• Tidak ada hasil yang ditemukan

Robust stability for affine T-S fuzzy impulsive control systems subject to parametric uncertainties

N/A
N/A
Protected

Academic year: 2024

Membagikan "Robust stability for affine T-S fuzzy impulsive control systems subject to parametric uncertainties"

Copied!
6
0
0

Teks penuh

(1)

Robust stability for affine T-S fuzzy impulsive control systems subject to parametric uncertainties

Iman Zamani Electrical and Electronic Engineering Department, Shahed University, Tehran, Iran

[email protected]

Amir Hossein Amiri Mehra Electrical and Electronic Engineering Department, Shahed University, Tehran, Iran

[email protected]

Zohreh Abbasi Electrical and Computer Engineering Department, Qom

University of Technology, Qom, Iran, [email protected]

Masoud Shafiee Department of Electrical

Engineering, Amirkabir University of Technology,

Tehran, Iran, [email protected]

Abstractโ€”The main objective of this paper is to investigate the robust stability problem of affine fuzzy impulsive control systems in which the system is presented by affine Takagi-Sugeno fuzzy model. By using extended Lyapunov stability theory, some matrix inequalities conditions are derived to guarantee the stability of affine Takagi-Sugeno fuzzy impulsive control systems subject to parametric uncertainties. A numerical example is given to confirm the analytical results and illustrate the effectiveness of the proposed strategy.

Keywords- Affine Takagi-Sugeno Fuzzy system; Impulsive control strategy; Parametric uncertainties

I. INTRODUCTION

Motivated from impulsive differential equations, the effects of impulses can be used as a strategy in control theory which is named as โ€˜โ€˜impulsive control strategyโ€™โ€™. The main idea of impulsive control strategy is to change the states of continuous dynamic systems via discontinuous control inputs at certain time moments. Impulsive control strategy has attracted many literatures [1, 2] and have been widely used for stabilization and synchronization of complex delayed dynamical networks [1-4], switched systems [5-7], optimal control for switched systems [8], large-scale systems [9], control of biological models [10], control of chaotic systems [11] and etc. Among of these systems, which have used impulsive control strategy, fuzzy systems have attracted many interests [12-17]. Many theories and relevant method were developed for fuzzy systems in previous decade and applied with more or less success depending on the specific problem [18-23]. Extended and innovative methods and relevant conditions for stability analysis of fuzzy impulsive control systems were found. Some methods and conditions for stability in continuous and discrete fuzzy impulsive control systems are presented in [24-27]. To the best of our knowledge, stability analysis of affine T-S fuzzy impulsive control system has not yet been fully investigated and this will be the goal of this paper.

Another important subject that should be attended is stability analysis in the presence of uncertainties, which is considered in this paper.

In this correspondence, we consider two classes of uncertain affine T-S fuzzy impulsive control systems. By using impulsive control strategy, we obtain some sufficient conditions to analyze (uniformly, asymptotically) stability of uncertain affine T-S fuzzy impulsive control systems in the presence of parametric uncertainties will be given.

The contributions of this paper are organized as follows.

After an introduction, we introduce the concepts of impulsive differential equations and then affine T-S fuzzy impulsive control system is explained in section three. In the section four, stability analysis of two classes of uncertain affine T-S fuzzy impulsive control systems are considered. Base on extended Lyapunov theory, sufficient conditions for stability analysis in the presence of parametric uncertainties are extracted in terms of matrix inequalities. Finally, results are argued in conclusion section.

II. IMPULSIVE CONTROL STRATEGY

In this section, we present the concepts and definitions of impulsive control strategy that we need to introduce affine T-S fuzzy impulsive control systems. First, we address the issues which concern the necessity of impulsive control strategy from [10] and mentioned previously in [28-30] by the authors of the paper. This part is given originally from [10]. Consider the

following impulsive functional equation

{๐‘ฅฬ‡ (๐‘ก)= ๐‘“(๐‘ก, ๐‘ฅ(๐‘ก)), ๐‘ก โ‰ฅ ๐‘ก0,

๐‘ฅ(๐‘ก๐‘˜)= ๐ผ(๐‘ก๐‘˜, ๐‘ฅ(๐‘ก๐‘˜โˆ’)), ๐‘˜ โˆˆ โ„ค+, (1a) where ๐‘“: [๐‘ก0, โˆž) ร— ๐‘ƒ๐ถ โ†’ โ„๐‘› and ๐ผ: [๐‘ก0, โˆž) ร— ๐‘ (๐œŒ) โ†’ โ„๐‘›. Here, ๐‘ (๐œŒ) = {๐‘ฅ(๐‘ก) โˆˆ โ„๐‘›: โ€–๐‘ฅ(๐‘ก)โ€– < ๐œŒ}, PC denotes the space of piecewise right-continuous function. โ€–โˆ™โ€– is a norm in โ„n, 0 <

๐‘ก๐‘˜< ๐‘ก๐‘˜+1 with ๐‘ก๐‘˜โ†’ โˆž as ๐‘˜ โ†’ โˆž. ๐‘ฅฬ‡ (๐‘ก) denotes the right-hand derivative of ๐‘ฅ(๐‘ก) and โ„ค+denotes the set of all positive integers.

For stability analysis, we assume that ๐‘“(๐‘ก, 0) = 0 and ๐ผ(๐‘ก๐‘˜, 0)=0 so that ๐‘ฅ(๐‘ก) = 0 is a solution of (1a). Motivated from the nonlinear impulsive equation (1a), the following impulsive control system (strategy) can be considered

๐‘ฅฬ‡ (๐‘ก)= ๐‘“(๐‘ก, ๐‘ฅ(๐‘ก)),

๐‘ฆ(๐‘ก) = ๐œ‘(๐‘ฅ(๐‘ก)), (1b) where ๐‘ฅ(๐‘ก) โˆˆ โ„๐‘› is the state variable, ๐‘ฆ(๐‘ก) โˆˆ โ„๐‘š is the output variable, ๐‘“(๐‘ก, ๐‘ฅ(๐‘ก)) and ๐œ‘(๐‘ฅ(๐‘ก)) are continuous function in their respective domains of definition. An impulsive control law of (1b) is given by a sequence {๐œ๐‘˜, ๐ผ๐‘˜(๐‘ฆ(๐œ๐‘˜))}, where 0 < ๐œ1<

๐œ2< โ‹ฏ < ๐œ๐‘˜< ๐œ๐‘˜+1 < โ‹ฏ , ๐œ๐‘˜ โ†’โˆž ๐‘Ž๐‘  ๐‘˜ โ†’โˆž , and ๐ผ๐‘˜(๐‘ฆ(๐‘ก)) is a continuous function which maps โ„m to โ„n for all ๐‘˜ = 1,2, โ‹ฏ which is named as โ€˜โ€˜impulsive functionโ€™โ€™. Clearly, if the solution of (1b) exists, we can rewrite (1b) as follows:

