• Tidak ada hasil yang ditemukan

PDF PSO-MODSIMP - jcse.ut.ac.ir

N/A
N/A
Protected

Academic year: 2024

Membagikan "PDF PSO-MODSIMP - jcse.ut.ac.ir"

Copied!
10
0
0

Teks penuh

(1)

*

Email

:

[email protected]

PSO-MODSIMP :

*

MODSIM (PSO)

MODSIM (MODSIMP)

PSO

PSO MODSIMP

MODSIMP PSO-MODSIMP

.

Ford ResQ

Afzali et al.

(RBS) RBS

Sigvaldason

(2)

Gholami-

Zanoosi et al

Lund HEC-PRM

Missouri

MODSIMP MODSIM

MODSIM

Bertsekas MODSIMP

Afzali et al.

MODSIM

PSO

MODSIMP

:

MODSIM

MODSIM

MODSIM (HSOP)

HSOP MODSIM

HSOP

MODSIMP (HSOP)

MODSIM

MODSIM

HSOP

(NFP)

 

 

n

i i i

p i

i i E t FE

e t H t FE

R

, 1

) ( ,

) ( 73 . 2 ) (

( )

))) ( ) ( ))

( ) ( ( 5 . 0 (

)) ( ( ) ( 73 . 2 ( ) ( )

(

, ,

, 1 ,

2

, 1

1

t h t h t h t h

t R e

t E t

E

i f i TAIL i

i

i i P n

i n

i i

 

(3)

PSO-MODSIMP ) (t

t

E

) (t Ei

i t

FE

FE

i

i

i

eP,

i

) (t Ri

i t

) (t

Hi

i t

)

,(

2 t h i

i t

)

,(

1 t h i

i t

)

, (t hTAILi

i

)

, (t hf i

i t

(MWh) (MCM)

(m)

HSOP NFP

MODSIM

Inflow3 Inflow2

Inflow1

DemandFE3 DemandFE2

DemandFE1 Reservoir3

Reservoir2 Reservoir1

III II

I Sink

(Sink)

MODSIM

(4)

10

6

m

3

95.83

16.835 3.885

10

6

m

3

626.916

1986 510.99

10

6

m

3

741.133

2288.76 274.163

10

6

m

3

512.699

1683.316 236.827

92 90

94

102 100

104

1000 1000

1000

MODSIM

MODSIM

NFP

  NFP

     

3

1 ,() ,() ,()

i CiS qSi t Cispill qspi t CiD qRi t Min

(5)

PSO-MODSIMP

s.t





flow spill i sp release

i R low i I

storage initial

i S

storage ending

i

S t q t q t q t q t

q ( 1) () ( ) , () , ()

inf , ,

,     

release i i

R release

i q t D

R

max max , ,

min min

,  ()









spill i i

SP spill

i q t spill

spill

max max , ,

min min

,  ()

storage i i

S storage

i q t S

S

max max , ,

min min

,  ()

i

qR, i

qS, i

qsp,

D i

Ci iS

C

spill

Ci

DEMRi

i

i DEMR

C5000010*

D

DEMRi, S

DEMRi,

spil

DEMRi, max

,

Di max ,

Si

max ,

spilli

min 0

,

Ri

min ,

Si min 0

,

spilli

MODSIM

max ,

Di

i

q

R,

NFP

max ,

Di i

q

R,

HSOP

(HSOP) MODSIM

K=1

Di,maxk

NFP

Di,max= Di, maxk

Eik

Di,maxk

= Di,maxk

I,max K = K+1

No

Yes

(6)

PSO PSO

PSO Particle Swarm Optimization Eberhart and

Kennedy PSO

D j

T D

jD j j

j x x x

X ( 1, 2,..., ) jDT

j j

j v v v

V ( 1, 2,..., ) j

jDT j j

j p p p

P ( 1, 2,..., )

g Swarm

)]

( ) (

[ 11 22

1 k

gd k gd k k

jd k

jd k k

jd k

jd Xwv Cr p x C r p x

v

1

1

kjdkjd k

jd x v

x

d=1,2,…,D

=1,2,…,N

j N

w k C1

C2

X

w

r1

r2

[0,1]

PSO

MODSIMP

  P

Fvalue Efirm

Svalue E

PC Pec COST

firm ond

Re Re

sec

COST Pec

PC

Svalue Fvalue

Efirm

Esecond

t Re

Refirm

P

PSO

(7)

PSO-MODSIMP

MODSIMP

PSO

PSO-MODSIMP

PSO

MODSIMP

PSO-

MODSIMP

III

II I

SEPSO-MODSIMP CSEPSO-MODSIMP

PSO ( SEPSO )

