• Tidak ada hasil yang ditemukan

Nesrine Djebali , Khemais Zaghdoudi stability in the MENA region Threshold effects of liquidity risk and credit risk onbank ScienceDirect

N/A
N/A
Protected

Academic year: 2024

Membagikan "Nesrine Djebali , Khemais Zaghdoudi stability in the MENA region Threshold effects of liquidity risk and credit risk onbank ScienceDirect"

Copied!
15
0
0

Teks penuh

(1)

JournalofPolicyModeling42(2020)1049–1063

ScienceDirect

Threshold effects of liquidity risk and credit risk on bank stability in the MENA region

Nesrine Djebali

, Khemais Zaghdoudi

LaboratoryofNaturalandCulturalPatrimonyValorization,FacultyofLaw,EconomicsandManagementofJendouba, UniversityofJendouba,Tunisia

Received24June2019;receivedinrevisedform25November2019;accepted5January2020 Availableonline9March2020

Abstract

Thispaperstudiestherelationshipsbetweenbothliquidityandcreditrisksonbankstabilityforapanel datasetof75conventionalbanksbelongingto11countriesoftheMENAregionobservedduringtheperiod 1999–2017.ByperformingaPanelSmoothThresholdRegression(PSTR)modeldevelopedbyGonzalez etal.(2005), estimationresultsshow thattherelationshipsbetweenbank stability-creditrisk andbank stability-liquidityriskarenon-linearandcharacterizedbythepresenceoftwooptimalthresholdswhichare equalto13.16%forcreditriskand19.03%forliquidityrisk.Contrarytotheirpositiveeffectsbelowthese optimalthresholds,creditriskandliquidityriskbecomedetrimentaltobankstabilityinhighregime.

Toensuretheirstability,banksareencouragedtorevisetheprimacygiventocreditactivityanddiversify theiractivitiestoimproveprofitability.Theyarealsorecommendedtostrengthentheirownfundsandopt forappropriaterestructuringtoeasetheirsmallsize.AsfortheStatesoftheselectedcountries,theyhaveto deeplyreformtheirfinancialsystemsanddevelopthelegalframeworkrelatingtonewtechniquesofexternal managementofbankingrisksincludingsecuritizationanddefeasance.Likewise,thesestatesarefortifiedto ensurepoliticalstability,whichisakeyfactorforbankingandfinancialstability.

©2020TheSocietyforPolicyModeling.PublishedbyElsevierInc.Allrightsreserved.

JELclassification: F3;G21;G28;O16;F36;O53

Keywords: Liquidityrisk;Creditrisk;Bankstability;PSTRmodel;MENAregion

Correspondingauthor.

E-mailaddresses:[email protected](N.Djebali),[email protected](K.Zaghdoudi).

https://doi.org/10.1016/j.jpolmod.2020.01.013

0161-8938/©2020TheSocietyforPolicyModeling.PublishedbyElsevierInc.Allrightsreserved.

(2)

1. Introduction

Bankstability isdifficult todefineandevenharder tomeasure.A bankingsystem canbe describedasunstableinthepresenceofexcessivevolatilityofassetsorcrises.Suchadefinition of banking stability is simpleto formulate, butdoes not capture the positive contributionto understandthestability of thebanking andfinancialsystem. Bankstabilityisacharacteristic offinancialstability.Ingeneral,abankisconsideredstableifitmeetstwobasicrequirements:

improvingeconomicperformanceandeliminatingimbalancescausedbyendogenousfactorsof unforeseenorunwantedeventsfromdifferentbankingrisks.

In most countries, especially developing ones, banks play a vital role in financing their economiesandpromotingtheireconomicgrowth.Hence,theneedtoensuretheirstability.Thisis why,inrecentyears,severalstudieshaveexaminedthefactorsthatensurethestabilityofbanksor thosewhodestabilizethem.Inparticular,creditriskandliquidityriskareretainedbythemajority ofauthorswhoconsideredthemasmajorrisks.

Thedebateontherelationshipbetweentheserisksandbankstabilityisnotconclusivesince theempiricalresultsfoundaredivergent.Thesefindingscanbedividedintothreetypes.Thefirst onesupportsthenegativeimpactofthesetworisksonthestabilityofbanks.Thesecondtype,on theotherhand,showsthepositiveeffectofbothrisksonthestabilityofbanks.Thethirdcurrent ofliteratureprovestheinsignificantimpactofliquidityandcreditrisksonbankstability.

Ontheonehand,thesestudieshavethemeritofadoptingdifferentempiricalapproaches,but ontheotherhand,theyassumealinearrelationshipbetweenrisksandbankingstability.This linearityhypothesis canlead toerroneousresults that canmislead decision-makers andbank managers,sincethesignofrisksonbankstabilitydoesnotchange;negativeorpositive.

Thispapertriestofillthisgapandcontributestotheexistingliteraturebystudyingthenon- linearrelationshipbetweenrisksandbankstabilitybyusingneweconometricapproachbasedon thePanelSmoothThresholdRegression(PSTR)modeldevelopedbyGonzalez,Terasvirta,and VanDijk(2005).

Unlikeotherworks,ourpaperseekstoshowthattherelationshipsbetweencreditandliquidity risksandbankstabilityarenon-linearandcharacterizedbythepresenceofthresholdeffects.Our paperhas theadvantagetoshow thatthe impactof bankingrisks onstabilityisnot thesame below andabove the thresholds.Asfar as weknow,thereare nopublished empiricalstudies whichapplythePSTRmodeltoinvestigatethenon-linearrelationshipbetweenrisksandbank stabilityforanimportantnumberofbanks.Thispaperisintendedtobeacontributionthatcan helpthebank’ssupervisorstomonitorandevaluatethestabilityofthebankingsystemandits determinants.Thispaperallowsustoidentifyanumberofdestabilizingfactorsthathavecreated instabilitythroughoutthesystem.

Todothis,weuseaneweconometricapproachbasedonthePSTRmodel,whichisthemost appropriateforendogenouslydeterminingtheoptimalthresholdbeyondwhichbankstabilityis affectedbyrisks.Weuseasampleof75conventionalbanksfrom11MENAcountriesobserved overtheperiod1999–2017.