๐‘ฅฬ‡ (๐‘ก)= ๐‘“(๐‘ก, ๐‘ฅ(๐‘ก)), ๐‘ก โ‰  ๐œ๐‘˜, ๐‘ฆ(๐‘ก) = ๐œ‘(๐‘ฅ(๐‘ก)), ๐‘ก โ‰  ๐œ๐‘˜,

(2)

โˆ†๐‘ฅ(๐‘ก) = ๐ผ๐‘˜(๐‘ฆ(๐‘ก)), ๐‘ก = ๐œ๐‘˜,

๐‘ฅ(๐‘ก0) = ๐‘ฅ0, ๐‘˜ = 1,2, โ‹ฏ. (2) where โˆ†๐‘ฅ(๐œ๐‘˜) = ๐‘ฅ(๐œ๐‘˜+) โˆ’ ๐‘ฅ(๐œ๐‘˜โˆ’), ๐‘ฅ(๐œ๐‘˜+) = ๐‘™๐‘–๐‘š

๐‘กโ†’๐œ๐‘˜+๐‘ฅ(๐‘ก). We call (2) as โ€˜โ€˜impulsive control systemโ€™โ€™. Without loss of generality, we assume ๐‘“(๐‘ก, 0) โ‰ก 0 and ๐œ‘(0) = 0, so that system (2) admits a trivial solution. Our impulsive control problem may now be stated formally as follow. Subject to the dynamical system (1b), find an impulsive control law {๐œ๐‘˜, ๐ผ๐‘˜(๐‘ฆ(๐œ๐‘˜))} such that the impulsive control system (2) is stable, uniformly stable, asymptotically stable or uniformly asymptotically stable.

Here, we denote ๐พ the class of continuous functions ๐œ‘(๐‘ ) โˆถ โ„+โ†’ โ„+ such that ๐œ‘(๐‘ ) is strictly increasing and ๐œ‘(0) = 0; โˆ‘ the class of functions ๐‘‰(๐‘ก, ๐‘ฅ(๐‘ก)): โ„+ร— โ„๐‘›โ†’ โ„+ such that ๐‘‰(๐‘ก, ๐‘ฅ(๐‘ก)) is positive definite, locally Lipschitzian in ๐‘ฅ(๐‘ก), continuous everywhere except possibly at a sequence of point {๐œ๐‘˜} at which ๐‘‰(๐‘ก, ๐‘ฅ(๐‘ก)) is left continuous and the right limit ๐‘‰(๐œ๐‘˜+, ๐‘ฅ(๐œ๐‘˜+)) exists for all ๐‘ฅ(๐‘ก) โˆˆ โ„๐‘›. We assume that there exists a ๐œŒ1โˆˆ (0, ๐œŒ) such that ๐‘ฅ(๐‘ก) โˆˆ ๐‘ (๐œŒ1) implies๐‘ฅ(๐‘ก) + ๐ผ๐‘˜(๐‘ฅ(๐‘ก)) โˆˆ ๐‘ (๐œŒ). The following theorem gives sufficient conditions for various stability criteria. For more details see [10].

Theorem 1 (Liu et al. ้”™่ฏฏ!ๆœชๆ‰พๅˆฐๅผ•็”จๆบใ€‚[10]). Assume that i) There exist โ„kโˆˆ โ„ and ๐‘๐‘˜โˆˆ ๐พ such that

๐ท+๐‘‰(๐‘ก, ๐‘ฅ(๐‘ก))โ‰คโˆ†๐œโ„๐‘˜

๐‘˜๐‘๐‘˜(๐‘‰(๐‘ก, ๐‘ฅ(๐‘ก))),(๐‘ก, ๐‘ฅ(๐‘ก))โˆˆ (๐œ๐‘˜โˆ’1, ๐œ๐‘˜) ร— ๐‘ (๐œŒ),

ii) There exist ๐‘ฃ๐‘˜โˆˆ โ„ and ๐‘‘๐‘˜โˆˆ ๐พ such that ๐‘‰ (๐œ๐‘˜+, ๐‘ฅ(๐‘ก) + ๐ผ๐‘˜(๐‘ฅ(๐‘ก))) โ‰ค ๐‘‰(๐œ๐‘˜, ๐‘ฅ(๐‘ก)) + ๐‘ฃ๐‘˜๐‘‘๐‘˜(๐‘‰(๐œ๐‘˜, ๐‘ฅ(๐‘ก))) , ๐‘ฅ(๐‘ก) โˆˆ ๐‘ (๐œŒ) ,

iii) โ„๐‘˜+ ๐‘ฃ๐‘˜โ‰ค 0, for ๐‘  โˆˆ (0, ๐œŒ), ๐‘๐‘˜(๐‘ ) โ‰ค ๐‘‘๐‘˜(๐‘ ) if ๐‘ฃ๐‘˜< 0 and ๐‘‘๐‘˜(๐‘ ) โ‰ค ๐‘๐‘˜(๐‘ ) if โ„๐‘˜< 0.

Then the system (1b) is stable. In addition to all above condition, suppose further that ๐‘‰(๐‘ก, ๐‘ฅ(๐‘ก)) is deceasing and iv) For any ๐œ‚ > 0, there exist a ๐œŽ > 0 such that

๐‘  + |๐‘ฃ๐‘˜|๐‘‘๐‘˜(๐‘ ) < ๐œ‚, โˆ€๐‘  โˆˆ (0, ๐œŽ), โˆ€๐‘˜ = 1,2, โ‹ฏ,

Then the system (1b) is uniformly stable. Also if (i), (ii) and (iii) and the following condition hold

โˆ‘(โ„๐‘˜+ ๐‘ฃ๐‘˜)

โˆž ๐‘˜=1

๐‘’๐‘˜(๐›ฝ)= โˆ’โˆž, โˆ€ ๐›ฝ > 0 ,

where ๐‘’๐‘˜(๐‘ )= ๐‘š๐‘Ž๐‘ฅ{๐‘๐‘˜(๐‘ ), ๐‘‘๐‘˜(๐‘ )} , then system (1b) is asymptotically stable. Finally, if (i), (ii), (iii), (iv) hold and there exist positive integer ๐‘ such that

โˆ‘ (โ„๐‘˜+ ๐‘ฃ๐‘˜)

๐‘ž+๐‘ ๐‘˜=๐‘ž+1

๐‘™๐‘˜(๐›ฝ)< โˆ’๐ถ, โˆ€ ๐‘ž โ‰ฅ 0, ๐›ฝ, ๐ถ > 0,

where ๐‘™๐‘˜(๐‘ )= ๐‘š๐‘Ž๐‘ฅ{๐‘๐‘˜(๐‘ ), ๐‘‘๐‘˜(๐‘ )}, and the sequence {โˆ†๐œ๐‘˜} is bounded for any ๐›ฝ, ๐ถ > 0. Then, system (1b) is uniformly asymptotically stable. โˆ†๐œ๐‘˜= ๐œ๐‘˜โˆ’ ๐œ๐‘˜โˆ’1, and

๐ท+๐‘‰(๐‘ก, ๐‘ฅ(๐‘ก))= ๐‘™๐‘–๐‘š

๐›ฟโ†’0+๐‘ ๐‘ข๐‘1

๐›ฟ[๐‘‰(๐‘ก + ๐›ฟ, ๐‘ฅ(๐‘ก)+ ๐›ฟ)๐‘“(๐‘ก,๐‘ฅ(๐‘ก))

โˆ’ ๐‘‰(๐‘ก, ๐‘ฅ(๐‘ก))]

If ๐‘‰(๐‘ก, ๐‘ฅ(๐‘ก)) is continuously differentiable, then ๐ท+๐‘‰(๐‘ก, ๐‘ฅ(๐‘ก))=๐œ•๐‘ก๐œ•๐‘‰(๐‘ก, ๐‘ฅ(๐‘ก))+๐œ•๐‘ฅ๐œ•๐‘‰(๐‘ก, ๐‘ฅ(๐‘ก))โˆ™ ๐‘“(๐‘ก, ๐‘ฅ(๐‘ก)).

