisks andtheirjoint impactonbanks’probabilitiesofdefault forasampleof 4300UScommercial banks overthe period1998–2010.Their mainresults showedthat the tworisks influencethe probabilitiesofdefaultofbanksalthoughtheydonothaveareciprocalrelationship.Addedto that,theinfluenceoftheirinteractiondependsontheoveralllevelofbankrisksandcanworsens ormitigatestheriskofdefaultofbanks.
ForAcharyaandMora(2013),theroleofbanksasliquidityprovidersisastrongguarantor during the period of the 2008financial crisis. Their resultsproved that the banksthat failed duringtherecentfinancialcrisissufferedfromliquidityproblems.Thestudyshowsthatbanks thathavefailedattractdepositsbyofferinghighinterestrates.Indirectly,theresultsindicatethat thepresenceofbothliquidityandcreditriskscouldpushbankstodefault.
Inacomparativeanalysisduringtheperiod(2006–2009),RajhiandHassairi(2013)suggested thatcreditriskreducesthestabilityofbanksintheMENAregion.Usingameasureofdefault distance and Z-score, their results showed that credit risk and income diversityare the most commoncauseofinsolvencyforbanks.Creditriskmeasuredbytheratioofloanlossprovisions tonetinterestincome,decreasesZ-scoreinsmallbanksinMENAcountries.
Usingpaneldataanalysisfortheperiod2005–2015,Khemais(2019)examinedtheimpactof creditrisk,liquidityrisk,andoperationalriskonTunisianconventionalbankstabilityproxiedby bothZ-score(ROA)andZ-score(ROE).Empiricalresultsshowthatthecreditriskthreatensthe
stabilityofTunisianbankswhenthelatterismeasuredbyZ-score(ROA).Theinteractionofboth creditandliquidityrisksworsensalsotheirstability.
Otherauthorssupportthepositiveeffectofcreditandliquidityrisksonthestabilityofbanks, sinceprofitabilityandrisksaretightlylinked.Creditandliquidityrisksarenotdetrimentalfor bankstability.Contrarytothecreditrisk,Khemais(2019)revealsthattheliquidityriskimproves thestabilityofTunisianbanks.
Thefinancialcrisishasproventhatliquidityandcreditrisksaretwoimportantfactorsinthe bankingsectorthatcanaffectthesurvivalofbanks(DeYoung&Jang,2016).LiandZou(2014) studiedtheimpactof creditrisk measuredbythenon-performingloansratioonbankstability usingdatafrom47commercialbanksinEuropefrom2007to2012.Theirresultsshowedthat creditriskhasasignificanteffectonthe increaseinbankperformancemeasured byreturnon equity(ROE)andreturnonassets(ROA).
The thirdkindof worksretains theneutrality hypothesis.Creditandliquidityrisks donot affectsignificantlythestabilityofbanks.AmaraandMabrouki(2019)examinedtherelationship betweenliquidityandcreditriskandtheirimpactonthestabilityofTunisianbanksduringthe period2006–2015byusingtheZ-scorefunctionasanindicatorofstability.Theyfoundthatcredit riskandliquidityrisk donothaveaneconomicallysignificantreciprocalrelationshipandthat eachriskcategoryhasanon-significantimpactonbankstability.Inaddition,authorsreachedto theresultthattheinteractionbetweenthetworiskshasaninsignificanteffectonbankstability.
3. DataandPSTRmodelspecification
Themotivationofourpaperistoinvestigatetherelationshipsbetweenbothliquidityandcredit risksonbankstabilityfortheMENAregionwhichisaninterestingcasestudy.
IntheMENAregion,financialintermediationhasremaineddominatedbybankinginterme- diation.Banksarethemainfinancialintermediaries.Theycontinuetocollecttheirresourcesin theformofdepositthroughabranchnetwork,andgrantcredittotheirclients.Thesetraditional activities,notexclusiveofothers,carryrisks,whichcandestabilizebanks.
CountriesintheMENAregionhaveundergonewidespreadreformsinrecentdecades,affecting allsectorsofactivity.Thatiswhytheireconomieshavebecomehighlyopentotheoutsideand competitive.Inparticular,MENA’sbanksaremoreintegratedintotheglobalfinancialmarkets andexposedtotheshocksthataffectinternationalcapitalmarkets.
Furthermore,thebankingsectorintheMENAregionischaracterizedbythepresenceofIslamic banks.Infact,thepresenceoftheIslamicbankingsectorcanaffectthestabilityofconventional banks.Becauseoftheirstructure,Islamicbanksgenerallyhavehigherliquidityratioandlower creditriskthanconventionalbanks.
Finally,itisquitetruethatbanksoftheMENAcountrieshavebeenrecoveringfromtherecent financialcrisis,butrecentpoliticalturmoilandsuddenregimecandecreaseeconomicgrowthand destabilizebanks.