CSEPSO-MODSIMP

PSO SEPSO-MODSIMP

PSO

K=1

PSO

MODSIMP

PSO

K=K+1

(8)

HSOP )

S

DEMRi,

MODSIM

SEPSO

NFP MODSIM

SEPSO

NFP MODSIM

CSEPSO-

MODSIMP wmax=0.8

wmin=0.1

1

=2.3 C

2

=1.2 C Pem

P

SEPSO-MODSIMP

SEPSO-MODSIMP

MW masl

masl

III II I Gbest

SEPSO-MODSIMP

SEPSO-MODSIMP CSEPSO-MODSIMP

CSEPSO-MODSIMP

MW Masl

Masl III

II I

Gbest

CSEPSO-MODSIMP

0 50 100 150

-9500 -9000 -8500 -8000 -7500

Iteration

Objective Function (M.R

0 50 100 150 200 250 300

-9500 -9000 -8500 -8000 -7500 -7000 -6500

Iteration

Objective Function (M.R)

(9)

PSO-MODSIMP

SEPSO

-

MODSIMP CSEPSO-MODSIMP

.

SEPSO-MODSIMP

CSEPSO-MODSIMP

SEPSO-MODSIMP CSEPSO-MODSIMP

CSEPSO-MODSIMP

SEPSO-MODSIMP

SEPSO-MODSIMP CSEPSO-MODSIMP

SEPSO-MODSIMP CSEPSO-

MODSIMP

III II

I

SEPSO- MODSIMP

CSEPSO- MODSIMP

CSEPSO-MODSIMP SEPSO

-

MODSIMP

PSO

MODSIM

NFP

MODSIM PSO

PSO SEPSO-MODSIMP CSEPSO-

MODSIMP

CSEPSO-MODSIMP

PSO

(10)

NFP

NFP MODSIM

( NFP )

MODSIM

1. Ford, L., and Fulkerson, D. (1962), “Flows in networks”, Princeton University Press, Princeton, N.J.

2. Afzali, R., Mousavi, S. J. and Ghaheri, A. 2007 A reliability-based simulation optimization model for multi- reservoir hydropower systems operation: Khersan experience. Water Resources Planning and Management, ASCE, in Press.

3. Sigvaldason, O. T. (1976), “A simulation model for operating a multipurpose multi-reservoir system”, Water Resour. Res., 12(2), 263–278.

4. Ginn, T. R. and Houck, M. H. 1989 Calibration of an objective function for the optimization of realtime reservoir operations. Water Resources Research, 25(4), 591-603.

5. Gholami-Zanousi, A., Mousavi, S. J. and Afahar, A. (2004), “Optimization and simulation of a multiple reservoir system operation”, Water Supply: Research and Technology (AQUA), 56(6), 409-424.

6. Lund, J., and Guzman, J. (1999), “Some derived operating vules for reservoirs in series or in parallel”, J. Water Resour. Plan. Manage., 125(3), 143-153.

7. Bertsekas, D. P. (1991), “Linear Network Optimization”, The MIT Press, Cambridge, Mass.

8. Shourian, M., Mousavi, S. J., Menhaj, M. and Jabbari, E. (2008) "Neural Network-based Simulation Optimization Model for Optimal Water Allocation Planning at Basin Scale” Journal of Hydroinformatics, IWA, Volume 10, No. 4, pp. 331-343.

9. Mousavi, S. J., Shourian, M., (2010) “Adaptive Sequentially Space Filling Meta-modeling for Optimal Water- Quantity Allocation at Basin Scale” Water Resources Research, 46, W03520, doi:10.1029/2008WR007076.

10. Kennedy, J. and Eberhart, R. C. (1995). "Particle swarm optimization", Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 1942–1948, (IEEE Press).

11. Shi, Y. and Eberhart, R. C. (1998) "A modified Particle Swarm Optimizer", Proceedings of the IEEE Conference on Evolutionary Computation, AK, Anchorage.

Referensi

Dokumen terkait

The proposed Binary Particle Swarm Optimization (BPSO) algorithm that uses Priority-based Fitness Scheme is adopted in obtaining five optimal controller gains..

Uji coba kedua dilakukan dengan menggunakan metode Neural Network berbasis Particle Swarm Optimization, dimana pada ujicoba kedua ini nilai akurasi yang didapat

The first objective is to develop an IENN-PSO particle swarm optimization predictive controller based on quasi-ARX neural network QARXNN for nonlinear systems where the predictive

Berdasarkan hasil model algortima neural network berbasis particle swarm optimization dapat dilakukan uji coba pada nilai training cycles ditentukan dengan cara memasukkan nilai range

This paper discusses application of the algorithm to the training of artificial neural network weights, Particle swarm optimization has also been demonstrated to perform well on genetic