Remark 1. If ๐‘๐‘˜(๐‘ )= ๐‘‘๐‘˜(๐‘ ) = ๐‘ , then the condition (iii) is reduced to

โ„๐‘˜+ ๐‘ฃ๐‘˜โ‰ค 0 and ๐‘ฃ๐‘˜ โ‰ฅ โˆ’1.

III. ROBUST STABILITY SUBJECT TO PARAMETRIC UNCERTAINTIES

Consider an affine T-S fuzzy impulsive control system under discussion, which has bounded parametric uncertainties as

IF ๐‘1 ๐‘–๐‘  ๐‘€1๐‘– ๐‘Ž๐‘›๐‘‘ โ‹ฏ ๐‘Ž๐‘›๐‘‘ ๐‘๐‘  ๐‘–๐‘  ๐‘€๐“…๐‘– THEN {๐‘ฅฬ‡ = ๐ดฬ‚๐‘–(๐‘ก)๐‘ฅ + ๐œ›๐‘–๐‘’ฬ‚๐‘–(๐‘ก) + ๐ตฬ‚๐‘–(๐‘ก)๐‘ข

๐‘ข = โˆ‘โˆž๐‘˜=1๐›ฟ(๐‘ก โˆ’ ๐œ๐‘˜)๐ผ๐‘–๐‘˜(๐‘ฅ) ,( ๐‘– = 1,2, โ‹ฏ , ๐‘Ÿ)(3) where ๐‘Ÿ is the number of fuzzy rules, ๐‘(๐‘ก) is vector of premise variables such that

๐‘(๐‘ก) = [๐‘1(๐‘ก), ๐‘2(๐‘ก), โ‹ฏ , ๐‘๐“…(๐‘ก)]๐‘‡ = ๐’ช๐‘ฅ(๐‘ก), ๐‘Ÿ๐‘Ž๐‘›๐‘˜(๐’ช) = ๐“…(1 โ‰ค ๐“… โ‰ค n),

๐‘ฅ(๐‘ก) = [๐‘ฅ1(๐‘ก), ๐‘ฅ2(๐‘ก), โ‹ฏ , ๐‘ฅ๐‘›(๐‘ก)]๐‘‡โˆˆ โ„๐‘› is state vector at time ๐‘ก, ๐‘› is the number of states variable, (๐ดฬ‚๐‘–(๐‘ก), ๐ตฬ‚๐‘–(๐‘ก)) is controllable pair of system matrices, ๐‘’ฬ‚๐‘–(๐‘ก) is offset terms, ๐‘ข(๐‘ก) = [๐‘ข1(๐‘ก), ๐‘ข2(๐‘ก), โ‹ฏ , ๐‘ข๐‘š(๐‘ก)]๐‘‡โˆˆ โ„๐‘š is control input at time t with appropriate dimension, and ๐‘€๐‘—๐‘–(๐‘– = 1,2, , โ‹ฏ , ๐‘Ÿ, ๐‘— = 1,2, โ‹ฏ , ๐“…) stands for the fuzzy set of jth antecedent variable in the ith rule.

Also,

{

๐ดฬ‚๐‘–(๐‘ก)= ๐ด๐‘–+ โˆ†๐ด๐‘–(๐‘ก) , โˆ†๐ด๐‘–(๐‘ก)= ๐ป๐‘Ž๐‘–๐น๐‘Ž๐‘–(๐‘ก)๐ฟ๐‘Ž๐‘– , ๐น๐‘Ž๐‘–๐‘‡(๐‘ก)๐น๐‘Ž๐‘–(๐‘ก)โ‰ค ๐‘…๐‘Ž๐‘–

๐ตฬ‚๐‘–(๐‘ก)= ๐ต๐‘–+ โˆ†๐ต๐‘–(๐‘ก) , โˆ†๐ต๐‘–(๐‘ก)= ๐ป๐‘๐‘–๐น๐‘๐‘–(๐‘ก)๐ฟ๐‘๐‘– , ๐น๐‘๐‘–๐‘‡(๐‘ก)๐น๐‘๐‘–(๐‘ก)โ‰ค ๐‘…๐‘๐‘–

๐‘’ฬ‚๐‘–(๐‘ก)= ๐‘’๐‘–+ โˆ†๐‘’๐‘–(๐‘ก) , โˆ†๐‘’๐‘–(๐‘ก)= ๐ป๐‘’๐‘–๐น๐‘’๐‘–(๐‘ก)๐ฟ๐‘’๐‘– , ๐น๐‘’๐‘–๐‘‡(๐‘ก)๐น๐‘’๐‘–(๐‘ก)โ‰ค ๐‘…๐‘’๐‘–

and {โˆ†๐ด๐‘–(๐‘ก), โˆ†๐ต๐‘–(๐‘ก), โˆ†๐‘’(๐‘ก)} are the system uncertainties satisfying the norm bounded condition. ๐ป๐‘–โ‰” [๐ป๐‘Ž๐‘–, ๐ป๐‘๐‘–, ๐ป๐‘’๐‘–] and ๐ฟ๐‘–โ‰” [๐ฟ๐‘Ž๐‘–, ๐ฟ๐‘๐‘–, ๐ฟ๐‘’๐‘–] are known constant matrices, ๐น๐‘Ž๐‘–(๐‘ก), ๐น๐‘๐‘–(๐‘ก), and ๐น๐‘’๐‘–(๐‘ก) belong to the following set

๐›บ โ‰”

{๐น(๐‘ก)|๐น๐‘‡(๐‘ก)๐น(๐‘ก)โ‰ค ๐ผ, element of ๐น(๐‘ก) are Lebesgue measurment} Based on impulsive controller techniques [28], [30], the closed- loop system can be described by

{๐‘ฅฬ‡ =โˆ‘๐‘Ÿ๐‘–=1๐œ‡๐‘–(๐ดฬ‚๐‘–(๐‘ก)๐‘ฅ + ๐œ›๐‘–๐‘’ฬ‚๐‘–(๐‘ก)) ๐‘ก โ‰  ๐œ๐‘˜

โˆ†๐‘ฅ = ๐‘ฅ(๐œ๐‘˜+)โˆ’ ๐‘ฅ(๐œ๐‘˜โˆ’)= ๐ผ๐‘˜(๐‘ฅ)=โˆ‘๐‘Ÿ๐‘–=1๐œ‡๐‘–๐ตฬ‚๐‘–(๐‘ก)๐ผ๐‘–๐‘˜(๐‘ฅ)๐‘ก = ๐œ๐‘˜ (4) The rule set of the system is divided into ๐ผ0 and ๐ผ1. ๐ผ0

represents the rules which contain the origin and ๐ผ1 is the remaining rules which do not contain the origin. So, if ๐‘– โˆˆ ๐ผ0,

(3)

we get ๐‘’ฬ‚๐‘–= 0 which guarantee the trivial solution for ๐‘ฅฬ‡ (๐‘ก)โ‰ก 0. By noting mentioned description we define ๐œ›๐‘– as ๐œ›๐‘–= {0 , ๐‘–๐‘“ ๐‘– โˆˆ ๐ผ0

1 , ๐‘–๐‘“ ๐‘– โˆˆ ๐ผ1.

