Online ISSN: 2382-9931
Journal of Water and Irrigation Management
Homepage: https://jwim.ut.ac.ir/
University of Tehran Press
Recovering the Salinity Distributed Sources Into River from Aquifer Using the Simulation-Optimization Method
Fatemeh Yousofvand1 | Jamal Mohammad Vali Samani2 | Hossein Mohammad Vali Samani3 | Mehdi Mazaheri4
1. Engineering and Water Management Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran. E-mail: [email protected]
2. Corresponding Author, Engineering and Water Management Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran. E-mail: [email protected]
3. Civil Engineering Department, Faculty of Civil Engineering and Architecture, Shahid Chamran University of Ahvaz, Iran. E-mail: [email protected]
4. Engineering and Water Management Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran. E-mail: [email protected]
Article Info ABSTRACT
Article type:
Research Article
Article history:
Received: 30 January 2023 Received in revised form:
3 April 2023
Accepted: 6 June 2023 Published online: 2 July 2023
Keywords:
Advection-Dispersion Equation,
Backward Model, Forward Model, Genetic Algorithm, MIKE11 Software, Numerical Simulation.
Due to the increase in population and the need for water supply, preservation and protection of surface water and groundwater resources has been considered by governments. One of the pollutant sources in rivers is entering salinity from groundwater into the river, that in this research is considered as distributed (non- point) sources. The goal is to identify the salinity intensity, location and length of sources by measuring the temporal distribution of concentration in one observation point. For this purpose, the inverse solution of advection-dispersion equation in the river was employed using the simulation-optimization approach. MIKE11 numerical model was used to simulate flow and transfer of salinity in the river, and genetic algorithm was employed for optimization. In the proposed model, considering only one observation point with some measured intensity data for recovering several sources, unknown location and length of the sources, in addition to their intensities is the most significant advantage of the present study.
The model verified by using hypothetical examples, 40 km section of the Karun River and also by applying five and 15 percent noise to the observation data. The results confirm the ability of the model to recover the specifications of several distributed sources using only one observation point. With five percent of noise in the observation data, all three specifications of sources can be recovered with the desired accuracy. While at 15 percent of noise, the accuracy of the model in recovering the location and length of sources was decreased. Also, to recover the specifications of each source, employing only three points of the measured data in the ascending part are sufficient.
Cite this article: Yousofvand, F., Mohammad Vali Samani, J., Mohammad Vali Samani, H., & Mazaheri, M. (2023).
Recovering the Salinity Distributed Sources Into River from Aquifer Using the Simulation-Optimization Method. Journal of Water and Irrigation Management, 13 (2), 471-486. DOI: https://doi.org/10.22059/jwim.2023.355061.1051
© The Author(s). Publisher: University of Tehran Press.
DOI: https://doi.org/ 10.22059/jwim.2023.355061.1051
نا هﺎﮕﺸ اد تارﺎﺸ ا
یرﺎﯿآ و بآ
Homepage: https://jwim.ut.ac.ir/
:ﯽﯿوﺮ !ﻟا #ﺎﺷ ۹۹۳۱ - ۲۳۸۲
! –
|1
2 3 |
4 |
1 .
!
"
"
. :$
2 .
& ' (')&
!
"
"
. :$
3 .
" +,
" +, +- .
" +/
'0
"
. :$
4 .
!
"
"
. :$
! "# $
%
& '(
) 23 4 : % 0 56
+ , - +.
/ 10: / 11 / 1401
+ , - 0 1 2 14: / 01 / 1402
+ , - 34 5 16: / 03 / 1402
+ , - + 67 $ 11: / 04 / 1402
89
&:$
:
3 :; '
< ; =
;
$ >.
,
( : 4;&
(
!' -
$3 -
$ ?
? - 6
A BC
MIKE11
.
$?'
$ D BC -+?
$ E F GHI
I J
KL
'
$?' 3 0 M
$;C . J
N
$ O 0 '.
J
$
$ O
$ E D0 56
$
" ' , -
;&
P
$;C . . Q 0 D0 56 E;C
R . '.
"
('S J H;
J ' PTU
<
$L4 0 . . E 'P
VI
!' -
$3 -
$ ?
? - 6
$ O
>.
$ -
$ A W . .
$ >.
" ? ( 4;
'.
A BC
MIKE11
$ RN' W
$3F&
:; ' 3
< ; = H;
H; .
<
$L4 0 . /
J>
W ('
" '
"
('S J
X, R . E - VM I A N
'+
RN' W
$3F&
: E Y 4 R'M
E D0 56
;&0 . KZ W ( [ ' ( \ 0 ] C 40
; 'T
$ O
"
B ( +,
^'L _ 6 15 Z LO
$ 0 0 A W . . _ ; a ' (
R bc / J>
H;
<
$L4 0 . . . R 'Z '?
dL LO
_ 6 Z 0
0 0
$
$bc J M 'TL A W . '.