ThesemaincharacteristicspresentedaboveexplainthechoiceoftheMENAbankingsystem asaninterestingframeworkforanalyzingtherelationshipsbetweencreditrisk,liquidityriskand bankstabilityforapaneldatasetof75conventionalbanksbelongingto11countriesobserved duringtheperiod1999–2017.Table1displaysthenumberofconventionalbankspercountry.
Tohighlightthepossiblenon-linearrelationshipbetweencreditrisk,liquidityriskandbank stability,wereliedononeof theeconometrictechniquesusedtoestimatenon-linearrelations, namelythe Panel SmoothThresholdRegression (PSTR)model developedbyGonzalez etal.
Table1
Numberofconventionalbankspercountry.
Countries Numberofconventional
bankspercountry
Algeria 6
Bahrain 8
Egypt 8
Jordan 8
Kuwait 3
Lebanon 8
Morocco 4
Qatar 4
SaudiArabia 8
Tunisia 10
UnitedArabEmirates 8
Total 75
Source:Authors.
(2005),whoextendedHansen’sPTR (PanelThresholdRegression)model (1999).Theoretical formofthePSTRmodelispresentedasfollows:
yit=μi+β0xit+β1xitg(qit,γ,c)+εit (1) where(i)and(t)representrespectivelycross-sectionandtimedimensionsofthepanel.μiindicates thevectoroftheindividualfixedeffects.εitistheerrorterm.β0andβ1indicaterespectivelythe parametervectorsoflinearandnon-linear models.yit andxit representrespectivelydependent andindependentvariables.g(qit,γ,c)isthefunctionoftransitionwhichdependsonthetransition variableqit,thetransitionparameter(γ)andtheparameterofthreshold(c).Thistransitionfunction ofthePSTRmodeliscontinuousandnormalizedtakingvaluesbetween0and1.Itallowssystem totransitfromoneregimetoanother.Inorderforthisfunctionoftransitiontobeoperational, GrangerandTeräsvirta(1993),Teräsvirta(1994),Eliev andTimo(1996),andGonzalez etal.
(2005)proposedthefollowinglogisticformoforderm:
g(qit,γ,c)=
⎛
⎝1+exp
⎛
⎝−γ m j=1
(qit−cj)
⎞
⎠
⎞
⎠
−1
(2)
With c=(c1,...,cj,...,cm) isavector ofthresholdparameterswithc1<···<cm andγ>0.
Whenγ→0,thetransitionfunctionapproachesaconstantandthePSTRmodelbecomeshomoge- nouslinearpanelwithfixedeffects.However,whenγ→+∞,thefunctionoftransitiong(qit,γ,c) tendstoanindicatorfunctiong(qit,cj)whichtakes1ifqit>cj.IbarraandTrupkin(2011)showed thatifγisveryhigh,thePSTRmodelcanbeconfusedwithatwo-regimemodel(oronethreshold).
Giventhisfunctionoftransitiong(qit,γ,c),Eq.(1)canbewrittenasfollows:
yit=μi+β0xit+ m j=1
βjxitg(qjij,γj,cj)+εit (3)
Inthispaper,weusedanunbalancedannualdataof604observationsfor75banksbelonging to11countriesobservedduringtheperiod1999–2017toinvestigatetheeffectsofcreditriskand liquidityriskonbankstabilitybyusingthePSTRmodelwhichcanbewrittenasfollows:
BSTABit=μi+β0xit+β1xitg(qit,γ,c)+εit (4) whereireferstobanks(i=1,...,75)andtrepresentstimeperiodinyears(t=1999,...,2017).
μi,εit,β0andβ1keepthesamedefinitionsmentionedabove.BSTABisbankstability,which representsthedependentvariable.g(qit,γ,c)representsthefunctionoftransition.Inourmodel, wetestthethresholdeffectoftwovariableswhicharecreditrisk(CR)andliquidityrisk(LR).
Consequently,wehavetwotransitionfunctionsg(CRit,γ,c)andg(LRit,γ,c).
Eq.(4)canbedividedintotwoequations:
BSTABit=μi+β0xit+β1xitg(CRit,γ,c)+εit (4-1) BSTABit=μi+β0xit+β1xitg(LRit,γ,c)+εit (4-2) InEq.(4-1),creditrisk(CR)isthevariableoftransition,whileinEq.(4-2)liquidityrisk(LR) isthevariableoftransition.
Inbothequation,wekeptthesameexplanatoryvariables(whicharethesize(SIZE),thecapital adequacyratio(CAP),theperformanceofbank(PERF)andtheLernerindex(LERNER))and thesameexogenousvariables(whichareinflationrate(INF)andpoliticalstabilityandabsence ofviolenceandterrorism(POLIS)).