Our task is to design an impulsive control law {๐œ๐‘˜, ๐ผ๐‘–๐‘˜(๐‘ฅ(๐œ๐‘˜))} such that the overall affine T-S fuzzy impulsive control system is stabilized (asymptotically, uniformly). For stability analysis of (4), the following theorem is given in which impulsive function (๐ผ๐‘–๐‘˜(๐‘ฅ)) is considered as ๐ผ๐‘–๐‘˜(๐‘ฅ) = ๐ท๐‘–๐‘˜๐‘ฅ + ๐œ›๐‘–๐‘”๐‘–๐‘˜(๐‘ฅ) and โ€–๐‘”๐‘–๐‘˜(๐‘ฅ)โ€–โ‰ค ๐‘๐‘–๐‘˜โ€–๐‘ฅโ€– in which ๐‘๐‘–๐‘˜ is a positive scalar.

Theorem 2: The origin of the affine T-S fuzzy impulsive control system (4) is stable if there exist positive definite matrix ๐‘‡, scalars โ„๐‘˜'s, ๐‘ฃ๐‘˜'s, positive scalars โˆ†๐œ๐‘˜'s, ๐œ๐‘–'s, ๐œ–๐‘–๐‘˜'s, ๐œ–๐‘–๐‘›'s, and matrices ๐‘ฃ๐‘–๐‘˜'s such that the following conditions hold

โ„๐‘˜+ ๐‘ฃ๐‘˜โ‰ค 0 , ๐‘ฃ๐‘˜โ‰ฅ โˆ’1, (5a) for ๐‘– โˆˆ ๐ผ0

(

โ„ณ๐‘–๐‘˜๐‘› โˆ— โˆ—

โ„’๐‘› โˆ’๐œ–๐‘–๐‘›๐‘‡๐‘› โˆ— ๐œ–๐‘–๐‘›โ„‹๐‘›๐‘‡ 0 โˆ’๐œ–๐‘–๐‘›๐ผ๐‘›

)โ‰ค 0, ๐‘› = 1,2, (5b) for ๐‘– โˆˆ ๐ผ1

( โ„ณ๐‘–๐‘˜๐‘› โˆ— โˆ—

โ„’๐‘› โˆ’๐œ–๐‘–๐‘›๐‘‡๐‘› โˆ— ๐œ–๐‘–๐‘›โ„‹๐‘›๐‘‡ 0 โˆ’๐œ–๐‘–๐‘›๐ผ๐‘›

)โ‰ค 0, ๐‘› = 3,4, (5c) where

โ„ณ๐‘–๐‘˜1 = ๐‘‡๐ด๐‘‡๐‘– + ๐ด๐‘–๐‘‡ โˆ’โˆ†๐œ๐œ‡๐‘˜

๐‘˜๐‘‡, โ„‹1= ๐ป๐‘Ž๐‘–, โ„’1= ๐ฟ๐‘Ž๐‘–๐‘‡,๐‘‡1= ๐‘‡, โ„ณ๐‘–๐‘˜2 = (๐ต๐‘–๐‘ฃ๐‘–๐‘˜+ ๐‘ฃ๐‘–๐‘˜๐‘‡๐ต๐‘–๐‘‡โˆ’ ๐‘ฃ๐‘˜๐‘‡ โˆ—

๐‘ฃ๐‘–๐‘˜๐‘‡๐ต๐‘–๐‘‡ โˆ’๐‘‡) , โ„‹2= (๐ป๐‘๐‘– ๐ป๐‘๐‘– 0 0 ) , โ„’2= ๐‘‘๐‘–๐‘Ž๐‘”(๐ฟ๐‘๐‘–๐‘ฃ๐‘–๐‘˜, ๐ฟ๐‘๐‘–๐‘ฃ๐‘–๐‘˜),๐‘‡2= ๐‘‘๐‘–๐‘Ž๐‘”(๐‘‡, ๐‘‡),

โ„ณ๐‘–๐‘˜3 = (๐‘‡๐ด๐‘‡๐‘– + ๐ด๐‘–๐‘‡ โˆ’โˆ†๐œ๐œ‡๐‘˜

๐‘˜๐‘‡ โˆ—

๐‘’๐‘–๐‘‡+ ๐œ๐‘–๐‘ฅ๐‘๐‘‡๐‘–๐‘„๐‘๐‘–๐‘‡ ๐œ๐‘–๐‘‚๐‘–

), โ„‹3= (๐ป๐‘Ž๐‘– ๐ป๐‘’๐‘–

0 0 ), โ„’3= ๐‘‘๐‘–๐‘Ž๐‘”(๐ฟ๐‘Ž๐‘–๐‘‡, ๐ฟ๐‘’๐‘–), ๐‘‡3= ๐‘‘๐‘–๐‘Ž๐‘”(๐‘‡, ๐‘‡),

โ„ณ๐‘–๐‘˜4 = (

๐›บฬƒ๐‘–๐‘–๐‘˜ โˆ— โˆ— โˆ— โˆ—

๐‘‡ โˆ’๐›พ๐‘–๐‘˜๐ผ โˆ— โˆ— โˆ—

๐‘‡ 0 โˆ’(1 + ๐œ–๐‘–๐‘˜)๐‘‡ โˆ— โˆ—

๐œ๐‘–๐‘ฅ๐‘๐‘‡๐‘–๐‘„๐‘๐‘–๐‘‡ 0 0 ๐œ๐‘–๐‘‚๐‘– โˆ—

๐ต๐‘–๐‘ฃ๐‘–๐‘˜ 0 ๐‘‡ 0 โˆ’๐‘‡)

,

โ„’4= ๐‘‘๐‘–๐‘Ž๐‘”(๐ฟ๐‘๐‘–๐‘ฃ๐‘–๐‘˜, 0,0,0,0), ๐‘‡4= ๐‘‘๐‘–๐‘Ž๐‘”(๐‘‡, ๐‘‡, ๐‘‡, ๐‘‡, ๐‘‡)

โ„‹4= (

๐ป๐‘๐‘– โˆ— โˆ— โˆ— 0

0 0 โˆ— โˆ— โˆ—

0 0 0 โˆ— โˆ—

0 0 0 0 โˆ—

๐ป๐‘๐‘– 0 0 0 0) ,

๐ผ๐‘› is identity matrix with appropriate dimension.