Theremainderofthispaperisorganizedasfollows.Areviewofliteratureisgiveninsection2.

DataandPSTRmodelspecificationarepresentedinsection3.EmpiricalResultsandinterpretation aredevelopedinsection4,whilesection5concludes.

(3)

2. Literaturereview

IntheMENAcountries,themajorityofbankscontinuetodeveloptraditionalactivities(includ- ingtheprovisionofcreditandthecollectionofresourcesintheformofdeposits),despitereforms andtheexhaustionofmajorfactorsthathavesupportedtheseactivitiesforalongtime. These activitiescarryrisks,mainlycreditriskandliquidityrisk.

Theeffectsofcreditandliquidityrisksonthestabilityofbankshavebeenthesubjectofseveral academicworks(Acharya&Mora,2013;Adusei,2015;Amara&Mabrouki,2019;DeYoung&

Jang,2016;Ghenimi,Chaibi,&Omri,2017;Imbierowicz&Rauch,2014;Li&Zou,2014;Rajhi

&Hassairi,2013; Khemais,2019,etc.).Theirresults arenotconsensual. Thereisworks that haveshownthatthesetworiskshavedestabilizedthebanks.Ontheotherhand,asecondgroup ofauthorshighlightedthepositiveeffectofthesetworisksonthestabilityandsustainabilityof banks.Athirdgroupof studiesshowedtheneutral effectofcreditandliquidityrisksonbank stability,whichisfundamentallydependentonotherfactors.

Thenegativeeffectofcreditandliquidityrisksonbankstabilityhasbeenanalyzedinseveral studies.Ghenimietal.(2017)used49banksobservedovertheperiod2006–2013tostudythe effectsofcreditandliquidityrisksonbankstability.Thesebanksbelongtoeightcountriesinthe MENAregion:Bahrain,Jordan,Qatar,SaudiArabia,Turkey,UnitedArabEmirates,Kuwaitand Yemen.FollowingtheapproachproposedbyArellanoandStephen(1991),ArellanoandOlymia (1995)andBlundellandStephen(1998),theirresultsrevealedthattheinteractionbetweencredit andliquidityrisks(CR*LR)contributetobankinstability.

Adusei(2015)usedquarterlydatafrom2009to2013topickoutthemainfactorsdestabilizing theruralbankingsectorinGhana.Todothis,theauthorretainedthreemeasuresofbankstability whichareZ-score,risk-adjustedreturnonassets(RAROA)andrisk-adjustedequityonassets ratio(RAEA).Empiricalresultsindicatedthatcreditriskisharmfultothestabilityofbankswhen thelatterismeasuredbyRAEA.

ImbierowiczandRauch(2014)analyzedtherelationshipbetweenliquidityandcreditrisks andtheirjoint impactonbanks’probabilitiesofdefault forasampleof 4300UScommercial banks overthe period1998–2010.Their mainresults showedthat the tworisks influencethe probabilitiesofdefaultofbanksalthoughtheydonothaveareciprocalrelationship.Addedto that,theinfluenceoftheirinteractiondependsontheoveralllevelofbankrisksandcanworsens ormitigatestheriskofdefaultofbanks.

ForAcharyaandMora(2013),theroleofbanksasliquidityprovidersisastrongguarantor during the period of the 2008financial crisis. Their resultsproved that the banksthat failed duringtherecentfinancialcrisissufferedfromliquidityproblems.Thestudyshowsthatbanks thathavefailedattractdepositsbyofferinghighinterestrates.Indirectly,theresultsindicatethat thepresenceofbothliquidityandcreditriskscouldpushbankstodefault.

Inacomparativeanalysisduringtheperiod(2006–2009),RajhiandHassairi(2013)suggested thatcreditriskreducesthestabilityofbanksintheMENAregion.Usingameasureofdefault distance and Z-score, their results showed that credit risk and income diversityare the most commoncauseofinsolvencyforbanks.Creditriskmeasuredbytheratioofloanlossprovisions tonetinterestincome,decreasesZ-scoreinsmallbanksinMENAcountries.

Usingpaneldataanalysisfortheperiod2005–2015,Khemais(2019)examinedtheimpactof creditrisk,liquidityrisk,andoperationalriskonTunisianconventionalbankstabilityproxiedby bothZ-score(ROA)andZ-score(ROE).Empiricalresultsshowthatthecreditriskthreatensthe

(4)

stabilityofTunisianbankswhenthelatterismeasuredbyZ-score(ROA).Theinteractionofboth creditandliquidityrisksworsensalsotheirstability.

Otherauthorssupportthepositiveeffectofcreditandliquidityrisksonthestabilityofbanks, sinceprofitabilityandrisksaretightlylinked.Creditandliquidityrisksarenotdetrimentalfor bankstability.Contrarytothecreditrisk,Khemais(2019)revealsthattheliquidityriskimproves thestabilityofTunisianbanks.

Thefinancialcrisishasproventhatliquidityandcreditrisksaretwoimportantfactorsinthe bankingsectorthatcanaffectthesurvivalofbanks(DeYoung&Jang,2016).LiandZou(2014) studiedtheimpactof creditrisk measuredbythenon-performingloansratioonbankstability usingdatafrom47commercialbanksinEuropefrom2007to2012.Theirresultsshowedthat creditriskhasasignificanteffectonthe increaseinbankperformancemeasured byreturnon equity(ROE)andreturnonassets(ROA).

The thirdkindof worksretains theneutrality hypothesis.Creditandliquidityrisks donot affectsignificantlythestabilityofbanks.AmaraandMabrouki(2019)examinedtherelationship betweenliquidityandcreditriskandtheirimpactonthestabilityofTunisianbanksduringthe period2006–2015byusingtheZ-scorefunctionasanindicatorofstability.Theyfoundthatcredit riskandliquidityrisk donothaveaneconomicallysignificantreciprocalrelationshipandthat eachriskcategoryhasanon-significantimpactonbankstability.Inaddition,authorsreachedto theresultthattheinteractionbetweenthetworiskshasaninsignificanteffectonbankstability.

3. DataandPSTRmodelspecification

Themotivationofourpaperistoinvestigatetherelationshipsbetweenbothliquidityandcredit risksonbankstabilityfortheMENAregionwhichisaninterestingcasestudy.