3 I
$ dL LO 15 Z M (
"
('S J D0 .
:0 E /
R bc 0 J>
$ +&M '-Z '+
$ K eF J>
P '
. H .
:. <7 $ 'H '
$+S C f 3 +K f( +?
3 +K E &I
0 P )
1402 .(
J
;&
'.
$
$ O
" 'c H;
>.
$ -
$
$ . 13
) 2 ( 471 - 486 .
DOI:https://doi.org/10.22059/jwim.2023.355061.1051
$& a : =
R ;
"
. ." & '©
1 .
$%
$?'
$ . V M
$?' J N
$ O 0
$ 5 0 '
( I
$- ' O . k' J>
; N
:0 E / R .
"
l M
;
&
+0 .
Tm &
$ K
" ' , ( : 4;&
^ L 1
'.
R .
"
"
'3 nc
' Q 0 E -
"
' / J '
PTU '3 .
" /
$/
R .
"
N
$;O . .
$ 'P E - R .
"
0 (
0
2!' -
H;
'.
.
oK>
J N VI
!' -
$3 - ( 4;
$ O H;
$ A W
'.
f
$ >.
-
$ ]
N +;I E
.
$ >.
-
$
<
:; ' 3
$ p
0 , VI
" ? ( 4;
q . '.
$ >.
$ (
R bc J>
E +c B
$ 0 'O . .
$ B0 > K E
p 0 rN'+-
. N
E p
. J
N 0
&
$-3 L ' M
$;C
"
F . .
E ( I
H;
E VI
!' -
$3 - ( 4;
$ O
$
$0 O K . '.
Jha and Datta
) ( 2011
H;
$ >.
-
$
$ VI
!' -
$3 - ( 4;
. J
N
$L4 0
;O 6 .
"
0 W
( 'O
< 3
<
p
$ (
0
$ >.
+ H
MODFLOW MT3DMS
H;
. :0 E / E
D0 56
$
$& 4 p 0
$
$ >.
. ) ( SA
:; ' 3
< ; =
$;O 6 . . _ ; I
"
$ H;
p W SA
$
+0 J
s 6 0
$ '?
$ . 0
-M M
D E +c .
Prakash and
Datta
) ( 2014
$ . J
N L .
;O 6
$
"
J>
'3 4 . N
"
0
"
- R bc J>
'3
$;O . . . (
$ >.
-
$
$- ' .
E
D0 56 '
tT;c _ ;
4C' B
"
. .
Nardo et al.
) (2015
3
<
-
! p : P VM I R -
H;
R ,XS C
. 0 &I
;&
$m . E ( M
$ n c
"
"
0 N
$ O '
"
L .
$ E /
$L4 .
('S
$ O '?' . .
Zhang and Xin
) ( 2017
H;
:; ' 3
< ; = .
$ 'P E +c R bc
N
$
$ R 'Z
$
$ O
$ Tc '.
$m . E D0 56
$L T TK ( 4;
N
$ R 'Z
<
- U
? V
J Q 0
$ H;
. .
A
$ 'P VI
$3F&
] .
r '+, E p 0
$ R 'Z : 4;&
$3 -
!' - VI
.
$ X, +0 p
0 ]
$ 'P VI
$3F&
+ O
$ H;
<
p : P .
E
p 0
$ B0 > K :
$;.
V 4 u K3 ] v 6 0 w O 'O .
Tong and
)Deng
( 2012
H;
V >
!X6N .
$ 'P E +c J . 0 :0 E / A ? . 0
$m .
E D0 56
$ V >
!X6N
$3 - A'; ' x c;
. yz
$ >.
$ N 0 tT;c
" ? A W . '.
Mazaheri et al.
) (2015
$ E - J
N ( -C
$ O J ' R .
"
0
3 I 0
<
-
<+
p J E . ;O 6
"
0
"
A + ( \ 0 ] C -M
N I
$ D Y 4 0 .
>&
$ J N q
. _ ; (
!' - J '
R . J
N M
>
V M ('>M 0 'O ' . E ' VI
!' -
$3 - ( 4;
H;
p 0
N +;I E
. E p 0 0 ; 6 (' W
l S J ' 0 N +;I t Z'
'.
- E s 6 0
$3F&
VM I
"
$ >.
0 -;
$> K . '.
Yuan et al.
) ( 2013
.
!