Then ๐ท๐‘—๐‘˜= ๐‘ฃ๐‘—๐‘˜๐‘‡โˆ’1, ๐œ๐‘˜= โˆ†๐œ๐‘˜+ ๐œ๐‘˜โˆ’1(๐œ0= ๐‘ก0), and ๐‘”๐‘–๐‘˜(๐‘ฅ) is any continuous function in respect to ๐‘ฅ such that โ€–๐‘”๐‘–๐‘˜(๐‘ฅ)โ€– โ‰ค ๐‘๐‘–๐‘˜โ€–๐‘ฅโ€–.

Proof. Consider the Lyapunov function ๐‘‰(๐‘ก, ๐‘ฅ) = ๐‘ฅ๐‘‡๐‘ƒ๐‘ฅ for the uncertain affine T-S fuzzy impulsive control system (4). Now, from Theorem 1, Remark 1, and by taking the upper right-hand

generalized derivative of the Lyapunov function along the trajectories of the system (4), the following is obtained ๐ท+๐‘‰(๐‘ก, ๐‘ฅ) โˆ’ โ„๐‘˜

โˆ†๐œ๐‘˜๐‘ฅ๐‘‡๐‘ƒ๐‘ฅ

= ๐‘ฅฬ‡๐‘‡๐‘ƒ๐‘ฅ + ๐‘ฅ๐‘‡๐‘ƒ๐‘ฅฬ‡ โˆ’ โ„๐‘˜

โˆ†๐œ๐‘˜๐‘ฅ๐‘‡๐‘ƒ๐‘ฅ

= โˆ‘ ๐œ‡๐‘–(๐ดฬ‚๐‘–(๐‘ก)๐‘ฅ + ๐œ›๐‘–๐‘’ฬ‚๐‘–(๐‘ก))๐‘‡๐‘ƒ๐‘ฅ

๐‘Ÿ

๐‘–=1

+ โˆ‘๐‘Ÿ๐‘–=1๐œ‡๐‘–๐‘ฅ๐‘‡๐‘ƒ (๐ดฬ‚๐‘–(๐‘ก)๐‘ฅ + ๐œ›๐‘–๐‘’ฬ‚๐‘–(๐‘ก))โˆ’โˆ†๐œโ„๐‘˜

๐‘˜๐‘ฅ๐‘‡๐‘ƒ๐‘ฅ (6) If ๐‘– โˆˆ ๐ผ0(i. e. ๐œ›๐‘–= 0), we can show if the following term is negative then ๐ท+๐‘‰(๐‘ก, ๐‘ฅ) โˆ’โˆ†๐œโ„๐‘˜

๐‘˜๐‘ฅ๐‘‡๐‘ƒ๐‘ฅ < 0. ๐‘‡๐ดฬ‚๐‘–๐‘‡(๐‘ก) + ๐ดฬ‚๐‘–(๐‘ก)๐‘‡ โˆ’ ๐œ‡๐‘˜

โˆ†๐œ๐‘˜๐‘‡

= ๐‘‡๐ด๐‘–๐‘‡+ ๐ด๐‘–๐‘‡ + ๐‘‡(๐ป๐‘Ž๐‘–๐น๐‘Ž๐‘–(๐‘ก)๐ฟ๐‘Ž๐‘–)๐‘‡ +๐ป๐‘Ž๐‘–๐น๐‘Ž๐‘–(๐‘ก)๐ฟ๐‘Ž๐‘–๐‘‡ โˆ’ ๐œ‡๐‘˜

โˆ†๐œ๐‘˜๐‘‡

= โ„ณ๐‘–๐‘˜1 + โ„‹1โ„ฑ1(๐‘ก)โ„’1+ โ„’1๐‘‡โ„ฑ1(๐‘ก)๐‘‡โ„‹1๐‘‡, (7) where โ„ฑ1(๐‘ก) = ๐น๐‘Ž๐‘–(๐‘ก), ๐ดฬ‚๐‘‡๐‘–(๐‘ก) = ๐ด๐‘–+ ๐ป๐‘Ž๐‘–๐น๐‘Ž๐‘–(๐‘ก)๐ฟ๐‘Ž๐‘–. By using Lemma A.1 (๐‘… = ๐‘‡โˆ’1) and Schur's complement, it is easy to see that inequality (5b) (โˆ€ ๐‘› = 1) implies (7) is negative.

In a similar manner, also if, we get (๐ตฬ‚๐‘–(๐‘ก)๐‘ฃ๐‘–๐‘˜+ ๐‘ฃ๐‘–๐‘˜๐‘‡๐ตฬ‚๐‘–(๐‘ก)๐‘‡โˆ’ ๐‘ฃ๐‘˜๐‘‡ โˆ—

๐‘ฃ๐‘–๐‘˜๐‘‡๐ตฬ‚๐‘–(๐‘ก)๐‘‡ โˆ’๐‘‡)

= โ„ณ๐‘–๐‘˜2 + (๐ป๐‘๐‘–๐น๐‘๐‘–(๐‘ก)๐ฟ๐‘๐‘–๐‘ฃ๐‘–๐‘˜+ ๐‘ฃ๐‘–๐‘˜๐‘‡(๐ป๐‘๐‘–๐น๐‘๐‘–(๐‘ก)๐ฟ๐‘๐‘–)๐‘‡ โˆ— ๐‘ฃ๐‘–๐‘˜๐‘‡(๐ป๐‘๐‘–๐น๐‘๐‘–(๐‘ก)๐ฟ๐‘๐‘–)๐‘‡ 0)

= โ„ณ๐‘–๐‘˜2 + โ„‹2โ„ฑ2(๐‘ก)โ„’2+ โ„’2๐‘‡โ„ฑ2(๐‘ก)๐‘‡โ„‹2๐‘‡ (8) where โ„ฑ2(๐‘ก) = ๐‘‘๐‘–๐‘Ž๐‘” (๐น๐‘๐‘–(๐‘ก), ๐น๐‘๐‘–(๐‘ก)) , ๐ตฬ‚๐‘–๐‘‡(๐‘ก) = ๐ต๐‘–+ ๐ป๐‘๐‘–๐น๐‘๐‘–(๐‘ก)๐ฟ๐‘๐‘–. By using Lemma A.1 (๐‘… = (๐‘‘๐‘–๐‘Ž๐‘”(๐‘‡, ๐‘‡))โˆ’1) and Schur's complement, we can conclude that (5b) (โˆ€ ๐‘› = 2) implies (8) is negative.