Replacingthevectorofindependentvariablesxit withitscomponents,we gettheempirical modeltobeestimatedwhichispresentedasfollows:
BSTABit =μi+β00CRit+β01LRit+β02SIZEit+β03CAPit+β04PERFit +β05LERNERit+β06INFit+β07POLISit
+[β10CRit+β11LRit+β21SIZEit+β13CAPit+β14PERFit+β15LERNERit
+β16INFit+β71POLISit]g(CRit,γ,c)+εit
(5)
BSTABit =μi+β00LRit+β01CRit+β02SIZEit+β03CAPit+β04PERFit
+β05LERNERit+β06INFit+β07POLISit
+[β10LRit+β11CRit+β21SIZEit+β13CAPit+β14PERFit+β15LERNERit +β16INFit+β71POLISit]g(LRit,γ,c)+εit
(6)
Table2displaysdefinitions,measuresandsourcesofallvariables.
The dataset coversannual data relative toasample of 75banks for 11 countries,namely Algeria,Bahrain,Egypt,Jordan,Kuwait,Lebanon,Morocco,Qatar,SaudiArabia,Tunisiaand UnitedArabEmiratesovertheperiod1999–2017.Accountingandfinancialdatawerecollected directlyfromBankscopedatabaseandbank’sfinancialstatements,whiledataonmacroeconomic environmentwasextractedfromWorldBankDevelopmentIndicators(WDI)onlinedatabase.
4. Empiricalresultsandinterpretation
WefirstdisplaythedescriptivestatisticsofthevariablesusedinthePSTRmodel.Inthesecond stage,wepresentthecorrelationmatrixbetweenvariables.Wemoveinthethirdstagetolinearity
Table2
Definitions,measuresandsourcesofvariables.
Variables Definitions Measures Sources
BSTAB Bankstability Z-Score(roe)=
[E(ROE)+CAP]/σ(ROE)
LaevenandLevine(2008), Demirgüc¸-KuntandHuizinga (2010),Hakimi,Zaghdoudi, Zaghdoudi,andDjebali(2017), andAmaraandMabrouki(2019).
CR Creditrisk Non-performingloans/total
loans
CaiandZhang(2017),Mpofu andNikolaidou(2018),Natsir etal.(2019),andButhiena (2019).
LR Liquidityrisk Liquidassets/totalassets Ghenimietal.(2017)andAmara andMabrouki(2019).
SIZE Banksize ln(totalassets) Anginer,Demirguc-kunt,and
Zhu(2014)andHakimietal.
(2017).
CAP Capitaladequacyratio Totalequity/totalassets Pathan(2009),Hakimietal.
(2017).
PERF Bankperformance ROA=netincome/totalassets RashidandJabeen(2016), HakimiandZaghdoudi(2017), Ghenimietal.(2017),andAmara andMabrouki(2019).
LERNER INDEX
Marketpowermeasure Ameasureofmarketpower inthebankingmarketa
Natsiretal.(2019).
INFL Inflationrate Consumerpriceindex ImbierowiczandRauch(2014), Adusei(2015),andKharabsheh (2019).
POLIS Politicalstability Variablethattakesvalues between−2.5and+2.5
Hakimietal.(2017).
Source:Authorsfromliteraturereview.
aItisdefinedasthedifferencebetweenoutputpricesandmarginalcosts(relativetoprices).Pricesarecalculatedas totalbankrevenueoverassets,whereasmarginalcostsareobtainedfromanestimatedtranslogcostfunctionwithrespect tooutput.https://datacatalog.worldbank.org/lerner-index.
testbetweencreditrisk,liquidityandbankstability.Oncethenon-linearityisverified,wefind outinthefourthstepthenumberofregimesinthePSTRmodel.Infine,weestimatethePSTR modelanddiscusstheresults.
4.1. Descriptivestatistics
Descriptivestatisticsarepresentedtorevealthemaincharacteristicsofdatausedinthisstudy.
Foreachvariable,wedisplaymean,standarddeviation,minimumandmaximumvalues.Table3 summarizesvariabledescriptivestatisticsofthePSTRmodel.
Theaveragevalueofbankstability(bstab)measuredbyZ-score(ROE)isequalto4.835with amaximumvalueof24.721andaminimumvalueof−2.327.Theaverageofcreditrisk(CR)of conventionalbanksis0.087withamaximumvalueof1.993.Theaveragevalueofliquidityrisk (LR)is0.262withminimumandmaximumvaluesof0.017and2.795respectively.
Sizeofbankswhichisequalonaverageto8.703issmall.Ithasamaximumvalueof12.314 andaminimumvalueof4.002.ConventionalbanksintheMENAregionareundercapitalized, withequityaccountingforanaverageof11.6%oftheir assets.Inaddition,thebanksperform
Table3
VariableDescriptiveStatistics.
Variable Mean Std.Dev. Min Max
BSTAB 4.835 3.949 −2.327 24.721
CR 0.087 0.130 0.000 1.993
LR 0.262 0.159 0.017 2.795
Size 8.703 1.412 4.002 12.314
CAP 0.116 0.069 −0.314 0.699
PERF 0.016 0.032 −0.216 1.014
LERNER 0.342 0.212 −0.800 0.640
INF 0.037 0.040 −0.049 0.295
POLIS −0.358 0.797 −2.117 1.224
Table4
CorrelationMatrix.