IntheMENAregion,financialintermediationhasremaineddominatedbybankinginterme- diation.Banksarethemainfinancialintermediaries.Theycontinuetocollecttheirresourcesin theformofdepositthroughabranchnetwork,andgrantcredittotheirclients.Thesetraditional activities,notexclusiveofothers,carryrisks,whichcandestabilizebanks.

CountriesintheMENAregionhaveundergonewidespreadreformsinrecentdecades,affecting allsectorsofactivity.Thatiswhytheireconomieshavebecomehighlyopentotheoutsideand competitive.Inparticular,MENA’sbanksaremoreintegratedintotheglobalfinancialmarkets andexposedtotheshocksthataffectinternationalcapitalmarkets.

Furthermore,thebankingsectorintheMENAregionischaracterizedbythepresenceofIslamic banks.Infact,thepresenceoftheIslamicbankingsectorcanaffectthestabilityofconventional banks.Becauseoftheirstructure,Islamicbanksgenerallyhavehigherliquidityratioandlower creditriskthanconventionalbanks.

Finally,itisquitetruethatbanksoftheMENAcountrieshavebeenrecoveringfromtherecent financialcrisis,butrecentpoliticalturmoilandsuddenregimecandecreaseeconomicgrowthand destabilizebanks.

ThesemaincharacteristicspresentedaboveexplainthechoiceoftheMENAbankingsystem asaninterestingframeworkforanalyzingtherelationshipsbetweencreditrisk,liquidityriskand bankstabilityforapaneldatasetof75conventionalbanksbelongingto11countriesobserved duringtheperiod1999–2017.Table1displaysthenumberofconventionalbankspercountry.

Tohighlightthepossiblenon-linearrelationshipbetweencreditrisk,liquidityriskandbank stability,wereliedononeof theeconometrictechniquesusedtoestimatenon-linearrelations, namelythe Panel SmoothThresholdRegression (PSTR)model developedbyGonzalez etal.

(5)

Table1

Numberofconventionalbankspercountry.

Countries Numberofconventional

bankspercountry

Algeria 6

Bahrain 8

Egypt 8

Jordan 8

Kuwait 3

Lebanon 8

Morocco 4

Qatar 4

SaudiArabia 8

Tunisia 10

UnitedArabEmirates 8

Total 75

Source:Authors.

(2005),whoextendedHansen’sPTR (PanelThresholdRegression)model (1999).Theoretical formofthePSTRmodelispresentedasfollows:

yit=μi+β0xit+β1xitg(qit,γ,c)+εit (1) where(i)and(t)representrespectivelycross-sectionandtimedimensionsofthepanel.μiindicates thevectoroftheindividualfixedeffects.εitistheerrorterm.β0andβ1indicaterespectivelythe parametervectorsoflinearandnon-linear models.yit andxit representrespectivelydependent andindependentvariables.g(qit,γ,c)isthefunctionoftransitionwhichdependsonthetransition variableqit,thetransitionparameter(γ)andtheparameterofthreshold(c).Thistransitionfunction ofthePSTRmodeliscontinuousandnormalizedtakingvaluesbetween0and1.Itallowssystem totransitfromoneregimetoanother.Inorderforthisfunctionoftransitiontobeoperational, GrangerandTeräsvirta(1993),Teräsvirta(1994),Eliev andTimo(1996),andGonzalez etal.

(2005)proposedthefollowinglogisticformoforderm:

g(qit,γ,c)=

⎝1+exp

⎝−γ m j=1

(qitcj)

1

(2)

With c=(c1,...,cj,...,cm) isavector ofthresholdparameterswithc1<···<cm andγ>0.

Whenγ→0,thetransitionfunctionapproachesaconstantandthePSTRmodelbecomeshomoge- nouslinearpanelwithfixedeffects.However,whenγ→+∞,thefunctionoftransitiong(qit,γ,c) tendstoanindicatorfunctiong(qit,cj)whichtakes1ifqit>cj.IbarraandTrupkin(2011)showed thatifγisveryhigh,thePSTRmodelcanbeconfusedwithatwo-regimemodel(oronethreshold).

Giventhisfunctionoftransitiong(qit,γ,c),Eq.(1)canbewrittenasfollows:

yit=μi+β0xit+ m j=1

βjxitg(qjijj,cj)+εit (3)

(6)

Inthispaper,weusedanunbalancedannualdataof604observationsfor75banksbelonging to11countriesobservedduringtheperiod1999–2017toinvestigatetheeffectsofcreditriskand liquidityriskonbankstabilitybyusingthePSTRmodelwhichcanbewrittenasfollows:

BSTABit=μi+β0xit+β1xitg(qit,γ,c)+εit (4) whereireferstobanks(i=1,...,75)andtrepresentstimeperiodinyears(t=1999,...,2017).

μi,εit,β0andβ1keepthesamedefinitionsmentionedabove.BSTABisbankstability,which representsthedependentvariable.g(qit,γ,c)representsthefunctionoftransition.Inourmodel, wetestthethresholdeffectoftwovariableswhicharecreditrisk(CR)andliquidityrisk(LR).

Consequently,wehavetwotransitionfunctionsg(CRit,γ,c)andg(LRit,γ,c).

Eq.(4)canbedividedintotwoequations:

BSTABit=μi+β0xit+β1xitg(CRit,γ,c)+εit (4-1) BSTABit=μi+β0xit+β1xitg(LRit,γ,c)+εit (4-2) InEq.(4-1),creditrisk(CR)isthevariableoftransition,whileinEq.(4-2)liquidityrisk(LR) isthevariableoftransition.

Inbothequation,wekeptthesameexplanatoryvariables(whicharethesize(SIZE),thecapital adequacyratio(CAP),theperformanceofbank(PERF)andtheLernerindex(LERNER))and thesameexogenousvariables(whichareinflationrate(INF)andpoliticalstabilityandabsence ofviolenceandterrorism(POLIS)).