>
p 0 B p 0 ' '3
$ 'P . J
N ' 3
$ Tc
0 KL
$m . _ ;
"
0
$ 0 ; 6
$> K .
$ 'O 4
-M 4 L
:; ' 3
$m . B
VM I
$
$
& '
"
.
Cupola et al.
) ( 2015
( ( +;I
; (
;>
p 0 E
$& 4 .
E
$3 4 0
0 K [ . rX
( ; . H;
. . _ ;
"
0
$ p E M J
$ 3
0 N
"
0
$ 'O n c . 0
Ghane et al.
) ( 2016
$ (
( +;I
;
$
.
"
"
N
$L4
$
$ >.
$ O . ;O 6 E
D0 56
<
( ,
! B 3 {B?
M K3
$- ' . .
:0 E /
"
.
$
$3 - : I I ( +;I {B?
M K3
$3 - ( 4;
.
q3 U D0 56 0 p 0
$- ' .
[ ' D0 56
"
V M J
' -
p 0 6 KL
&
K 3 I .
$
$ T, ,
&
D
" ?
$ O 0
>&
$ H 0
$ Tc N 0
$ O
"
&
' R 'Z .
E
n c
"
4 '3
$
$ O 0
$
" ' ,
<
J>
: E . ,
M D
A W . '.
\ D0 56 0 A W .
$ O 0 B VI
!' -
$3F&
4
PTU . 0
J N R 'Z
$;C . E D0 56 0
"
J>
N A'T-
| C . VZ
"
A + J N
V & ;6
"
H;
.
$ 0 3 I
"
$
" ' ,
; 6 A'T- R > K P
$;C . (' W
$3F&
R . J
N .
:0 E / J
N -
$L4 P
$;C . D0 56
"
F
$;.
$ PTU
N . 0 J
$ 0 J>
N
<
$L4 0 .
E 6
"
P
$;C . '.
$ R >,
<
$L4 0 . +
" ' / J>
N E
J Y 4 0 . P
$;C . '.
T, E YX;O
e J
$L4 0 . .
E -
$
;M J
:0
$TZ C +
$L4 0 . :0 [T;c '.
"'/
eF J YX;O
$;C
<
$L4 0 .
+
" ' / J>
. E;C P E /
$L4 0 . ('S
$ O 'O W
$ V +K
$ B0
" C
0 'O . . E
" ' H A'T-
| C
"
"
J E;C P E /
$L4 0 . ('S
$ O B
$L4
" ' +, J
N
$-3 L '
$T+?
: E Q . 0 +T, '?' D0 56 0
$;.}
.
3 I
$ D0 56 ] I J
P ' -
;&
. H;
<
$L4 0 . E 6
$ O
$ 0
$
$bc
"
R . ('S
;&
J
.: 6
$3F&
^ L E
D0 56 ( 4;
'.
$
$ O D BC
" B
^X '.
) (TDS
$ O 0 I W .
E D0 56 .
VI
!' -
$3 - ( 4;
$ O
;>
$ >.
-
$
$m '.
$
$ R bc
E / J>
;&
'.
$ O
. 6
$ >,
"
0
$
$ O
$
" ' ,
<
/ J>
;&
P
$;C '.
Q 0
"
('S
;&
R . '.
)
W(kg/s)
( E J H;
<
$L4 0 .
E 6
$ O . .
J P ' E
D0 56 -
;&
} e
;&0
$
$TZ C
V M
?' :0
M .
'?
$TZ C q
E J [ . 5 '+
PTU -
"
$L4 0 .
W .
$ E R 'Z
$
; J>
(
< B ) E (J>
$
$L4 0 . W
$ D BC PTU
'.
E
$L4 . '.
y6
$ PTU VZ I J>
( 4
\ I 'O e . J>
A
$
$L4 0 . o,
D BC PTU
E
$L4 '.
E
$ PTU
$L4 0 .
\ I 4
VZ I 0
J>
e . '.
$C ]
" . J R ~
PTU
$L4 0 .
$ E +0 q
$
. E k']' V
$T6 0 '+
PTU -
"
$L4 0 . '
. p H;
.
D0 56 ] I
$ u K3 H;
<
$L4 0 . R bc
E / J>
'.
(' W
" '
"
('S
;&
J X, R .
"
B
$m '/ / T
J
;&
D0 56 0 V>M
R H;
.
2 . '
(
E Dc D0 56 p
VI
$3F&
[ ' ( 0 : 4;&
!' - R mB?
A 0
"
0 d ]'
. '.
l L ( D0 56 0
$ VI
!' -
$3F&
( 4;
$ O
$ _ ; VI : 4;&
$
" ' ,
$3F&
. E
; H;
( : 4;&
RN -
< 0
( 4;
A ? N
VI
. '.