BSTAB CR LR SIZE CAP PERF LERNER INF POLIS
BSTAB 1.000
CR −0.088 1.000
LR 0.014 0.225 1.000
SIZE −0.061 −0.396 −0.170 1.000
CAP 0.422 −0.197 0.045 −0.160 1.000
PERF 0.044 −0.251 0.042 0.038 0.118 1.000
LERNER −0.061 −0.145 −0.131 0.121 0.150 0.083 1.000
INF −0.152 −0.059 0.066 0.055 −0.139 0.057 −0.049 1.000
POLIS 0.099 −0.045 −0.071 −0.027 0.248 0.055 0.405 −0.223 1.000
poorly,sincetheeconomicprofitabilityisonaverageverylowanditisequalto1.6%overthe entireperiodselected.The averageLernerIndexisequal to34.2%, meaningthatthe banking market isnot stronglydominated bybanks.In themajorityof MENA countries,the banking markets,whichplayaleadingroleinfinancingtheireconomies,havestillbeencontrolledbythe state,despiteexcessivewavesoffinancialliberalizationmadebythesecountries.
Asfortheinflationrate,itwasequalonaverageto3.7%withaminimumvalueof−4.9%and amaximumvalueof29.5%.Theaveragevalueofpoliticalstability(Polis)isequalto−0.358, whichisnegativeshowingthedeteriorationofinstitutionalquality,whichcandestabilizebanking sector.
4.2. Correlationmatrix
The correlation matrix givesinformation on the level and the nature of linkages between variablesbydeterminingthecoefficientsoftheirlinearcorrelations.Table4belowpresentsthe correlationmatrixofallvariablesusedinthisstudy.
Creditrisk(CR),size(SIZE),Lernerindex(LERNER)andinflation(INF)arenegativelyasso- ciatedwithbankstability.Whileliquidityrisk(LR),capitaladequacyratio(CAP),performance andpoliticalstability(POLIS)arepositivelylinkedtobankstability.ResultsdisplayedinTable4 showaweakcorrelationbetweenallvariables,rejectinghencetheexistenceofmulti-colinearity problem.
4.3. Linearitytest
To showthe non-linearityrelationshipbetweenCredit Risk(CR),LiquidityRisk (LR)and BankStability(BSTAB),weapplylinearitytestbasedontwohypothesespresentedasfollows:
NullhypothesisisH0:β1=0 againstAlternativehypothesisH1:β1=/ 0. However,thistest of linearityisnotstandard,sinceunderthenullhypothesis,thePSTRmodelcontainsuniden- tifiednuisanceparameters(Hansen,1999).To solvethisproblem,Luukkonen,Saikkonen,and Teräsvirta (1988)proposed toreplace the transition function withTaylor’slimited first-order developmentaroundγ=0.NullhypothesisbecomesH0:γ=0.Eqs.(4-1)and(4-2)canbewritten asfollows:
BSTABit=μi+β∗0xit+β∗1xitg(CRit,γ,c)+ε∗it
BSTABit=μi+β∗0xit+β∗1xitg(LRit,γ,c)+ε∗it
Afterreplacingthevectorxitwithitscomponents,wegetthefollowingequation:
BSTABit=μi+β∗00CRit+β∗10LRit+β∗20SIZEit+β∗30CAPit+β∗40PERFit +β∗50LERNERit+β∗60INFit+β∗70POLISit
+[β∗01CRit+β∗11LRit+β∗21SIZEit+β∗31CAPit+β∗41PERFit
+β∗51LERNERit+β∗61INFit+β∗71POLISit]g(CRit,γ,c)+ε∗it
BSTABit=μi+β∗00LRit+β∗10CRit+β∗20SIZEit+β∗30CAPit+β∗40PERFit +β∗50LERNERit+β∗60INFit+β∗70POLISit
+[β∗01LRit+β∗11CRit+β∗21SIZEit+β∗31CAPit+β∗41PERFit
+β∗51LERNERit+β∗61INFit+β∗71POLISit]g(LRit,γ,c)+ε∗it
Wheretheparametersβ∗01,β∗11,...,β∗71aremultiplesofγandε∗it =εit+residualofTaylor’s limitedfirst-orderdevelopment.ThenullhypothesisoflinearitytestbecomesH0:β0∗1=···= β∗71=0.Totestthisnullhypothesis,weusethreetestswhichareWaldtest(LMW),Fishertest (LMF)andlikelihoodratiotest(LRT).
TheWaldtest(LMW)iswrittenasfollows:LMw= NT(SSRSSR0−0SSR1)WhereSSR0isthepanel sumofsquaredresidualsunderH0(linearpanelmodelwithindividualeffects)andSSR1isthe panel sum of squared residuals under H1 (PSTRmodel withm regimes).Nand Trepresent respectivelycross-sectionandtime.
TheFishertest(LMF)isdefinedas:LMF = NTSSR(SSR0/TN0−SSR−N−1)/mkmk withkandmarerespectively thenumbersofexplanatoryvariablesandregimes.