Now, consider ๐‘– โˆˆ ๐ผ1(๐‘–. ๐‘’. ๐œ›๐‘–= 1); Because ๐ท+๐‘‰(๐‘ก, ๐‘ฅ) โˆ’

โ„๐‘˜

โˆ†๐œ๐‘˜๐‘ฅ๐‘‡๐‘ƒ๐‘ฅ has to be given in terms of matrix inequalities, by following ้”™ ่ฏฏ!ๆœช ๆ‰พ ๅˆฐ ๅผ• ็”จ ๆบ ใ€‚[31], positive scalars

โˆ‘๐‘–โˆˆ๐ผ1๐œ‡๐‘–๐œ๐‘–(1 โˆ’ ๐‘ฅ๐‘‡๐‘„๐‘๐‘–๐‘ฅ + ๐‘ฅ๐‘‡๐‘„๐‘๐‘–๐‘ฅ๐‘๐‘–+ ๐‘ฅ๐‘๐‘‡๐‘–๐‘„๐‘๐‘–๐‘ฅ โˆ’ ๐‘ฅ๐‘๐‘‡๐‘–๐‘„๐‘๐‘–๐‘ฅ๐‘๐‘–) are added to (6). This implies that each rule of ๐ผ1 is encircled by a hyper ellipsoid in which ๐œ๐‘– is a positive scalar and (1 โˆ’ ๐‘ฅ๐‘‡๐‘„๐‘๐‘–๐‘ฅ + ๐‘ฅ๐‘‡๐‘„๐‘๐‘–๐‘ฅ๐‘๐‘–+ ๐‘ฅ๐‘๐‘‡๐‘–๐‘„๐‘๐‘–๐‘ฅ โˆ’ ๐‘ฅ๐‘๐‘‡๐‘–๐‘„๐‘๐‘–๐‘ฅ๐‘๐‘–) is the definition of the hyper ellipsoid which includes the region of the ๐‘–th rule (๐‘– โˆˆ ๐ผ1). In here, ๐‘„๐‘๐‘– is the positive definite matrix. Therefore, we get

๐ท+๐‘‰(๐‘ก, ๐‘ฅ) โˆ’ โ„๐‘˜

โˆ†๐œ๐‘˜๐‘ฅ๐‘‡๐‘ƒ๐‘ฅ = ๐‘ฅฬ‡๐‘‡๐‘ƒ๐‘ฅ + ๐‘ฅ๐‘‡๐‘ƒ๐‘ฅฬ‡ โˆ’ โ„๐‘˜

โˆ†๐œ๐‘˜๐‘ฅ๐‘‡๐‘ƒ๐‘ฅ

= โˆ‘ ๐œ‡๐‘–(๐ด๐‘–๐‘ฅ + ๐œ›๐‘–๐‘’๐‘–)๐‘‡๐‘ƒ๐‘ฅ

๐‘Ÿ

๐‘–=1

+ โˆ‘ ๐œ‡๐‘–๐‘ฅ๐‘‡๐‘ƒ(๐ด๐‘–๐‘ฅ + ๐œ›๐‘–๐‘’๐‘–)

๐‘Ÿ ๐‘–=1

(4)

+ โˆ‘ ๐œ‡๐‘–๐œ๐‘–(1 โˆ’ ๐‘ฅ๐‘‡๐‘„๐‘๐‘–๐‘ฅ + ๐‘ฅ๐‘‡๐‘„๐‘๐‘–๐‘ฅ๐‘๐‘–+ ๐‘ฅ๐‘๐‘‡๐‘–๐‘„๐‘๐‘–๐‘ฅ โˆ’ ๐‘ฅ๐‘๐‘‡๐‘–๐‘„๐‘๐‘–๐‘ฅ๐‘๐‘–)

๐‘–โˆˆ๐ผ1

โˆ’ โ„๐‘˜

โˆ†๐œ๐‘˜๐‘ฅ๐‘‡๐‘ƒ๐‘ฅ

(9) Then for ๐‘– โˆˆ ๐ผ1, if ( ๐œ“ฬƒ๐‘–๐‘˜ โˆ—

๐‘’๐‘–๐‘‡+ ๐œ๐‘–๐‘ฅ๐‘๐‘‡๐‘–๐‘„๐‘๐‘–๐‘‡ ๐œ๐‘–๐‘‚๐‘–) < 0, we can get (๐‘‡๐ดฬ‚๐‘–๐‘‡(๐‘ก) + ๐ดฬ‚๐‘–(๐‘ก)๐‘‡ โˆ’ ๐œ‡๐‘˜

โˆ†๐œ๐‘˜๐‘‡ โˆ— ๐‘’ฬ‚๐‘–๐‘‡(๐‘ก) + ๐œ๐‘–๐‘ฅ๐‘๐‘‡๐‘–๐‘„๐‘๐‘–๐‘‡ ๐œ๐‘–๐‘‚๐‘–

)

= โ„ณ๐‘–๐‘˜3 + (๐‘‡(๐ป๐‘Ž๐‘–๐น๐‘Ž๐‘–(๐‘ก)๐ฟ๐‘Ž๐‘–)๐‘‡+ ๐ป๐‘Ž๐‘–๐น๐‘Ž๐‘–(๐‘ก)๐ฟ๐‘Ž๐‘–๐‘‡ โˆ— (๐ป๐‘’๐‘–๐น๐‘’๐‘–(๐‘ก)๐ฟ๐‘’๐‘–)๐‘‡ 0)

= โ„ณ๐‘–๐‘˜3 + โ„‹3โ„ฑ3(๐‘ก)โ„’3+ โ„’3๐‘‡โ„ฑ3(๐‘ก)๐‘‡โ„‹3๐‘‡ (10) where โ„ฑ3(๐‘ก) = ๐‘‘๐‘–๐‘Ž๐‘” (๐น๐‘Ž๐‘–(๐‘ก), ๐น๐‘’๐‘–(๐‘ก)) , ๐‘’ฬ‚๐‘–๐‘‡(๐‘ก) = ๐‘’๐‘–+ ๐ป๐‘’๐‘–๐น๐‘’๐‘–(๐‘ก)๐ฟ๐‘’๐‘–. By using Lemma A.1 (๐‘… = (๐‘‘๐‘–๐‘Ž๐‘”(๐‘‡, ๐‘‡))โˆ’1) and Schur's complement, it is easy to see that (5c) (โˆ€ ๐‘› = 3) implies (10) is negative.