? O 0 ( : 4;&
) 0 PTU -
"
$L4 ( 0 .
$
" ' , (
!' -
H; '
M .
yz
? (
!' - _ ;
$3F&
$ >,
"
('S R . '.
" 'c
$
$ O
$ .
2 - 1 .
*$
+ %
E D0 56
$ O
$
" ' ,
<
:;&
<
- P
$;C . '.
E 3 I RN -
?
"
( 4;
$ O B
$ R 'Z
<
- VI . '.
( 4;&
: Dc
(
?
"
HD)
( (
$ ?
? -
6 )
( AD
.
; (
" ?
? '.
? O 0
"
$ V . , l+,
"
0
"
0
tT;c +0
"
('S
;&
R . J
$
" ' , 0
(
$ ?
? - 6 P
$;C
. '.
y6
? (
$ ?
? - 6 '
J PTU
N ('S
$ O
$ .
RN - (
: 4;&
V . RN -
3 -
$3 -
$ ?
? -
4 6 . . RN - -
V .
$3 - 4 A ? 4 :; '
$ [ ) 1 ( ) 2 (
"
. .
$3 - 4 A ? N
B
$L ) 3 (
"
. .
$L 1 (
+ = 0
$L 2 (
+ ( )+ + = 0
$L 3 (
( )+ ( )− = − +
E RN -
? Q
"
dL A
JL4
?
"
l+,h
$ O
Sf
. q [O
=
;. g
V4e PTUC
N
D
q ] 6 3'S
]k
q ( N
Cs
PTU J
N
Qs
J N
x
$ t
q -
"
"
RN - . .
E D0 56 VI
RN -
" ? ( 4;
$ O RN - ) 1
3 ( ( ,
MIKE11
H;
. '.
( ,
MIKE11
VI RN -
<
-
" ? ( 4;
H;
<
^ S V] H K
+]
$ A :; ' 3 D.
$L4
5R' A W '.
)
Abbott and Ionescu, 1967
.(
E ( (
0
HT;c ' 0
H;
"
}6 .
$?'
$ k']' E D0 56 A W
$ >.
( 4;
'.
$ O (
< 0
(
$ ?
? - 6 H;
. .
2 - 2 .
*$
, -
" +0 'S
$
$;H . VI
!' -
$3 - ( 4;
$ (
!' -
$ p tT;c '?
. E
D0 56 VI
!' -
$3 - ( 4;
$ O H;
$ >.
-
$ H;
. '.
$ (
!' - P '
6 ' E (
$ >.
MIKE11
' 3 :;
$
; =
<
K [
MATLAB
$;.' . .
2 - 3 .
*$
!
+ /0
1 2
R bc 0
<
J V . R . '.
"
('S
;&
$
$ '
$
$
PTU '.
$> K .
$L4 0 . [ ' (
!' - PTU
'.
0 E
$L4
VM I QX;O . . ('bI E Q 0 H;
<
p
$ .
E D0 56
:; ' 3
< ; =
$
" ' ,
$ H;
. '.
:; ' 3
$- ' .
0 A '
"
0 R bc
J>
N -
"=
0
"
- RN' W
$3F&
. E A ' 0
$ 3'
\ D ?
. '.
E
"
$ Y . +0 tM'
( >
0 'O . . E D0 56 Y . +0
"
$ O E V&
.
$?'
$ E
$ VM I
"
J RX] H .
$;C }6 ea
R -3 L
$
$3F&
$
$ E 'Z R t - '.
: E - 4 R . '.
) (W
"
B ('S
;&
) (L
0
<
0 D
$ O
" 'c W
$
$ '
$ J Q 0 VM IF
. '.
$L 4 (
= ∑ (' () !" − #$%)&
E
$L
o b s
ci
PTU '.
0 ) ( .
$L4 0 .
c al
ci
PTU '.
$> K .
E
$L4 VI
!' -
$3 - ( 4;
$ 0
tT;c
$> K '.
. E Q 0 TZ
E D0 56 .
"
0 '.
$
$ O E - ('S 0
$4L )
L1, L2, L3, L4, …, Ln
( B
$> K R . '.
.
$
$ O 0
<
E
"
0 )
W1, W2, W3, W4, …, Wn
(
$ 0 ~;
: +b
$3F&
. '.
R .
<
~;
$; ' 6 '
0 4 K
E - .
c;
+
$L ) 5 .(
$L 5 (
0<+ ≤ +-$
E
$L
wmax
D E 4 R . '.
K R . '.
J>
E - .
E
D0 56 VM I
\ I R . '.
$ q HZ 500 A 'T
$ e . .