Replacingthevectorofindependentvariablesxit withitscomponents,we gettheempirical modeltobeestimatedwhichispresentedasfollows:

BSTABit =μi+β00CRit+β01LRit+β02SIZEit+β03CAPit+β04PERFit +β05LERNERit+β06INFit+β07POLISit

+[β10CRit+β11LRit+β21SIZEit+β13CAPit+β14PERFit+β15LERNERit

+β16INFit+β71POLISit]g(CRit,γ,c)+εit

(5)

BSTABit =μi+β00LRit+β01CRit+β02SIZEit+β03CAPit+β04PERFit

+β05LERNERit+β06INFit+β07POLISit

+[β10LRit+β11CRit+β21SIZEit+β13CAPit+β14PERFit+β15LERNERit +β16INFit+β71POLISit]g(LRit,γ,c)+εit

(6)

Table2displaysdefinitions,measuresandsourcesofallvariables.

The dataset coversannual data relative toasample of 75banks for 11 countries,namely Algeria,Bahrain,Egypt,Jordan,Kuwait,Lebanon,Morocco,Qatar,SaudiArabia,Tunisiaand UnitedArabEmiratesovertheperiod1999–2017.Accountingandfinancialdatawerecollected directlyfromBankscopedatabaseandbank’sfinancialstatements,whiledataonmacroeconomic environmentwasextractedfromWorldBankDevelopmentIndicators(WDI)onlinedatabase.

4. Empiricalresultsandinterpretation

WefirstdisplaythedescriptivestatisticsofthevariablesusedinthePSTRmodel.Inthesecond stage,wepresentthecorrelationmatrixbetweenvariables.Wemoveinthethirdstagetolinearity

(7)

Table2

Definitions,measuresandsourcesofvariables.

Variables Definitions Measures Sources

BSTAB Bankstability Z-Score(roe)=

[E(ROE)+CAP]/σ(ROE)

LaevenandLevine(2008), Demirgüc¸-KuntandHuizinga (2010),Hakimi,Zaghdoudi, Zaghdoudi,andDjebali(2017), andAmaraandMabrouki(2019).

CR Creditrisk Non-performingloans/total

loans

CaiandZhang(2017),Mpofu andNikolaidou(2018),Natsir etal.(2019),andButhiena (2019).

LR Liquidityrisk Liquidassets/totalassets Ghenimietal.(2017)andAmara andMabrouki(2019).

SIZE Banksize ln(totalassets) Anginer,Demirguc-kunt,and

Zhu(2014)andHakimietal.

(2017).

CAP Capitaladequacyratio Totalequity/totalassets Pathan(2009),Hakimietal.

(2017).

PERF Bankperformance ROA=netincome/totalassets RashidandJabeen(2016), HakimiandZaghdoudi(2017), Ghenimietal.(2017),andAmara andMabrouki(2019).

LERNER INDEX

Marketpowermeasure Ameasureofmarketpower inthebankingmarketa

Natsiretal.(2019).

INFL Inflationrate Consumerpriceindex ImbierowiczandRauch(2014), Adusei(2015),andKharabsheh (2019).

POLIS Politicalstability Variablethattakesvalues between2.5and+2.5

Hakimietal.(2017).

Source:Authorsfromliteraturereview.

aItisdefinedasthedifferencebetweenoutputpricesandmarginalcosts(relativetoprices).Pricesarecalculatedas totalbankrevenueoverassets,whereasmarginalcostsareobtainedfromanestimatedtranslogcostfunctionwithrespect tooutput.https://datacatalog.worldbank.org/lerner-index.

testbetweencreditrisk,liquidityandbankstability.Oncethenon-linearityisverified,wefind outinthefourthstepthenumberofregimesinthePSTRmodel.Infine,weestimatethePSTR modelanddiscusstheresults.

4.1. Descriptivestatistics

Descriptivestatisticsarepresentedtorevealthemaincharacteristicsofdatausedinthisstudy.

Foreachvariable,wedisplaymean,standarddeviation,minimumandmaximumvalues.Table3 summarizesvariabledescriptivestatisticsofthePSTRmodel.

Theaveragevalueofbankstability(bstab)measuredbyZ-score(ROE)isequalto4.835with amaximumvalueof24.721andaminimumvalueof−2.327.Theaverageofcreditrisk(CR)of conventionalbanksis0.087withamaximumvalueof1.993.Theaveragevalueofliquidityrisk (LR)is0.262withminimumandmaximumvaluesof0.017and2.795respectively.

Sizeofbankswhichisequalonaverageto8.703issmall.Ithasamaximumvalueof12.314 andaminimumvalueof4.002.ConventionalbanksintheMENAregionareundercapitalized, withequityaccountingforanaverageof11.6%oftheir assets.Inaddition,thebanksperform

(8)

Table3

VariableDescriptiveStatistics.

Variable Mean Std.Dev. Min Max

BSTAB 4.835 3.949 2.327 24.721

CR 0.087 0.130 0.000 1.993

LR 0.262 0.159 0.017 2.795

Size 8.703 1.412 4.002 12.314

CAP 0.116 0.069 0.314 0.699

PERF 0.016 0.032 0.216 1.014

LERNER 0.342 0.212 0.800 0.640

INF 0.037 0.040 0.049 0.295

POLIS 0.358 0.797 2.117 1.224

Table4

CorrelationMatrix.

BSTAB CR LR SIZE CAP PERF LERNER INF POLIS

BSTAB 1.000

CR 0.088 1.000

LR 0.014 0.225 1.000

SIZE 0.061 0.396 0.170 1.000

CAP 0.422 0.197 0.045 0.160 1.000

PERF 0.044 0.251 0.042 0.038 0.118 1.000

LERNER 0.061 0.145 0.131 0.121 0.150 0.083 1.000

INF 0.152 0.059 0.066 0.055 0.139 0.057 0.049 1.000

POLIS 0.099 0.045 0.071 0.027 0.248 0.055 0.405 0.223 1.000

poorly,sincetheeconomicprofitabilityisonaverageverylowanditisequalto1.6%overthe entireperiodselected.The averageLernerIndexisequal to34.2%, meaningthatthe banking market isnot stronglydominated bybanks.In themajorityof MENA countries,the banking markets,whichplayaleadingroleinfinancingtheireconomies,havestillbeencontrolledbythe state,despiteexcessivewavesoffinancialliberalizationmadebythesecountries.