Now, for ๐‘– โˆˆ ๐ผ1 , we get ๐‘‰(๐œ๐‘˜+, ๐‘ฅ + ๐ผ๐‘˜(๐‘ฅ)) โˆ’ ๐‘‰(๐œ๐‘˜, ๐‘ฅ) + ๐‘ฃ๐‘˜๐‘‘๐‘˜(๐‘‰(๐œ๐‘˜, ๐‘ฅ)) and By repeating the same manner, we get

(

(๐ตฬ‚๐‘–(๐‘ก)๐‘ฃ๐‘–๐‘˜+ ๐‘ฃ๐‘–๐‘˜๐‘‡๐ตฬ‚๐‘–(๐‘ก)๐‘‡

โˆ’๐‘ฃ๐‘˜๐‘‡ ) โˆ— โˆ— โˆ— โˆ—

๐‘‡ โˆ’๐›พ๐‘–๐‘˜๐ผ โˆ— โˆ— โˆ—

๐‘‡ 0 โˆ’(1 + ๐œ–๐‘–๐‘˜)๐‘‡ โˆ— โˆ—

๐œ๐‘–๐‘ฅ๐‘๐‘‡๐‘–๐‘„๐‘๐‘–๐‘‡ 0 0 ๐œ๐‘–๐‘‚๐‘– โˆ—

๐ตฬ‚๐‘–(๐‘ก)๐‘ฃ๐‘–๐‘˜ 0 ๐‘‡ 0 โˆ’๐‘‡)

= โ„ณ๐‘–๐‘˜4 +

(

( ๐ป๐‘๐‘–๐น๐‘๐‘–(๐‘ก)๐ฟ๐‘๐‘–๐‘ฃ๐‘–๐‘˜

+๐‘ฃ๐‘–๐‘˜๐‘‡(๐ป๐‘๐‘–๐น๐‘๐‘–(๐‘ก)๐ฟ๐‘๐‘–)๐‘‡) โˆ— โˆ— โˆ— โˆ—

0 0 โˆ— โˆ— โˆ—

0 0 0 โˆ— โˆ—

0 0 0 0 โˆ—

๐ป๐‘๐‘–๐น๐‘๐‘–(๐‘ก)๐ฟ๐‘๐‘–๐‘ฃ๐‘–๐‘˜ 0 0 0 0)

= โ„ณ๐‘–๐‘˜4 + โ„‹4โ„ฑ4(๐‘ก)โ„’4+ โ„’4๐‘‡โ„ฑ4(๐‘ก)๐‘‡โ„‹4๐‘‡, (11) where โ„ฑ4(๐‘ก) = ๐‘‘๐‘–๐‘Ž๐‘”(๐น๐‘๐‘–(๐‘ก), 0,0,0,0) . Eq. (5c) (โˆ€ ๐‘› = 4) implies (11) is negative.

Also based on condition (ii) of Theorem 1 and by assuming ๐‘๐‘˜(๐‘ ) = ๐‘‘๐‘˜(๐‘ ) = ๐‘ , we get

๐‘‰(๐œ๐‘˜+, ๐‘ฅ + ๐ผ๐‘˜(๐‘ฅ)) โˆ’ ๐‘‰(๐œ๐‘˜, ๐‘ฅ) โˆ’ ๐‘ฃ๐‘˜๐‘‘๐‘˜(๐‘‰(๐œ๐‘˜, ๐‘ฅ))

= (๐‘ฅ + ๐ผ๐‘˜(๐‘ฅ))๐‘‡๐‘ƒ(๐‘ฅ + ๐ผ๐‘˜(๐‘ฅ)) โˆ’ ๐‘‰(๐œ๐‘˜, ๐‘ฅ) โˆ’ ๐‘ฃ๐‘˜๐‘‘๐‘˜(๐‘‰(๐œ๐‘˜, ๐‘ฅ))

= ๐‘ฅ๐‘‡๐‘ƒ๐‘ฅ + ๐‘ฅ๐‘‡๐‘ƒ๐ผ๐‘˜(๐‘ฅ) + ๐ผ๐‘˜(๐‘ฅ)๐‘‡๐‘ƒ๐‘ฅ + ๐ผ๐‘˜(๐‘ฅ)๐‘‡๐‘ƒ๐ผ๐‘˜(๐‘ฅ) โˆ’ ๐‘ฅ๐‘‡๐‘ƒ๐‘ฅ โˆ’ ๐‘ฃ๐‘˜๐‘ฅ๐‘‡๐‘ƒ๐‘ฅ, (12)

By considering ๐ผ๐‘˜(๐‘ฅ) = โˆ‘ ๐œ‡๐‘Ÿ๐‘–=1 ๐‘–๐ตฬ‚๐‘–(๐‘ก)๐ผ๐‘–๐‘˜(๐‘ฅ) , and the proof of Theorems in [14] and [30], for ๐‘– โˆˆ ๐ผ0, it can be shown that (5b) yields to ๐‘‰(๐œ๐‘˜+, ๐‘ฅ + ๐ผ๐‘˜(๐‘ฅ)) โˆ’ ๐‘‰(๐œ๐‘˜, ๐‘ฅ) + ๐‘ฃ๐‘˜๐‘‘๐‘˜(๐‘‰(๐œ๐‘˜, ๐‘ฅ)) is negative and similarly to , for ๐‘– โˆˆ ๐ผ1, we can conclude that (5c) yields to ๐‘‰(๐œ๐‘˜+, ๐‘ฅ + ๐ผ๐‘˜(๐‘ฅ)) โˆ’ ๐‘‰(๐œ๐‘˜, ๐‘ฅ) + ๐‘ฃ๐‘˜๐‘‘๐‘˜(๐‘‰(๐œ๐‘˜, ๐‘ฅ)) is negative. The proof is now completed.

Now, consider a PDC based affine T-S fuzzy impulsive control system [28] as follows:

{

๐‘ฅฬ‡(๐‘ก) = โˆ‘๐œ‡๐‘–(๐ดฬ‚๐‘–(๐‘ก)๐‘ฅ + ๐œ›๐‘–๐‘’ฬ‚๐‘–(๐‘ก))

๐‘Ÿ ๐‘–=1

, ๐‘ก โ‰  ๐œ๐‘˜

โˆ†๐‘ฅ = ๐‘ฅ(๐œ๐‘˜+) โˆ’ ๐‘ฅ(๐œ๐‘˜โˆ’) = ๐ผ๐‘˜(๐‘ฅ) = โˆ‘ โˆ‘ ๐œ‡๐‘—

๐‘Ÿ ๐‘—=1

๐œ‡๐‘–(๐ตฬ‚๐‘–(๐‘ก)๐ผ๐‘—๐‘˜(๐‘ฅ))

๐‘Ÿ ๐‘–=1

, ๐‘ก = ๐œ๐‘˜

(10) The stability conditions of PDC based affine T-S fuzzy impulsive control system (10) with linear impulsive function (๐ผ๐‘—๐‘˜(๐‘ฅ) = ๐ท๐‘—๐‘˜๐‘ฅ), can now be summarized by the following theorem.