:0 E / ('S
;&
J
K V M
t - :
$L 6 (
0<. ≤ .-$
$L ) 6 (
Lmax
D E 4 E + ('S
;&
J>
P ' 4
"
$?'
$
"
P
$;C .
$L4 0 . P
E;C E
$;
$ J>
'.
N
$L4 0 . M
$;C
E - '.
. E 4
Lmax
0 J>
0 ( \ R H;
P
$;C . .
k'+W
" '
p VI
$3F&
(
>.
$ -
$ l HT .
$ R 'Z VI
"
'+
:
1 . 0
$ 3
$ ( V . C '6' JS 4
] ,
$ O [ .
$ 3 (
" ? (
$ ?
? - 6
2 . 3' R . ('S 0 C b J
'.
)
W
( L
[ ' ' 3 :;
; =
<
3 .
? A BC
MIKE11
0 VI V>M
$> K PTU
$L4 0 . PTU)
$> K (
4 .
$> K J Q 0
$3F&
E;.
PTU 0 0
> K
$
$L4 0 .
5 . M
Y .
. +0
Y . +0 M
.
$ 6
"
R bc
$> K .
J>
P ' V . R . ('S
;&
J>
"
'.
. U E R 'Z R bc
J>
P '
~ VI
_ 6
"
$ +0 '.
.
2 - 4 . 4 546 7
*$
, -
KZ W (
!' -
$m . E
D0 56 H;
( \ 0 ] C -;
RN I HT;c P
-
$TZ C J
;&
'.
:0 B - RN' W R H;
A W . Dc .
$m _ ;
$ '+
( \ 0 TZ
$m . .
( \ 0
$m .
<
$ O JS 4 :P ('S 30
; 'T P
$;C
. .
" ?
$ O
O ' U
. . [ . (
" ?
$ R 'Z e
N
) 300
; q- ($ e A'M e dL E 6
) 990 ( ; . . (
( 4;
B Y .
N
$ R 'Z PTU e HZ
" ) ( '3 E 6
Y .
$ R 'Z
"
PTU
( = 0) HZ P
$;C . . [ .
$ 3
< 0
(
" ? k .
6 'O H;
.
. PTU
$ 3 '.
$ O B HZ P
$;C . .
:0 E / (
" ? q ]
€
035 / 0 100 ∆x
; 30 ∆t
$ e . .
q ] 6 65
J ;
$ e
$ R 'Z e
P
$;C . .
:0 E / '.
$
" ' ,
<
N D
}6 q ] (
HZ (
. ) .(k =0
(
$m . X, ( \
0 ] C H;
J '.
] C c
$ O
"
$ ('S 40
; 'T ' KZ W M . C
<
p : KZ
W T+, (
0
!' - H;
( \ 0 ] C ( +, LO
$
0 0
;&
0 . 0
eF E LO R bc
J>
N .
E +
V+, 0
A W .
;&
0 . rX
l M
"
LO '>
dL LO bc
. . E D0 56 ( +,
LO
$ 0 VZ I
? ( : 4;&
$L ) 7 ( H;
.
)
Mahar and Datta, 2001
:(
$L 7 (
̂ = + 01
E ˆ $L PTU c .
LO dL ɛ
LO P '
< a
, C b E
HZ
<
J ' (
. E D0 56 dL
LO 05 / 0 15 / 0
$ q
$
" ' , dL LO E 6
dL LO N P
$;C . .
E dL LO
$ 0 0
$L4 0 . ( \
A
+, ( R bc J
0 3 I .
.
$ 'P
; _
$TZ I
•
; T+, (
-
!' nO . 0 LO
>&
) (RE
}?
E
R - LO ) (RMSE
; 6 0 R . '.
('S J
;&
l L [
) 8 ( ) 9 ( ) 10 ( ) 11 ( P
$;C . .
$L 8 (
23 45= 6∑(+#$%− +!")&
7
$L 9 (
23 48= 6∑(.#$%− .!")&
7
$L 10 (
245=(+#$%− +!" )
+!" 9 100
$L 11 (
24%=(.#$%− .!")
.!" 9 100
E [
wcal
R . '.
$> K .
wobs
R . '.
l M -M
Lcal
('S
;&
$> K .
Lobs
('S
;&
l M -M . .
3 . 8 94
E Dc
; (
!' - P '
‚ ( \ ' M
. ( \ (
$
"
('S
R . '.
<
J>
;&
H;
<
$L4 0 .
$;O 6 . '.
:0 E / - 0
A N
RN' W
$ '+
PTU -
"
$L4 0 . .
'.
E - . '.
( \ A
$
"
('S R . '.
J>
;&
H;
<
$L4 0 .