Thelikelihoodratiotest(LRT)isexpressedasfollows:LRT=−2[log(SSR1)−log(SSR0)].
Undernullhypothesis,WaldandlikelihoodstatisticsfollowChi(2)distributionwithkdegrees offreedom(χ2(k))whileFisherStatisticpursuesaFisherdistribution(F(mk,NT−N−mk)).
Foralogistictransitionfunctionoforderone(m=1),resultsofthesethreetestsarepresented inTable5.
Table5showsthatthenullhypothesis(linearmodel)isrejectedat1%levelofsignificancefor thethreetests.Consequently,therelationshipsbetween:
Table5 Linearitytests.
Test BSTAB CR BSTAB LR
Statistics P-value Statistics P-value
Waldtest(LMW) 63.817 0.000 45.639 0.000
Fishertest(LMF) 10.298 0.000 7.125 0.000
LikelihoodRatioTest(LRT) 67.447 0.000 47.456 0.000
Table6
Testsforthenumberofregimes.
Tests BSTAB CR BSTAB LR
Statistics P-value Statistics P-value
Fishertest(LMF) 153.673 0.000 135.523 0.000
LikelihoodRatioTest(LRT) 10.379 0.000 8.799 0.000
i) BankStability(BSTAB)andCreditRisk(CR) ii) BankStability(BSTAB)andLiquidityRisk(LR) arenon-linear.
4.4. Determinationofthenumberofregimes
Afterrejectinglinearmodelandverifyingnon-linearity,PSTRmodelhashenceatleastone threshold. To findout thenumberof thresholds (or regimes)inthe PSTRmodel, we testthe followinghypothesisH2:PSTRmodelhasatleasttwothresholds(r=2).Alternativehypothesis is the followingHa:PSTR model hasone threshold(r=1). To check hypothesisH2,we use twotestswhichareFishertest(LMF)andlikelihood ratiotest(LRT).IfFisherandlikelihood statisticsaresignificant,werejectthehypothesisH2andweconcludethatthePSTRmodelhas onethresholdandhasthentworegimes.ResultsofthesetwotestsarereportedinTable6.
ResultsfromTable6indicatethathypothesisH2isrejectedat1%levelofsignificanceforthe twotests.Forthetwotransitionvariablesusedinthisstudy(CreditriskCRandLiquidityrisk LR),thetwoPSTRmodelshaveonlyonethresholdandtheyarethereforeatwo-regimemodels.
4.5. PSTRmodelestimation
WeusehencePSTRmodels withtworegimes toestimatethe relationshipsbetweenBank Stability(BSTAB)andCreditRisk(CR),andBankStability(BSTAB)andLiquidityRisk(LR)for 75banksbyapplyingnon-linearleastsquarestechnique.ResultsofthePSTRmodelsestimations arepresentedinTable7.
EstimationresultsofPSTRmodelreportedinTable7showthatboththerelationshipbetween bankstability(BSTAB)andcreditrisk(CR),andbankstability(BSTAB)andliquidityrisk(LR) are characterizedby the presence of a thresholdeffects. The optimalthresholds are equal to 13.16%forcreditriskand19.03%forliquidityrisk.
EstimationresultsofEq.(5)showthatbelowthethresholdof13.16%,creditriskandliquidity riskexertapositiveandsignificanteffectonbankstability.Thispositiveeffectcanbeexplained
Table7
PSTRmodelsestimations.
Estimationresultsofequation(5) Estimationresultsofequation(6)
Coeff. T-Stat Coeff. T-Stat
CR 915.482*** 2.910 0.182 0.572
LR 2216.502** 2.426 1.348*** 7.082
SIZE 233.439** 2.019 0.152*** 3.687
CAP 2885.709*** 4.183 18.367*** 40.332
PERF 10440.466** 2.352 −2.746* −1.801
LERNER 751.004 0.749 −0.047 −0.440
INF 0.396 0.719 −0.126 −0.238
POLIS 0.202*** 3.265 0.094 1.560
CR*g(qit,γ,c) −1826.540*** −2.903 1.010*** 3.504
LR*g(qit,γ,c) −4456.932** −2.425 −1.173*** −2.786
SIZE*g(qit,γ,c) −469.228** −2.017 0.029 1.348
CAP*g(qit,γ,c) −5759.691*** −4.151 5.206*** 10.575
PERF*g(qit,γ,c) −21,013.899** −2.353 −7.900*** −3.760
LERNER*g(qit,γ,c) −1510.857 −0.749 −0.592 −1.442
γ 0.200 5.000
C 0.1316 0.1903
AIC −1.815 −1.892
BIC −1.698 −1.776
Obs 604 604
Note:***,**and*indicatelevelofsignificancerespectivelyat1%,5%and10%.
bythefactthatbanksintheMENAcountriescontinuetogiveprimacytocreditactivity,despite theexhaustionofthemainfactors,whichhavesupportedthebankintermediationforalongtime.
