• Tidak ada hasil yang ditemukan

PDF PID MR - jcse.ut.ac.ir

N/A
N/A
Protected

Academic year: 2024

Membagikan "PDF PID MR - jcse.ut.ac.ir"

Copied!
15
0
0

Teks penuh

(1)

* Email

:

[email protected]

PID MR

*

(EMPA)

EMPA

MR

PID

PID

MR

(2)

.

MR

MR

MR

(3)

MR

MR

SDOF

MR

SDOF Simulink

PID SDOF

SDOF

)

( ) ( )

( t kx t f t x

m    

m k

) (t x

) (t t f

dt d/

: )

( ) ( ) ( )

( t kx t f t f t

x

m     

c

) (t fc

PID

PID

(4)

PID PID

] [

PID PID

PID

] [

PID

]

[

dt t K de dt t e K t e K t

u p i d

( )

) ( )

( )

(

  

 

) (t e )

(t u

Kp

Ki

Kd

PID

] [

PID

] [

PID

] [

PID

(5)

Kp

Ki

Kd

SDOF

EMPA

mm 280 235 80  350 mm mm

2200 44.24 kg

42.6 kg

0.82 kg

SDOF

43.22 kg MR

/ 3

12EI h E

I h

] [

3

24

h kEI

MR

EMPA

(6)

MR

0-4 amp

MR

SDOF

Matlab

Simulink SDOF

SDOF

(7)

PID

PID PID PID

0.005 s

PID

105

3

p

5 K 610

i

5 K 110

dK

(8)

a G j

 

 )  (

a

a

 

a 5000

PID MR

MR PID

.

(9)

PID

MR

MR MR

"anti reset windup"

MR

MR

(10)
(11)

0 5 10 15 20 25 30 -0.04

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

time [s]

displacement [m]

sytem without any control system with ideal actuator

0 5 10 15 20 25 30

-1.5 -1 -0.5 0 0.5 1 1.5x 10-4

time [s]

displacement [m]

relative displacement of the system with ideal damper relative displacement of the system with real damper

(12)
(13)

SDOF

MR

1. Soong, T.T. (1990). Active Structural Control: Theory and Practice. John Wiley and Sons, New York.

2. Soong, T.T., and Dargush G.F. (1997). Passive Energy Dissipation Systems in Structural Engineering. John Wiley and Sons, London.

3. Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F., Jr., and Yao, J.T.P. (1997). “Structural control: past, present and future.” ASCE, J.

Eng. Mech., Vol. 123, No. 9, PP. 897-971.

4. Spencer, B.F., Jr., and Sain, M.K. (1997). “Controlling buildings: a new frontier in feedback.” IEEE Contr. Sys.

Mag., Vol. 17, No. 6, PP. 19-35.

0 5 10 15 20 25 30

-150 -100 -50 0 50 100 150

time (s)

force (N)

disturbance force (El-Centro earthquake) the force of ideal damper

(14)

5. Symans, M.D., and Constantinou, M.C. (1999). “Semi-active control systems for seismic protection of structures:

a state-of-the-art review.” Eng. Struct., Vol. 21, No. 6, PP. 469-487.

6. Soong, T.T., and Spencer, B.F., Jr. (2002). “Supplemental energy dissipation: state-of-the-art and state-of-the- practice.” Eng. Struct., Vol. 24, No. 3, PP. 243-259.

7. Spencer, B.F., Jr., and Nagarajaiah, S. (2003). “State of the art of structural control.” ASCE, J. Struct. Mech., Vol.

129, No. 7, PP. 845-856.

8. Chu, S.Y., Soong, T.T., and Reinhorn, A.M. (2005). Active, Hybrid, and Semi-active Structural Control: A Design and Implementation Handbook. John Wiley and Sons, Chichester.

9. Casciati, F., Magonette, G., and Marazzi, F. (2006). Technology of Semiactive Devices and Applications in Vibration Mitigation. John Wiley and Sons, Chichester.

10. Zuk, W. (1968). “Kinetic structures.” Civil Eng., Vol. 39, No. 12, PP. 62-64.

11. Yao, J.T.P. (1972). “Concept of structural control.” ASCE, J. Struct. Div., Vol. 98, No. ST7, PP. 1567-1574.

12. Hrovat, D., Barak, P., and Rabins, M. (1983). “Semi-active versus passive or active tuned mass dampers for structural control.” ASCE, J. Eng. Mech., Vol. 109, No. 3, PP. 691-705.

13. Yang, G. (2001). “Large-scale magnetorheological fluid damper for vibration mitigation: modeling, testing and control.” PhD dissertation, University of Notre Dame.

14. Spencer, B.F., Jr., Dyke, S.J., Sain, M.K., and Carlson, J.D. (1997). “Phenomenological model for magnetorheological dampers.” ASCE, J. Eng. Mech., Vol. 123, No. 3, PP. 230-238.

15. Dyke, S.J., Spencer, B.F., Jr., Sain, M.K., and Carlson, J.D. (1998). “An experimental study of MR dampers for seismic protection.” Smart Mater. Struct., Vol. 7, No. 5, PP. 693-703.

16. Xu, Y.L., Qu, W.L., and Ko, J.M. (2000). “Seismic response control of frame structures using

magnetorheological/electrorheological dampers.” Earthq. Eng. Struct. Dyn., Vol. 29, No.5, PP. 557-575.

17. Huang, H., Sun, L. and Jiang, X. (2012). “Vibration mitigation of stay cable using optimally tuned MR damper”

Smart Struct. Syst., Vol. 9, No. 1, PP. 35-53.

18. Bharti, S.D., Dumne, S.M. and Shrimali, M.K. (2010). “Seismic response analysis of adjacent buildings connected with MR dampers” Eng. Struct., Vol. 32, No. 8, PP. 2122-2133.

19. Ali, S.F. and Ramaswamy, A. (2009). “Optimal dynamic inversion-based semi-active control of benchmark bridge using MR dampers” Struct. Control Health Monit. Vol. 16, No. 5, PP. 564-585.

20. Clough, R.W., and Penzien, J. (2003). Dynamics of Structures. 3rd Edition, Computers and Structures Inc., Berkeley, CA.

21. Ghorbani-Tanha, A.K., Weber, F., and Motavalli, M. (2003). Control of horizontal bridge deck displacements due to earthquake excitation, Report No. 840844, Swiss Federal Laboratories for Materials Testing and Reseach (EMPA), Dübendorf, Switzerland.

22. Aström, K.J., and Hägglund, T. (1988). Automatic Tuning of PID Controllers. Instrument Society of America.

23. Ogata, K. (2003). Modern Control Engineering. Prentice Hall Inc., Englewood Cliffs, NJ.

24. Aström, K.J., and Hägglund, T. (1995) PID Controllers: Theory, Design, and Tuning”, 2nd edition, Instrument Society of America.

25. Rahimian M., and Ghorbani-Tanha A.K. (2003). Structural Analysis, Sanjesh Publications, Tehran. (In Persian)

(15)

1. John Milne 2. Zuk 3. Freyssinet 4. Zetlin 5. Yao

6. Kyobashi Seiwa 7. Kajima

8. Magnetorheological

9. Proportional-plus- integrator-plus-derivative 10. Proportional gain

11. Integral gain 12. Derivative gain 13. Rise time 14. Prototype 15. Maurer Söhne 16. Edge frequency

Referensi

Dokumen terkait