: 6
. yz (
!' -
E;C P
$ J>
'.
] C c
$ O
"
$ ('S 40
; 'T KZ W . '.
'K
t - J
N
;&
(
MIKE11
$ E R 'Z
$
= ; 'T
;
; J>
B R .
'3 E -
. QX;O
= ; 'T
;
; J>
;&
(('S) J>
"
. 0 E;.
= ; 'T
;
; J>
X, ('S
"
J>
B E - . '.
E
$ 0 J>
$ (' W
.:
= ; 'T
; J>
= ; 'T 7
; J>
R . 8
'.
$
>, R ('S
"
R . . '.
3 - 1 .
* : (*
<=$
* >
1 1
?%
$(
V . ) 1 ( -M' J>
$L4 S1
0 .
>&
$
;
$ O ] C
"
. .
J>
R . S1
'.
15 A 'T
$ e
; 'T
$
$ O JM . .
$L4 0 . B 5 / 6
; 'T
;
$ O M . E ( \ - RN' W
$3F&
$ (' W R .) '.
"
('S J>
( S1
. .
'+
PTU -
"
$L4 0 . V . ) 2 (
"
. .
Figure 1. Location of distributed source (S1) and observation point (p)
" +0 'S
$ V . ) 2 ( 0 '.
,
$ - PTU
$L4 0 .
$ D E 4 'O
$ 50
T A
; 3
"
0 E 4 e .
; H;
$+0 0 '+
PTU -
"
? (
!' -
$
$ (' W
$3F&
- R . '.
"
('S J>
S1
.: 6
R bc l M .
J>
( ? S1
1
$m . .
'+
PTU -
"
$L4 0 .
y6 J>
V . S1
) 3 (
"
. .
Figure 2. Measured concentration versus time at observation point
Figure 3. Measured (exact) and computed concentration versus time at observation point (p=6.5 km).
Table 1. Exact and computed specifications of S1
REL (%) REW (%)
L (m) End chainage (m)
Start chainage (m) W (kg/s)
- -
1000 3000
2000 15
Exact
0.001 0.0001
1000.01 3000.01
1999.99 14.99
Computed
" +0 'S
$ V . ) 3 ( 0 '.
0 0
$L4 0 . R ,XS
$> K . E
$L4 [ ' (
!' - M
N :0 l>L .
E
?
$+0 0 '+
PTU -
"
$L4 0 . R bc
J>
H; S1
. .
$ H;
- H;
0 '+
PTU -
"
? (
!' -
$ -
' R bc
J>
.: 6 S1
E ( \ R
"
$ >.
D.
, A
? R > K 15
$4 M P
$;C . .
0 5 10 15 20 25 30 35 40 45 50 55 60
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
C (mg/l)
T (hr)
exact
0 5 10 15 20 25 30 35 40 45 50 55 60
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
C (mg/l)
T (hr)
exact computed
E '+
PTU -
"
$L4 0 . 25
,
$ , (
"
HZ . .
R bc
. J>
RN I S1
tT;c ( ?
) 2 (
$m . .
Table 2. Computed specifications of S1 using different numbers of data
REL
(%) REW
(%) L
(m) End
chainage (m) Start
chainage (m) W (kg/s) Explanation
180.19 356.84 2801.91 2975.42
155.51 68.53
Using the first 3 data (1 non-zero data) 1
188.52 323.98 2885.2 2905.9
20.7 63.6
Using the first 4 data 2
3.76 0.5 1037.57 3037.59
2000.02 15.08
Using the first 5 data 3
0.18 1.2 1012.04 3000.05
1988.01 15.03
Using the first 6 data 4
1.15 0.07 1011.49 3004.53
1993.05 15.01
Using the first 7 data 5
0.004 0.06 1000.04 3000.01
1999.98 15.008
Using the first 8 data 6
0.003 0.05 1000.04 3000.04
2000.001 15.007
Using the first 9 data 7
0.003 0.04 1000.03 3000.03
2000.002 15.005
Using the first 10 data 8
0.002 0.01 1000.02 3000.02
2000.002 15.002
Using the first 11 data 9
0.001 0.004 1000.01 3000.01
1999.99 14.99
Using all 25 data 10
0.12 0.1 1001.02 3000.4
1999.38 15.02
Using data from 5 to 7 (located on the ascending part of the graph) 11
57.23 0.001 1572.33 6079.39
4507.06 14.99
Using data from 11 to 13 (located at the end of the graph) 12
$?'
$ B 3 A W . _ ;
$m . ( ? ) 2 ( 0 '.
$ R 'Z H;
<
U
HZ 3 I) 0
<
( (
!' - M
$ R bc
J>
P ' . &
'Z
$
$ HZ U
D RN' W
$3F&
H;
'.