Also,theressourcesofthesebanksarecollectedfromtheircustomsinformofdepositswhichare lessexpensive.Howevre,beyondtheoptimalthresholdsof13.16%,bothcreditandliquidityrisks becomedetrimentaltothestabilityofbanks.ThisresultisinlinewiththoseofAdusei(2015), Khemais(2019),Ghenimietal.(2017),etc.Whennon-performingloansexceed13.16%oftotal credits,theriskofnon-recoveryincreasesandbanksfinditdifficulttorecovertheircredits,which shouldhavebeenallocatedtomoreproductiveactivities.Banks’rentabilitydecreasesaffecting hencetheirstability.Abovetheoptimalthresholdofcreditriskof13.16%,liquidityriskhasa negativeandsignificanteffectatthe5%levelonbankstability.Liquidityriskisaddedtocredit risktodestabilizebanksinselectedcountries.Excessivebankliquiditycouldpushbankstogrant alotofcredits(quantityeffect)theirprobabilityofreturnislow.Thisrisktakingcouldadversely affecttheirprofitabilityandsolvencyandthreatentheirlongevity.
EstimationfindingsofEq.(6)revealthatbelowthethresholdof19.03%,contrarytocredit risk whichhasapositivebutnon significant impact,liquidityrisk acts positivelyat 1%level ofsignificanceonbankstabilityintheMENAregion.Abovetheoptimalthresholdof19.03%, creditriskbecomessignificantandcontinuestoaffectpositivelybankstability.Overtheselected period 1999–2017,bankliquidity,whichequalsonaverageto26.2%oftotalassetsof banks, thatisabovethethresholdof19.03%,favorsthegrantingofloans,whichgeneratesintereststhat reinforcestheir netincomeandensurestheirstability.Asforthe liquidityrisk, econometrical resultsrevealthatitdestabilizesbanksoftheMENAregion.Thisnegativeeffectisexplainedby theshortfallforbanksthatholdasignificantportionoftheirassetsinliquidform.Beyondthis threshold,liquidityisexpensiveforbanks,whicharedeprivedofinvestmentopportunities.
Unliketheotherworks,ourpaperhasthemeritofshowingthattheeffectsoftheothervariables onbankstabilitydependontheoptimalthresholdsofthecreditandliquidityrisks.Infact,when thecreditriskandtheliquidityriskexceedthethresholdsof13.16%and19.03%respectively, theperformancedestabilizesbanks.Overtheselectedperiod,thereturnonassetsisequalonan averageto1.6%,whichislow.Theprofitsgeneratedbybankscomemainlyfromtheirbalance sheetintermediation (granting of loans, collection of deposits,provision andmanagement of meansof payment).Asaresult,MENA banksare encouragedtodevelopnewbusinessesand providenewpersonalizedandonlineservicestotheircustomersaroundtheworld.
The effect of the capital adequacy ratio (cap)on bank stability depends on the transition variable.Ontheoneside,beyondthecreditriskthresholdof13.16%,thisvariableisdetrimental tothestabilityofbanks.Thisnegativeanddestabilizingeffectcanbeexplainedbytheunder- capitalizationoftheselectedbanks,sinceequitysrepresentonaverage11.6%ofthetotalassets overtheselectedperiod1999–2017.Thisunder-capitalizationaddstotheirlowprofitabilityto destabilizethebankingsectorofMENAcountries.
On the otherside, above the liquidityrisk threshold of 19.03%,thisvariable (cap)favors the stabilityof banks.Bankliquidityplaysthesamerole of reassuringbanks’customersand shareholders.Eveniftheequityisnotenough,bankliquiditycomesinsupplementandindicates thegoodfinancialhealthofbanks.
Asfortheeffectofthesizevariable,ithasanegativeandsignificanteffectonbankstability onlybeyondthecreditriskthresholdof13.16%.Thisdamagingeffectisduetothesmallsizeofthe majorityofbanksintheMENAregionwhichpreventsthemfromrecoveringnonperformingloans.
Banksarefindingitdifficulttousenewcreditriskmanagementtechniquessuchassecuritization anddefeasance.Inthevariouscapitalmarkets,thissmallsizeisoverwhelmingbanksandlimiting theirmargin ofnegotiation.Thisunderminestheirstability.Forthisreason,MENA banksare requiredtomakeadequatebankingrestructuringstobecomeregionalchampions,abletonotonly strengthentheirmarketshare,butalsotoconquernewforeignmarkets.
Regardingtheexogenousvariables(INFandPOLIS),empiricalresultsshowthatonlypolitical stabilityisimportantforbankingstability.Asaresult,MENAcountriesareencouragedtoensure politicalstabilityandcombatviolenceandterrorism.
5. Conclusionandrecommendations
Manyresearchesexaminedtherelationshipbetweencreditrisk,liquidityriskandbankstability.
Theyassumedalinearrelationshipbetweenbankrisksandstability.Thepurposeofthispaperis threefold:
i) showingthenon-linearrelationshipbetweencreditrisk,liquidityriskandbankstability.
ii) determiningtheoptimalcreditriskandliquidityriskthresholds.
iii) studyingtheimpactofthisthresholdeffectonthestabilityofbanks.
