*
:
[email protected]PSO-MODSIMP :
*
MODSIM (PSO)
MODSIM (MODSIMP)
PSO
PSO MODSIMP
MODSIMP PSO-MODSIMP
.
Ford ResQ
Afzali et al.
(RBS) RBS
Sigvaldason
Gholami-
Zanoosi et al
Lund HEC-PRM
Missouri
MODSIMP MODSIM
MODSIM
Bertsekas MODSIMP
Afzali et al.
MODSIM
PSO
MODSIMP
:MODSIM
MODSIM
MODSIM (HSOP)
HSOP MODSIM
HSOP
MODSIMP (HSOP)
MODSIM
MODSIM
HSOP
(NFP)
n
i i i
p i
i i E t FE
e t H t FE
R
, 1
) ( ,
) ( 73 . 2 ) (
( )
))) ( ) ( ))
( ) ( ( 5 . 0 (
)) ( ( ) ( 73 . 2 ( ) ( )
(
, ,
, 1 ,
2
, 1
1
t h t h t h t h
t R e
t E t
E
i f i TAIL i
i
i i P n
i n
i i
PSO-MODSIMP ) (t
t
E) (t Ei
i t
FE
FE
ii
i
eP,
i
) (t Ri
i t
) (t
Hii t
)
,(
2 t h i
i t
)
,(
1 t h i
i t
)
, (t hTAILi
i
)
, (t hf i
i t
(MWh) (MCM)
(m)
HSOP NFP
MODSIM
Inflow3 Inflow2
Inflow1
DemandFE3 DemandFE2
DemandFE1 Reservoir3
Reservoir2 Reservoir1
III II
I Sink
(Sink)
MODSIM
10
6m
395.83
16.835 3.885
10
6m
3626.916
1986 510.99
10
6m
3741.133
2288.76 274.163
10
6m
3512.699
1683.316 236.827
92 90
94
102 100
104
1000 1000
1000
MODSIM
MODSIM
NFP
NFP
3
1 ,() ,() ,()
i CiS qSi t Cispill qspi t CiD qRi t Min
PSO-MODSIMP
s.t
flow spill i sp release
i R low i I
storage initial
i S
storage ending
i
S t q t q t q t q t
q ( 1) () ( ) , () , ()
inf , ,
,
release i i
R release
i q t D
R
max max , ,
min min
, ()
spill i i
SP spill
i q t spill
spill
max max , ,
min min
, ()
storage i i
S storage
i q t S
S
max max , ,
min min
, ()
i
qR, i
qS, i
qsp,
D i
Ci iS
C
spill
Ci
DEMRi
i
i DEMR
C5000010*
D
DEMRi, S
DEMRi,
spil
DEMRi, max
,
Di max ,
Si
max ,
spilli
min 0
,
Ri
min ,
Si min 0
,
spilli
MODSIM
max ,
Di
i
q
R,NFP
max ,
Di i
q
R,HSOP
(HSOP) MODSIM
K=1
Di,maxk
NFP
Di,max= Di, maxk
Eik
Di,maxk
= Di,maxk
I,max K = K+1
No
Yes
PSO PSO
PSO Particle Swarm Optimization Eberhart and
Kennedy PSO
D j
T D
jD j j
j x x x
X ( 1, 2,..., ) jDT
j j
j v v v
V ( 1, 2,..., ) j
jDT j j
j p p p
P ( 1, 2,..., )
g Swarm
)]
( ) (
[ 11 22
1 k
gd k gd k k
jd k
jd k k
jd k
jd Xwv Cr p x C r p x
v
1
1
kjd kjd k
jd x v
x
d=1,2,…,D
=1,2,…,N
j Nw k C1
C2
X
w
r1
r2
[0,1]
PSO
MODSIMP
P
Fvalue Efirm
Svalue E
PC Pec COST
firm ond
Re Re
sec
COST Pec
PC
Svalue Fvalue
Efirm
Esecond
t Re
Refirm
P
PSO
PSO-MODSIMP
MODSIMP
PSO
PSO-MODSIMP
PSO
MODSIMP
PSO-
MODSIMP
III
II I
SEPSO-MODSIMP CSEPSO-MODSIMP
PSO ( SEPSO )
CSEPSO-MODSIMP
PSO SEPSO-MODSIMP
PSO
K=1
PSO
MODSIMP
PSO
K=K+1
HSOP )
S
DEMRi,
MODSIM
SEPSO
NFP MODSIM
SEPSO
NFP MODSIM
CSEPSO-
MODSIMP wmax=0.8
wmin=0.1
1
=2.3 C
2
=1.2 C Pem
P
SEPSO-MODSIMP
SEPSO-MODSIMP
MW masl
masl
III II I Gbest