3 I)
$
$ ( - (
!' - M M
'TL
$
$bc R . ('S
"
J>
P ' . +
$/
$/ 0 - 0 D J>
P '
H;
'.
M J>
N
"
?
$ : 0 'O . . :0 E / 0 .
$
$ qc;
4 ƒ B R . '.
JM +&M '-Z '+
. (
!' - M M
N
"
'
$ (' W
$3F&
+ 3 I) +.
11 .(
" /
$/
$ c;
. 0
JM
$T6
; '+
. 3 I) +.
12 ( (
!' - [4C ' R . J>
P '
$
; +
,XS
"
J>
;O + . } ,
JM
$T6
; '+
<
4 nc e . 'K
R ~ PTU
$L4 0 .
"
+ . 0 E M
$
"
J>
P ' B + . .
E +0 ( \ ('bI
_ ; D ' 'K c;
$ '+
PTU -
"
$L4 0 .
A
? R > K
$ - 0
'+
ea
$ _ 6
$4 M D0 .
. E
$3 4
D0 :WI q3 L
$
"
_ ; VZ I H;
. '.
D0 A - 0 D '+
PTU -
"
$L4 0 .
! ; M )
37 ,
$ >.
$ .($;, E E;C P
37
'?' '+
? (
!' - 3 I
0 tT;c
$ [ .
$ P '
$;O 6 . . _ ;
"
0
$
$ qc;
R . ('S
"
<
J>
;&
+&M '-Z '+
PTU -
"
$L4 0 . JM . (
!' - ';
R bc J>
$
; . +
3 - 2 .
* :
@ (
<=$
* >
1
?%
$(
E ( \ -M' J
S1
$L4 S2
0 .
$
$v V . 4 0 '.
P
$;C . .
R bc J
B ( ? 3
$m . .
y6 I S
? ( : 4;&
'+
PTU -
"
$L4
0 .
$ R 'Z V . 5 VZ I . .
Figure 4. Location of distributed sources (S1 and S2) and observation point (p)
Table 3. The specifications of S1 and S2
L(m) End chainage(m)
Start chainage(m) W (kg/s)
Source Number
1500 3000
1500 30
S1
2000 13000
11000 52.5
S2
M '+
V . ) 6 ( 0
$T6 V .
" ' '?
J>
;&
} e
n c .
4 PTU VK
V
$T6 ( '+
[4C K eF J>
y6 S2
"
K eF 0
J>
S1
. S2
$ YX;O e J>
E
"
$ -
"
. 0 E
E;.
4 0
PTU
$L4 0 .
$?'
$ VK V
$T6 ( '+
" )
"
J>
$ S1
$L4 0 . k .
YX;O (J>
" ' (
!' -
? '+
R bc J
$TI
$
$TI '+
f
; J>
S2
yz J>
. '. S1
E 'P
; (
!' - E;C P
c '+
PTU -
"
$L4 0 .
$ K eF J>
. S2
)
; '+
VK V
$T6 ( (
? . 0
$
$bc
(' W J>
. '. S2
yz R bc
$ J>
V C S2
[ . M
H;
$+0 '+
PTU -
"
$L4 0 .
$ K eF 0 J>
. (
!' -
$
"
R bc J>
? S1
'.
. R bc .
J
S1
( ? S2
) 4 (
$m . .
0 '.
H;
E p R bc 0 J>
M 'TL .
. :0 E / 4 LO
>&
J>
>& S1
$ J>
D BC S2
$;C . J
$ R 'Z
$TI
$
$TI . '.
$?'
$ E
$ R bc J>
V C S2
[ . J>
M S1
LO
$> K J>
W S2
$ D BC LO
$> K J>
'. S1
'+ .
PTU -
"
$L4 0 . y6 0
J>
V . ) 6 (
"
. .
Figure 5. Concentration versus time at observation point; with 0, 5 and 15 percent of noise
0 30 60 90 120 150 180 210 240 270 300
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
C (mg/l)
T (hr)
exact 5% Noise 15% Noise
Figure 6. Measured and calculated concentration versus time at the observation point (p=17 km); without noise
Table 4. Computed specifications of S1 and S2
REL (%) REw (%)
L(m) End chainage (m)
Start chainage (m) W (kg/s)
Source Number
0.006 0.008
1499.91 3000.13
1500.22 30.002
S1
0.001 0.004
1999.98 12999.99
11000.02 52.498
S2
E ( \
$L 7 dL LO 05 / 0 15 / 0
$ 0 0
$L4 0 . ( +,
c R b J
0 3 I .
. H;
0 '+
PTU -
"
"
. V . ) 5 (
?