Toachievethisgoal,weselectedasampleof75conventionalbanksfrom11MENAcountries overtheperiod1999–2017.WeperformedthePanelSmoothThresholdRegression(PSTR)model developedbyGonzalezetal.(2005).
Differentfromotherstudies,ourpaperhastheadvantageofendogenouslydeterminingtwo thresholdsabovewhichbankstabilityisaffected.Indeed,ourresultsshowhencethattherela- tionshipsbetweenbothbankstability-creditriskandbankstability-liquidityriskarenon-linear
andcharacterizedbythepresenceoftwooptimalthresholdswhichareequalto13.16%forcredit riskand19.03%forliquidityrisk.
Contrarytotheirpositiveeffectsbelowthethresholdof13.16%,creditriskandliquidityrisk becomedetrimentaltobankstabilityinhighregime.Forcreditrisk,thisnegativeeffectcanbe explainedbythedifficultiesoreventhe inabilityof bankstoreturnthe grantedcredits,which arecolossalandwhichshouldhavebeenallocatedtomoreprofitableactivitiesthatcanensure bankstability.BanksintheMENAregionarestillslowtoapprehendandfunctionalizefinancial innovations.Newbankingriskmanagementtechniques(suchassecuritizationanddefeasance)are notdevelopedbybanks,whichstillrelyonbankingpersonnelwhodonotknowhowmarketswork.
Asaresult,theactivitiesofbanksintheMENAregionremainedconfinedtotraditionalactivities.
Concerningliquidityrisk,itsnegativeeffectcanbeexplainedbythemultiformcompetitionand thesuperfluousbankliquiditywhichcanpushbankstotakerisksandgrantmorecreditstotheir customerswithouttakingintoaccounttheirsolvability.Thisrisktakingincreasesnonperforming loans,decreasestheirprofitabilityandthreatenstheirstability.
EstimationfindingsofEq.(6)revealthatbelowthethresholdof19.03%,contrarytocredit riskwhichhasapositivebutnonsignificantimpact,liquidityriskactspositivelyat1%levelof significanceonbankstabilityintheMENAregion.Abovetheoptimalthresholdof19.03%,credit riskbecomessignificantandcontinuestoaffectpositivelybankstability.Overtheselectedperiod 1999–2017,bankliquidity,whichisequalonaverageto26.2%oftotalassetsof banks,which issuperiorthanthethresholdof19.03%,favorsthegrantingof loans.Thisgeneratesinterests thatreinforcetheirnetincomeandensuretheirstability.Asfortheliquidityrisk,econometrical resultsrevealthatitdestabilizesbanksoftheMENAregion.Thisnegativeeffectisexplainedby theshortfallforbanksthatholdasignificantportionoftheirassetsinliquidform.Beyondthis threshold,liquidityisexpensiveforbanks,whicharedeprivedofinvestmentopportunities.
Fortheotherexplanatoryvariables,resultsreportedinTable7showthatabovethetwooptimal thresholdsof13.16%and19.03%,theprofitabilityofbanks,whichisveryweak,threatenstheir stability.Banksarecalledtorevisetheprimacygiventocreditactivityandfocusonnewactivities andservices.Statesinselectedcountriesareencouragedtofundamentallyreformtheirfinancial systemsanddevelopthelegalframeworkfornewexternalriskmanagementtechniques,including securitizationanddefeasance.
The effectof the capital adequacy ratio (cap) on bank stability depends on the transition variable.Ontheonehand,beyondthecreditriskthresholdof13.16%,thisvariableisdetrimental tothestabilityofbanks.Thisnegativeanddestabilizingeffectcanbeexplainedbythe under- capitalizationoftheselectedbanks,sinceequitiesrepresentonaverage11.6%ofthetotalassets overtheselectedperiod1999–2017.Thisunder-capitalizationaddstotheirlowprofitabilityto destabilizethebankingsectorofMENAcountries.
On the otherhand,abovethe liquidityrisk thresholdof19.03%, thisvariable(cap)favors the stability of banks. Bankingliquidity playsthe same role of reassuring banks’ customers andshareholders.Eveniftheequityisnotenough,thebankliquiditycomesinsupplementand indicatesthegoodfinancialhealthofthebanks.
Asfortheeffectofthesizevariable,ithasanegativeandsignificanteffectonbankstability onlybeyondthecreditriskthresholdof13.16%.Thisdamagingeffectisduetothesmallsizeof themajorityofbanksintheMENAregionwhichpreventsthemfromrecoveringnonperforming loans.Banksfinddifficultsinusingnewcreditriskmanagementtechniques.Inthevariouscap- italmarkets,thissmallsizeisoverwhelmingbanksandlimitingtheirnegotiationmargin.This underminestheirstability.Forthisreason,MENAbanksarerequiredtomakeadequatebanking
restructuringstocompetewithgiantforeignbanks,whichcansetupintheregionundersigned agreements.