Asfortheinflationrate,itwasequalonaverageto3.7%withaminimumvalueof−4.9%and amaximumvalueof29.5%.Theaveragevalueofpoliticalstability(Polis)isequalto−0.358, whichisnegativeshowingthedeteriorationofinstitutionalquality,whichcandestabilizebanking sector.

4.2. Correlationmatrix

The correlation matrix givesinformation on the level and the nature of linkages between variablesbydeterminingthecoefficientsoftheirlinearcorrelations.Table4belowpresentsthe correlationmatrixofallvariablesusedinthisstudy.

Creditrisk(CR),size(SIZE),Lernerindex(LERNER)andinflation(INF)arenegativelyasso- ciatedwithbankstability.Whileliquidityrisk(LR),capitaladequacyratio(CAP),performance andpoliticalstability(POLIS)arepositivelylinkedtobankstability.ResultsdisplayedinTable4 showaweakcorrelationbetweenallvariables,rejectinghencetheexistenceofmulti-colinearity problem.

(9)

4.3. Linearitytest

To showthe non-linearityrelationshipbetweenCredit Risk(CR),LiquidityRisk (LR)and BankStability(BSTAB),weapplylinearitytestbasedontwohypothesespresentedasfollows:

NullhypothesisisH0:β1=0 againstAlternativehypothesisH1:β1=/ 0. However,thistest of linearityisnotstandard,sinceunderthenullhypothesis,thePSTRmodelcontainsuniden- tifiednuisanceparameters(Hansen,1999).To solvethisproblem,Luukkonen,Saikkonen,and Teräsvirta (1988)proposed toreplace the transition function withTaylor’slimited first-order developmentaroundγ=0.NullhypothesisbecomesH0:γ=0.Eqs.(4-1)and(4-2)canbewritten asfollows:

BSTABit=μi+β0xit+β1xitg(CRit,γ,c)+εit

BSTABit=μi+β0xit+β1xitg(LRit,γ,c)+εit

Afterreplacingthevectorxitwithitscomponents,wegetthefollowingequation:

BSTABit=μi+β00CRit+β10LRit+β20SIZEit+β30CAPit+β40PERFit +β50LERNERit+β60INFit+β70POLISit

+[β01CRit+β11LRit+β21SIZEit+β31CAPit+β41PERFit

+β51LERNERit+β61INFit+β71POLISit]g(CRit,γ,c)+εit

BSTABit=μi+β00LRit+β10CRit+β20SIZEit+β30CAPit+β40PERFit +β50LERNERit+β60INFit+β70POLISit

+[β01LRit+β11CRit+β21SIZEit+β31CAPit+β41PERFit

+β51LERNERit+β61INFit+β71POLISit]g(LRit,γ,c)+εit

Wheretheparametersβ01,β11,...,β71aremultiplesofγandεit =εit+residualofTaylor’s limitedfirst-orderdevelopment.ThenullhypothesisoflinearitytestbecomesH0:β01=···= β71=0.Totestthisnullhypothesis,weusethreetestswhichareWaldtest(LMW),Fishertest (LMF)andlikelihoodratiotest(LRT).

TheWaldtest(LMW)iswrittenasfollows:LMw= NT(SSRSSR00SSR1)WhereSSR0isthepanel sumofsquaredresidualsunderH0(linearpanelmodelwithindividualeffects)andSSR1isthe panel sum of squared residuals under H1 (PSTRmodel withm regimes).Nand Trepresent respectivelycross-sectionandtime.

TheFishertest(LMF)isdefinedas:LMF = NTSSR(SSR0/TN0SSRN1)/mkmk withkandmarerespectively thenumbersofexplanatoryvariablesandregimes.

Thelikelihoodratiotest(LRT)isexpressedasfollows:LRT=−2[log(SSR1)−log(SSR0)].

Undernullhypothesis,WaldandlikelihoodstatisticsfollowChi(2)distributionwithkdegrees offreedom(χ2(k))whileFisherStatisticpursuesaFisherdistribution(F(mk,NT−N−mk)).

Foralogistictransitionfunctionoforderone(m=1),resultsofthesethreetestsarepresented inTable5.

Table5showsthatthenullhypothesis(linearmodel)isrejectedat1%levelofsignificancefor thethreetests.Consequently,therelationshipsbetween:

(10)

Table5 Linearitytests.

Test BSTAB CR BSTAB LR

Statistics P-value Statistics P-value

Waldtest(LMW) 63.817 0.000 45.639 0.000

Fishertest(LMF) 10.298 0.000 7.125 0.000

LikelihoodRatioTest(LRT) 67.447 0.000 47.456 0.000

Table6

Testsforthenumberofregimes.

Tests BSTAB CR BSTAB LR

Statistics P-value Statistics P-value

Fishertest(LMF) 153.673 0.000 135.523 0.000

LikelihoodRatioTest(LRT) 10.379 0.000 8.799 0.000

i) BankStability(BSTAB)andCreditRisk(CR) ii) BankStability(BSTAB)andLiquidityRisk(LR) arenon-linear.

4.4. Determinationofthenumberofregimes

Afterrejectinglinearmodelandverifyingnon-linearity,PSTRmodelhashenceatleastone threshold. To findout thenumberof thresholds (or regimes)inthe PSTRmodel, we testthe followinghypothesisH2:PSTRmodelhasatleasttwothresholds(r=2).Alternativehypothesis is the followingHa:PSTR model hasone threshold(r=1). To check hypothesisH2,we use twotestswhichareFishertest(LMF)andlikelihood ratiotest(LRT).IfFisherandlikelihood statisticsaresignificant,werejectthehypothesisH2andweconcludethatthePSTRmodelhas onethresholdandhasthentworegimes.ResultsofthesetwotestsarereportedinTable6.

ResultsfromTable6indicatethathypothesisH2isrejectedat1%levelofsignificanceforthe twotests.Forthetwotransitionvariablesusedinthisstudy(CreditriskCRandLiquidityrisk LR),thetwoPSTRmodelshaveonlyonethresholdandtheyarethereforeatwo-regimemodels.