( -
!'
$ J
P '
.: 6
_ ; J
( ? ) 5 (
$m . .
dL LO
_ 6 Z dL ) LO (E 6 0
$
$bc J
M 'TL A W . '.
3 I
$ dL LO
15 Z dL ) LO (N M (
"
('S J
$ 4 D0
.
$/
E ( I R M ( R .
'.
J V M ('>M .
Table 5. Computed specifications of S1 and S2, with 0, 5 and 15 percent of noise and error indices REL(%) RMSEL(m)
REW(%) RMSEW(kg/s)
L(m) W (kg/s)
Source Number
- -
- -
1500 30
Exact
S1 Noise (5%) 30.25 1551.44 0.26 0.85 51.44 3.43
26.67 400
4.28 1.29
1900 28.72
Noise(15%)
- -
- -
2000 52.5
Exact
S2 Noise (5%) 52.41 1962.56 0.09 0.17 37.44 1.87
12.04 240.86
2.54 1.29
2240.87 53.79
Noise (15%)
3 - 3 . 546 7
*$
- , A B
C
E Dc (
!' - E;C P
$ J>
] C c
$ O
"
KZ W . '.
E
'P c
$ O
"
$ ('S 40
; 'T E 6 '0
) 678 E
/ 35 39 48 641N
/ 40 16 31 (
;
" ' ) 729 E
/ 21 30 48 084N
/ 47 9 31 ( B
$ C S c;
. . A N
$
‚
$
R ,XS
H; '
Dc
< 0
( -M
;&0 C '6' )
$ O R bc JS 4
] ,
0 ; 6 .(
„ 0
$ ' ,XS J
;&
'.
$
$ O
$ Tc '.
! ; . &
E 0
$
$bc J
;&
P
$;C . - R . '.
"
M ('S
;&
J
0 30 60 90 120 150 180 210 240 270 300
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
C (mg/l)
T (hr)
exact computed
$ R 'Z ] C P
$;C . .
:0 E / [ .
" ?
$ O
| C . .
4
W . q ]
€ q ] 6 B
! _ ; D0 56 A W
. [ '
Fakoori
) (2017
$ O
"
$4L
$-3 L '
$ R 'Z q ] 035
/ 0 q ] 6 31
/ 103
P
$;C . . 4 dL
E 6
$ q 150
q- ;
$ e
$
;
. . V . ) 7 (
^ S
< +.
$ O
"
P '
"
. 0 E V .
S1 S2
$ S3
J>
;&
'.
$
$ O
;& p
0 .
$ T, '?
$ J>
;&
} e
V
$
$T6 '+
PTU -
"
$L4 0 . V .) 8 ( 0 '.
. 0
$
$bc R .
"
('S
J (' W
| C . '.
E - RN' W
$3F&
$…
(' W . .
E
$3F&
( _ 6
A 0 /
$;,
$ >.
. .
H;
'+
PTU -
"
;&
0
? (
!' - R bc
$ J>
'.
$ R 'Z
$TI
$
$TI . '.
0 J>
" +0 'S
$
$
" ' ,
<
$W ; : ( \ 0 T>M
"
.
VM I
$
$ '+
PTU -
"
;&
0
$ K eF J>
P ' . .:
$?'
$
! ;
" ' D
$
$L4 V>M V
0
$T6 0
J>
\ I '?'
H;
'.
"
J>
M D A W . '.
_ ; J
S1 S2
( ? S3
) 7 (
$m . .
'+
PTU -
"
;&
0 y6 0
$ J>
V . ) 9 ( D + .
$
† >L 'TL 0
0
0
$> K . [ ' (
!' -
;&
0
"
. 0
Figure 7. The picture of study area in Karun River and salinity source locations and measurement station
Figure 8. Concentration versus time at the measurement station (p=37.543 km) 0
100 200 300 400 500 600
1/1/90 0:00 1/1/90 4:00 1/1/90 8:00 1/1/90 12:00 1/1/90 16:00 1/1/90 20:00 1/2/90 0:00 1/2/90 4:00 1/2/90 8:00 1/2/90 12:00 1/2/90 16:00 1/2/90 20:00 1/3/90 0:00 1/3/90 4:00 1/3/90 8:00 1/3/90 12:00 1/3/90 16:00 1/3/90 20:00 1/4/90 0:00 1/4/90 4:00 1/4/90 8:00 1/4/90 12:00 1/4/90 16:00 1/4/90 20:00 1/5/90 0:00 1/5/90 4:00 1/5/90 8:00 1/5/90 12:00 1/5/90 16:00 1/5/90 20:00
C (mg/l)
T (hr)
exact