Asfor theexogenousvariables, empiricalresultsshowthatonlypoliticalstability(POLIS) impactspositivelyandsignificantlybankstabilityoftheMENAregion,showingtheimportance ofpoliticalstabilityforbankandfinancialstability.ThatiswhyMENAcountriesareencouraged toguaranteepoliticalstabilityandcombatviolenceandterrorism.
References
Acharya,V.,&Mora,N.(2013).Acrisisofbanksasliquidityproviders.TheJournaloftheAmericanFinanceAssociation, Adusei,M.(2015).Theimpactofbanksizeandfundingriskonbankstability.CogentEconomics&Finance,3,1–19.
http://dx.doi.org/10.1080/23322039.2015.1111489
Amara,T.,&Mabrouki,T.(2019).Impactofliquidityandcreditrisksonthebankstability.MPRAPaperNo.95453, posted7August2019.
Anginer,D.,Demirguc-Kunt,&Zhu,M.(2014).Howdoescompetitionaffectbanksystemicrisk?JournalofFinancial Intermediation,23(1),1–26.http://dx.doi.org/10.1016/j.jfi.2013.11.001
Arellano,M.,&Olymia,B.(1995).Anotherlookattheinstrumentalvariableestimationoferror-componentsmodels.
JournalofEconometrics,68(1),29–51.
Arellano,M.,&Stephen,B.(1991).Sometestsofspecificationforpaneldata:MonteCarloevidenceandanapplication toemploymentequations.ReviewofEconomicStudies,58(2),277–297.
Blundell,R.,&Stephen,B.(1998).Initialconditionsandmomentrestrictionsindynamicpaneldatamodels.Journalof Econometrics,87(1),115–143.
Buthiena,K.(2019).Determinantsofbankcreditrisk:EmpiricalevidencefromJordaniancommercialbanks.Academy ofAccountingandFinancialStudiesJournal,23(3).
Cai,R.,&Zhang,M.(2017).Howdoescreditriskinfluenceliquidityrisk?EvidencefromUkrainianbanks.Visnykofthe NationalBankofUkraine,(241),21–33.
Demirgüc¸-Kunt,A.,&Huizinga,H.(2010).Bankactivityandfundingstrategies:Theimpactonriskandreturns.Journal ofFinancialEconomics,98(3),626–650.http://dx.doi.org/10.1016/j.jfineco.2010.06.004
DeYoung,R.,&Jang,K.Y.(2016).Dobanksactivelymanagetheirliquidity?JournalofBanking&Finance,66(C), 143–161.
Eliev,J.,&Timo,T.(1996).Testingparameterconstancyandsuperexogeneityineconometricequations.OxfordBulletin ofEconomicsandStatistics,58(4),735–763.
Ghenimi,A.,Chaibi,H.,&Omri,M.A.B.(2017).Theeffectsofliquidityriskandcreditriskonbankstability:Evidence fromtheMENAregion.BorsaIstanbulReview,17(4),238–248.
Gonzalez,A.,Terasvirta,T.,&VanDijk,D.(2005).Panelsmoothtransitionregressionmodels.SSE/EFIworkingpaper seriesineconomicsandfinanceno.604.
Granger,J.,&Teräsvirta,T.(1993).Modellingnon-lineareconomicrelationships.OUPCataloguefromOxfordUniversity Press.
Hakimi,A.,&Zaghdoudi,K.(2017).Liquidityriskandbankperformance:AnempiricaltestforTunisianBanks.Business EconomicResearch,7(1),46–57.
Hakimi,A.,Zaghdoudi,K.,Zaghdoudi,T.,&Djebali,N.(2017).WhatthreatensTunisianbankingstability?Bayesian modelversuspaneldataanalysis.InternationalJournalofBusinessandFinanceResearch,11(2),21–37.
Hansen,B.E.(1999).Thresholdeffectsinnon-dynamicpanels:Estimation,testingandinference.JournalofEconometrics, 93(2),345–368.
Ibarra,R.,&Trupkin,D.(2011).Therelationshipbetweeninflationandgrowth:Apanelsmoothtransitionregression approachfordevelopedanddevelopingcountries,no1107,DocumentosdeTrabajo/WorkingPapersfromFacultad deCienciasEmpresarialesyEconomia.UniversidaddeMontevideo.
Imbierowicz,&Rauch.(2014).Therelationshipbetweenliquidityriskandcreditriskinbanks.JournalofBanking&
Finance,40(C),242–256.http://dx.doi.org/10.1016/j.jbankfin.2013.11.030
Kharabsheh,B.(2019).Determinantsofbankcreditrisk:EmpiricalevidencefromJordaniancommercialbanks.Academy ofAccountingandFinancialStudiesJournal(PrintISSN:1096-3685;OnlineISSN:1528-2635).
Khemais,Z.(2019).TheeffectsofrisksonthestabilityofTunisianconventionalbanks.AsianEconomicandFinancial Review,9(3),389–401.