4.5. PSTRmodelestimation

WeusehencePSTRmodels withtworegimes toestimatethe relationshipsbetweenBank Stability(BSTAB)andCreditRisk(CR),andBankStability(BSTAB)andLiquidityRisk(LR)for 75banksbyapplyingnon-linearleastsquarestechnique.ResultsofthePSTRmodelsestimations arepresentedinTable7.

EstimationresultsofPSTRmodelreportedinTable7showthatboththerelationshipbetween bankstability(BSTAB)andcreditrisk(CR),andbankstability(BSTAB)andliquidityrisk(LR) are characterizedby the presence of a thresholdeffects. The optimalthresholds are equal to 13.16%forcreditriskand19.03%forliquidityrisk.

EstimationresultsofEq.(5)showthatbelowthethresholdof13.16%,creditriskandliquidity riskexertapositiveandsignificanteffectonbankstability.Thispositiveeffectcanbeexplained

(11)

Table7

PSTRmodelsestimations.

Estimationresultsofequation(5) Estimationresultsofequation(6)

Coeff. T-Stat Coeff. T-Stat

CR 915.482*** 2.910 0.182 0.572

LR 2216.502** 2.426 1.348*** 7.082

SIZE 233.439** 2.019 0.152*** 3.687

CAP 2885.709*** 4.183 18.367*** 40.332

PERF 10440.466** 2.352 2.746* 1.801

LERNER 751.004 0.749 0.047 0.440

INF 0.396 0.719 0.126 0.238

POLIS 0.202*** 3.265 0.094 1.560

CR*g(qit,γ,c) 1826.540*** 2.903 1.010*** 3.504

LR*g(qit,γ,c) 4456.932** 2.425 1.173*** 2.786

SIZE*g(qit,γ,c) 469.228** 2.017 0.029 1.348

CAP*g(qit,γ,c) 5759.691*** 4.151 5.206*** 10.575

PERF*g(qit,γ,c) 21,013.899** 2.353 7.900*** 3.760

LERNER*g(qit,γ,c) 1510.857 0.749 0.592 1.442

γ 0.200 5.000

C 0.1316 0.1903

AIC 1.815 1.892

BIC 1.698 1.776

Obs 604 604

Note:***,**and*indicatelevelofsignificancerespectivelyat1%,5%and10%.

bythefactthatbanksintheMENAcountriescontinuetogiveprimacytocreditactivity,despite theexhaustionofthemainfactors,whichhavesupportedthebankintermediationforalongtime.

Also,theressourcesofthesebanksarecollectedfromtheircustomsinformofdepositswhichare lessexpensive.Howevre,beyondtheoptimalthresholdsof13.16%,bothcreditandliquidityrisks becomedetrimentaltothestabilityofbanks.ThisresultisinlinewiththoseofAdusei(2015), Khemais(2019),Ghenimietal.(2017),etc.Whennon-performingloansexceed13.16%oftotal credits,theriskofnon-recoveryincreasesandbanksfinditdifficulttorecovertheircredits,which shouldhavebeenallocatedtomoreproductiveactivities.Banks’rentabilitydecreasesaffecting hencetheirstability.Abovetheoptimalthresholdofcreditriskof13.16%,liquidityriskhasa negativeandsignificanteffectatthe5%levelonbankstability.Liquidityriskisaddedtocredit risktodestabilizebanksinselectedcountries.Excessivebankliquiditycouldpushbankstogrant alotofcredits(quantityeffect)theirprobabilityofreturnislow.Thisrisktakingcouldadversely affecttheirprofitabilityandsolvencyandthreatentheirlongevity.

EstimationfindingsofEq.(6)revealthatbelowthethresholdof19.03%,contrarytocredit risk whichhasapositivebutnon significant impact,liquidityrisk acts positivelyat 1%level ofsignificanceonbankstabilityintheMENAregion.Abovetheoptimalthresholdof19.03%, creditriskbecomessignificantandcontinuestoaffectpositivelybankstability.Overtheselected period 1999–2017,bankliquidity,whichequalsonaverageto26.2%oftotalassetsof banks, thatisabovethethresholdof19.03%,favorsthegrantingofloans,whichgeneratesintereststhat reinforcestheir netincomeandensurestheirstability.Asforthe liquidityrisk, econometrical resultsrevealthatitdestabilizesbanksoftheMENAregion.Thisnegativeeffectisexplainedby theshortfallforbanksthatholdasignificantportionoftheirassetsinliquidform.Beyondthis threshold,liquidityisexpensiveforbanks,whicharedeprivedofinvestmentopportunities.

(12)

Unliketheotherworks,ourpaperhasthemeritofshowingthattheeffectsoftheothervariables onbankstabilitydependontheoptimalthresholdsofthecreditandliquidityrisks.Infact,when thecreditriskandtheliquidityriskexceedthethresholdsof13.16%and19.03%respectively, theperformancedestabilizesbanks.Overtheselectedperiod,thereturnonassetsisequalonan averageto1.6%,whichislow.Theprofitsgeneratedbybankscomemainlyfromtheirbalance sheetintermediation (granting of loans, collection of deposits,provision andmanagement of meansof payment).Asaresult,MENA banksare encouragedtodevelopnewbusinessesand providenewpersonalizedandonlineservicestotheircustomersaroundtheworld.

The effect of the capital adequacy ratio (cap)on bank stability depends on the transition variable.Ontheoneside,beyondthecreditriskthresholdof13.16%,thisvariableisdetrimental tothestabilityofbanks.Thisnegativeanddestabilizingeffectcanbeexplainedbytheunder- capitalizationoftheselectedbanks,sinceequitysrepresentonaverage11.6%ofthetotalassets overtheselectedperiod1999–2017.Thisunder-capitalizationaddstotheirlowprofitabilityto destabilizethebankingsectorofMENAcountries.

On the otherside, above the liquidityrisk threshold of 19.03%,thisvariable (cap)favors the stabilityof banks.Bankliquidityplaysthesamerole of reassuringbanks’customersand shareholders.Eveniftheequityisnotenough,bankliquiditycomesinsupplementandindicates thegoodfinancialhealthofbanks.

Asfortheeffectofthesizevariable,ithasanegativeandsignificanteffectonbankstability onlybeyondthecreditriskthresholdof13.16%.Thisdamagingeffectisduetothesmallsizeofthe majorityofbanksintheMENAregionwhichpreventsthemfromrecoveringnonperformingloans.