SEPSO-MODSIMP
SEPSO-MODSIMP CSEPSO-MODSIMP
CSEPSO-MODSIMP
MW Masl
Masl III
II I
Gbest
CSEPSO-MODSIMP
0 50 100 150
-9500 -9000 -8500 -8000 -7500
Iteration
Objective Function (M.R
0 50 100 150 200 250 300
-9500 -9000 -8500 -8000 -7500 -7000 -6500
Iteration
Objective Function (M.R)
PSO-MODSIMP
SEPSO
-MODSIMP CSEPSO-MODSIMP
.
SEPSO-MODSIMP
CSEPSO-MODSIMP
SEPSO-MODSIMP CSEPSO-MODSIMP
CSEPSO-MODSIMP
SEPSO-MODSIMP
SEPSO-MODSIMP CSEPSO-MODSIMP
SEPSO-MODSIMP CSEPSO-
MODSIMP
III II
I
SEPSO- MODSIMP
CSEPSO- MODSIMP
CSEPSO-MODSIMP SEPSO
-MODSIMP
PSO
MODSIM
NFP
MODSIM PSO
PSO SEPSO-MODSIMP CSEPSO-
MODSIMP
CSEPSO-MODSIMP
PSO
NFP
NFP MODSIM
( NFP )
MODSIM
1. Ford, L., and Fulkerson, D. (1962), “Flows in networks”, Princeton University Press, Princeton, N.J.
2. Afzali, R., Mousavi, S. J. and Ghaheri, A. 2007 A reliability-based simulation optimization model for multi- reservoir hydropower systems operation: Khersan experience. Water Resources Planning and Management, ASCE, in Press.
3. Sigvaldason, O. T. (1976), “A simulation model for operating a multipurpose multi-reservoir system”, Water Resour. Res., 12(2), 263–278.
4. Ginn, T. R. and Houck, M. H. 1989 Calibration of an objective function for the optimization of realtime reservoir operations. Water Resources Research, 25(4), 591-603.
5. Gholami-Zanousi, A., Mousavi, S. J. and Afahar, A. (2004), “Optimization and simulation of a multiple reservoir system operation”, Water Supply: Research and Technology (AQUA), 56(6), 409-424.
6. Lund, J., and Guzman, J. (1999), “Some derived operating vules for reservoirs in series or in parallel”, J. Water Resour. Plan. Manage., 125(3), 143-153.
7. Bertsekas, D. P. (1991), “Linear Network Optimization”, The MIT Press, Cambridge, Mass.
8. Shourian, M., Mousavi, S. J., Menhaj, M. and Jabbari, E. (2008) "Neural Network-based Simulation Optimization Model for Optimal Water Allocation Planning at Basin Scale” Journal of Hydroinformatics, IWA, Volume 10, No. 4, pp. 331-343.
9. Mousavi, S. J., Shourian, M., (2010) “Adaptive Sequentially Space Filling Meta-modeling for Optimal Water- Quantity Allocation at Basin Scale” Water Resources Research, 46, W03520, doi:10.1029/2008WR007076.
10. Kennedy, J. and Eberhart, R. C. (1995). "Particle swarm optimization", Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 1942–1948, (IEEE Press).
11. Shi, Y. and Eberhart, R. C. (1998) "A modified Particle Swarm Optimizer", Proceedings of the IEEE Conference on Evolutionary Computation, AK, Anchorage.