Banksarefindingitdifficulttousenewcreditriskmanagementtechniquessuchassecuritization anddefeasance.Inthevariouscapitalmarkets,thissmallsizeisoverwhelmingbanksandlimiting theirmargin ofnegotiation.Thisunderminestheirstability.Forthisreason,MENA banksare requiredtomakeadequatebankingrestructuringstobecomeregionalchampions,abletonotonly strengthentheirmarketshare,butalsotoconquernewforeignmarkets.

Regardingtheexogenousvariables(INFandPOLIS),empiricalresultsshowthatonlypolitical stabilityisimportantforbankingstability.Asaresult,MENAcountriesareencouragedtoensure politicalstabilityandcombatviolenceandterrorism.

5. Conclusionandrecommendations

Manyresearchesexaminedtherelationshipbetweencreditrisk,liquidityriskandbankstability.

Theyassumedalinearrelationshipbetweenbankrisksandstability.Thepurposeofthispaperis threefold:

i) showingthenon-linearrelationshipbetweencreditrisk,liquidityriskandbankstability.

ii) determiningtheoptimalcreditriskandliquidityriskthresholds.

iii) studyingtheimpactofthisthresholdeffectonthestabilityofbanks.

Toachievethisgoal,weselectedasampleof75conventionalbanksfrom11MENAcountries overtheperiod1999–2017.WeperformedthePanelSmoothThresholdRegression(PSTR)model developedbyGonzalezetal.(2005).

Differentfromotherstudies,ourpaperhastheadvantageofendogenouslydeterminingtwo thresholdsabovewhichbankstabilityisaffected.Indeed,ourresultsshowhencethattherela- tionshipsbetweenbothbankstability-creditriskandbankstability-liquidityriskarenon-linear

(13)

andcharacterizedbythepresenceoftwooptimalthresholdswhichareequalto13.16%forcredit riskand19.03%forliquidityrisk.

Contrarytotheirpositiveeffectsbelowthethresholdof13.16%,creditriskandliquidityrisk becomedetrimentaltobankstabilityinhighregime.Forcreditrisk,thisnegativeeffectcanbe explainedbythedifficultiesoreventhe inabilityof bankstoreturnthe grantedcredits,which arecolossalandwhichshouldhavebeenallocatedtomoreprofitableactivitiesthatcanensure bankstability.BanksintheMENAregionarestillslowtoapprehendandfunctionalizefinancial innovations.Newbankingriskmanagementtechniques(suchassecuritizationanddefeasance)are notdevelopedbybanks,whichstillrelyonbankingpersonnelwhodonotknowhowmarketswork.

Asaresult,theactivitiesofbanksintheMENAregionremainedconfinedtotraditionalactivities.

Concerningliquidityrisk,itsnegativeeffectcanbeexplainedbythemultiformcompetitionand thesuperfluousbankliquiditywhichcanpushbankstotakerisksandgrantmorecreditstotheir customerswithouttakingintoaccounttheirsolvability.Thisrisktakingincreasesnonperforming loans,decreasestheirprofitabilityandthreatenstheirstability.

EstimationfindingsofEq.(6)revealthatbelowthethresholdof19.03%,contrarytocredit riskwhichhasapositivebutnonsignificantimpact,liquidityriskactspositivelyat1%levelof significanceonbankstabilityintheMENAregion.Abovetheoptimalthresholdof19.03%,credit riskbecomessignificantandcontinuestoaffectpositivelybankstability.Overtheselectedperiod 1999–2017,bankliquidity,whichisequalonaverageto26.2%oftotalassetsof banks,which issuperiorthanthethresholdof19.03%,favorsthegrantingof loans.Thisgeneratesinterests thatreinforcetheirnetincomeandensuretheirstability.Asfortheliquidityrisk,econometrical resultsrevealthatitdestabilizesbanksoftheMENAregion.Thisnegativeeffectisexplainedby theshortfallforbanksthatholdasignificantportionoftheirassetsinliquidform.Beyondthis threshold,liquidityisexpensiveforbanks,whicharedeprivedofinvestmentopportunities.

Fortheotherexplanatoryvariables,resultsreportedinTable7showthatabovethetwooptimal thresholdsof13.16%and19.03%,theprofitabilityofbanks,whichisveryweak,threatenstheir stability.Banksarecalledtorevisetheprimacygiventocreditactivityandfocusonnewactivities andservices.Statesinselectedcountriesareencouragedtofundamentallyreformtheirfinancial systemsanddevelopthelegalframeworkfornewexternalriskmanagementtechniques,including securitizationanddefeasance.

The effectof the capital adequacy ratio (cap) on bank stability depends on the transition variable.Ontheonehand,beyondthecreditriskthresholdof13.16%,thisvariableisdetrimental tothestabilityofbanks.Thisnegativeanddestabilizingeffectcanbeexplainedbythe under- capitalizationoftheselectedbanks,sinceequitiesrepresentonaverage11.6%ofthetotalassets overtheselectedperiod1999–2017.Thisunder-capitalizationaddstotheirlowprofitabilityto destabilizethebankingsectorofMENAcountries.

On the otherhand,abovethe liquidityrisk thresholdof19.03%, thisvariable(cap)favors the stability of banks. Bankingliquidity playsthe same role of reassuring banks’ customers andshareholders.Eveniftheequityisnotenough,thebankliquiditycomesinsupplementand indicatesthegoodfinancialhealthofthebanks.

Asfortheeffectofthesizevariable,ithasanegativeandsignificanteffectonbankstability onlybeyondthecreditriskthresholdof13.16%.Thisdamagingeffectisduetothesmallsizeof themajorityofbanksintheMENAregionwhichpreventsthemfromrecoveringnonperforming loans.Banksfinddifficultsinusingnewcreditriskmanagementtechniques.Inthevariouscap- italmarkets,thissmallsizeisoverwhelmingbanksandlimitingtheirnegotiationmargin.This underminestheirstability.Forthisreason,MENAbanksarerequiredtomakeadequatebanking

(14)

restructuringstocompetewithgiantforeignbanks,whichcansetupintheregionundersigned agreements.

Asfor theexogenousvariables, empiricalresultsshowthatonlypoliticalstability(POLIS) impactspositivelyandsignificantlybankstabilityoftheMENAregion,showingtheimportance ofpoliticalstabilityforbankandfinancialstability.ThatiswhyMENAcountriesareencouraged toguaranteepoliticalstabilityandcombatviolenceandterrorism.

References

Acharya,V.,&Mora,N.(2013).Acrisisofbanksasliquidityproviders.TheJournaloftheAmericanFinanceAssociation, Adusei,M.(2015).Theimpactofbanksizeandfundingriskonbankstability.CogentEconomics&Finance,3,1–19.

http://dx.doi.org/10.1080/23322039.2015.1111489

Amara,T.,&Mabrouki,T.(2019).Impactofliquidityandcreditrisksonthebankstability.MPRAPaperNo.95453, posted7August2019.

Anginer,D.,Demirguc-Kunt,&Zhu,M.(2014).Howdoescompetitionaffectbanksystemicrisk?JournalofFinancial Intermediation,23(1),1–26.http://dx.doi.org/10.1016/j.jfi.2013.11.001

Arellano,M.,&Olymia,B.(1995).Anotherlookattheinstrumentalvariableestimationoferror-componentsmodels.

JournalofEconometrics,68(1),29–51.

Arellano,M.,&Stephen,B.(1991).Sometestsofspecificationforpaneldata:MonteCarloevidenceandanapplication toemploymentequations.ReviewofEconomicStudies,58(2),277–297.

Blundell,R.,&Stephen,B.(1998).Initialconditionsandmomentrestrictionsindynamicpaneldatamodels.Journalof Econometrics,87(1),115–143.

Buthiena,K.(2019).Determinantsofbankcreditrisk:EmpiricalevidencefromJordaniancommercialbanks.Academy ofAccountingandFinancialStudiesJournal,23(3).

Cai,R.,&Zhang,M.(2017).Howdoescreditriskinfluenceliquidityrisk?EvidencefromUkrainianbanks.Visnykofthe NationalBankofUkraine,(241),21–33.

Demirgüc¸-Kunt,A.,&Huizinga,H.(2010).Bankactivityandfundingstrategies:Theimpactonriskandreturns.Journal ofFinancialEconomics,98(3),626–650.http://dx.doi.org/10.1016/j.jfineco.2010.06.004

DeYoung,R.,&Jang,K.Y.(2016).Dobanksactivelymanagetheirliquidity?JournalofBanking&Finance,66(C), 143–161.

Eliev,J.,&Timo,T.(1996).Testingparameterconstancyandsuperexogeneityineconometricequations.OxfordBulletin ofEconomicsandStatistics,58(4),735–763.

Ghenimi,A.,Chaibi,H.,&Omri,M.A.B.(2017).Theeffectsofliquidityriskandcreditriskonbankstability:Evidence fromtheMENAregion.BorsaIstanbulReview,17(4),238–248.

Gonzalez,A.,Terasvirta,T.,&VanDijk,D.(2005).Panelsmoothtransitionregressionmodels.SSE/EFIworkingpaper seriesineconomicsandfinanceno.604.

Granger,J.,&Teräsvirta,T.(1993).Modellingnon-lineareconomicrelationships.OUPCataloguefromOxfordUniversity Press.

Hakimi,A.,&Zaghdoudi,K.(2017).Liquidityriskandbankperformance:AnempiricaltestforTunisianBanks.Business EconomicResearch,7(1),46–57.

Hakimi,A.,Zaghdoudi,K.,Zaghdoudi,T.,&Djebali,N.(2017).WhatthreatensTunisianbankingstability?Bayesian modelversuspaneldataanalysis.InternationalJournalofBusinessandFinanceResearch,11(2),21–37.

Hansen,B.E.(1999).Thresholdeffectsinnon-dynamicpanels:Estimation,testingandinference.JournalofEconometrics, 93(2),345–368.

Ibarra,R.,&Trupkin,D.(2011).Therelationshipbetweeninflationandgrowth:Apanelsmoothtransitionregression approachfordevelopedanddevelopingcountries,no1107,DocumentosdeTrabajo/WorkingPapersfromFacultad deCienciasEmpresarialesyEconomia.UniversidaddeMontevideo.

Imbierowicz,&Rauch.(2014).Therelationshipbetweenliquidityriskandcreditriskinbanks.JournalofBanking&

Finance,40(C),242–256.http://dx.doi.org/10.1016/j.jbankfin.2013.11.030

Kharabsheh,B.(2019).Determinantsofbankcreditrisk:EmpiricalevidencefromJordaniancommercialbanks.Academy ofAccountingandFinancialStudiesJournal(PrintISSN:1096-3685;OnlineISSN:1528-2635).

Khemais,Z.(2019).TheeffectsofrisksonthestabilityofTunisianconventionalbanks.AsianEconomicandFinancial Review,9(3),389–401.

Referensi

Dokumen terkait

It is perhaps this conception of risk — risk as an aspect of the domestic and the daily, a ubiquitous condition under which people live — that is closest to Berssenbrugge and Smith's

On the other hand, production factors of vitamin, rice husk, and labor have a significant impact in decreasing production risk, and factor of a total of Day of Chick

The human development index HDI has a positive and significant impact on economic growth for the threshold level of poverty under Regime 2 in 2020 and the threshold level of

Influence of Systematic Risk on Stock Return Based on the analysis of the partial test T-test, it is known that systematic risk has a negative and significant influence on stock

GARCH model results reveal that the coefficient of COVID-19 in the conditional variance equation has a significant negative impact on the conditional variance of five country indices,

Using panel regressions to analyse the impact of financial services globalisation, the paper finds that net capital account used to measure the phenomenon has no significant impact on

Risks and Impacts on Rehabilitation Implementation Projects DI Irrigation Area Progomanggis and DI Sedadi No Sources of Risk Risk Identification Risk Impact 1 Technical The

1-15 Non-linear Effect of Islamic Banks' Liquidity Risk to Financial Stability; Evidence from the Indonesian Banking Industry Faaza Fakhrunnas*1 Department of Economics, Faculty