Theorem 3: The origin of the PDC-based affine T-S fuzzy impulsive control system (10) is stable if there exist positive definite matrices ๐‘‡, scalars โ„๐‘˜'s, ๐‘ฃ๐‘˜'s, positive scalars โˆ†๐œ๐‘˜'s, ๐œ๐‘–'s, ๐œ–๐‘–๐‘˜'s, ๐œ–๐‘–๐‘›'s, and matrices ๐‘ฃ๐‘–๐‘˜'s such that (5a) and the following conditions hold

for ๐‘– โˆˆ ๐ผ0

(5b), โˆ€๐‘› = 1, for ๐‘– โˆˆ ๐ผ1

(5c), โˆ€๐‘› = 3,

for (๐‘–, ๐‘—) โˆˆ {(๐‘–, ๐‘—)|1 โ‰ค ๐‘– โ‰ค ๐‘— โ‰ค ๐‘Ÿ, } (

โ„ณ๐‘–๐‘˜5 โˆ— โˆ—

โ„’5 โˆ’๐œ–๐‘–5๐‘‡5 โˆ— ๐œ–๐‘–5โ„‹5๐‘‡ 0 โˆ’๐œ–๐‘–5๐ผ5

) < 0, (11a)

๐’ฏ = (๐‘‡11 โ‹ฏ ๐‘‡1๐‘›

โ‹ฎ โ‹ฑ โ‹ฎ

๐‘‡1๐‘› โ‹ฏ ๐‘‡๐‘›๐‘›

) < 0, (11b) where

โ„ณ๐‘–๐‘˜5 = ( (

๐ต๐‘–๐‘ฃ๐‘—๐‘˜+ ๐‘ฃ๐‘—๐‘˜๐‘‡๐ต๐‘–๐‘‡โˆ’ 2๐‘ฃ๐‘˜๐‘‡ +๐ต๐‘—๐‘ฃ๐‘–๐‘˜+ ๐‘ฃ๐‘–๐‘˜๐‘‡๐ต๐‘—๐‘‡โˆ’ ๐œ‚โˆ’2๐‘‡๐‘–๐‘—

) โˆ— โˆ—

๐‘Ÿ๐ต๐‘—๐‘ฃ๐‘–๐‘˜ โˆ’๐‘‡ โˆ—

๐‘Ÿ๐ต๐‘–๐‘ฃ๐‘—๐‘˜ 0 โˆ’๐‘‡)

โ„‹5= (โ„‹51 โ„‹51), โ„’5= (โ„’โ„’5152) โ„‹51= (

๐ป๐‘๐‘– 0 0

0 0 0

๐‘Ÿ๐ป๐‘๐‘– 0 0) , โ„‹52= (

๐ป๐‘๐‘— 0 0 ๐‘Ÿ๐ป๐‘๐‘— 0 0

0 0 0

),

โ„’51= ๐‘‘๐‘–๐‘Ž๐‘” (๐ฟ๐‘๐‘–๐‘ฃ๐‘—๐‘˜, 0,0), โ„’52= ๐‘‘๐‘–๐‘Ž๐‘” (๐ฟ๐‘๐‘—๐‘ฃ๐‘–๐‘˜, 0,0) , ๐‘‡5= ๐‘‘๐‘–๐‘Ž๐‘”(๐‘‡, ๐‘‡, ๐‘‡, ๐‘‡, ๐‘‡, ๐‘‡),

then ๐ท๐‘—๐‘˜= ๐‘ฃ๐‘—๐‘˜๐‘‡โˆ’1, ๐œ๐‘˜ = โˆ†๐œ๐‘˜+ ๐œ๐‘˜โˆ’1(๐œ0= ๐‘ก0).

All notations are similar to Theorem 2.

Proof. Similar to the proof of Theorem 2, we recall that

( (

๐ตฬ‚๐‘–(๐‘ก)๐‘ฃ๐‘—๐‘˜+ ๐‘ฃ๐‘—๐‘˜๐‘‡๐ตฬ‚๐‘–(๐‘ก)๐‘‡โˆ’ 2๐‘ฃ๐‘˜๐‘‡ +๐ตฬ‚๐‘—(๐‘ก)๐‘ฃ๐‘–๐‘˜+ ๐‘ฃ๐‘–๐‘˜๐‘‡๐ตฬ‚๐‘—(๐‘ก)๐‘‡โˆ’ ๐œ‚โˆ’2๐‘‡๐‘–๐‘—

) โˆ— โˆ—

๐‘Ÿ๐ตฬ‚๐‘—(๐‘ก)๐‘ฃ๐‘–๐‘˜ โˆ’๐‘‡ โˆ—

๐‘Ÿ๐ตฬ‚๐‘–(๐‘ก)๐‘ฃ๐‘—๐‘˜ 0 โˆ’๐‘‡)

= โ„ณ๐‘–๐‘˜5 +

(5)

( (

๐ป๐‘๐‘–๐น๐‘๐‘–(๐‘ก)๐ฟ๐‘๐‘–๐‘ฃ๐‘—๐‘˜+ ๐‘ฃ๐‘—๐‘˜๐‘‡(๐ป๐‘๐‘–๐น๐‘๐‘–(๐‘ก)๐ฟ๐‘๐‘–)๐‘‡

+๐ป๐‘๐‘—๐น๐‘๐‘—(๐‘ก)๐ฟ๐‘๐‘—๐‘ฃ๐‘–๐‘˜+ ๐‘ฃ๐‘–๐‘˜๐‘‡(๐ป๐‘๐‘—๐น๐‘๐‘—(๐‘ก)๐ฟ๐‘๐‘—)๐‘‡) โˆ— โˆ— ๐‘Ÿ๐ป๐‘๐‘—๐น๐‘๐‘—(๐‘ก)๐ฟ๐‘๐‘—๐‘ฃ๐‘–๐‘˜ 0 โˆ—

๐‘Ÿ๐ป๐‘๐‘–๐น๐‘๐‘–(๐‘ก)๐ฟ๐‘๐‘–๐‘ฃ๐‘—๐‘˜ 0 0)

= โ„ณ๐‘–๐‘˜5 + โ„‹5โ„ฑ5(๐‘ก)โ„’5+ โ„’5๐‘‡โ„ฑ5(๐‘ก)๐‘‡โ„‹5๐‘‡ (12) where โ„ฑ5(๐‘ก) = ๐‘‘๐‘–๐‘Ž๐‘” (โ„ฑ51(๐‘ก), โ„ฑ52(๐‘ก)), โ„ฑ51(๐‘ก) = ๐‘‘๐‘–๐‘Ž๐‘”(๐น๐‘๐‘–(๐‘ก), 0,0), and โ„ฑ52(๐‘ก) = ๐‘‘๐‘–๐‘Ž๐‘” (๐น๐‘๐‘—(๐‘ก), 0,0).

By using Lemma A.1 (๐‘… = (๐‘‘๐‘–๐‘Ž๐‘”(๐‘‡, ๐‘‡, ๐‘‡, ๐‘‡, ๐‘‡, ๐‘‡))โˆ’1) and Schur's complement, (11a) and (11b) imply (12) is negative.

Regarding the proof of Theorem 2, the above proof is now completed.

IV. ILLUSTRATIVE EXAMPLES

In this section, a numerical example is presented to verify the results of the proposed stabilization procedure of the affine T-S fuzzy impulsive control system. Based on proposed method, Theorem 3 is applied for a system given by the following T-S fuzzy system as follow

Rule๐‘–: ๐ผ๐น ๐‘ฅ1 ๐‘–๐‘  ๐‘€1๐‘– ๐‘Ž๐‘›๐‘‘ ๐‘ฅ2 ๐‘–๐‘  ๐‘€2๐‘– ๐‘‡๐ป๐ธ๐‘

{

๐‘ฅฬ‡ = ๐ดฬ‚๐‘–(๐‘ก)๐‘ฅ + ๐œ›๐‘–๐‘’ฬ‚๐‘–(๐‘ก) , (๐‘– = 1,2,3).

๐‘ข = โˆ‘ ๐›ฟ(๐‘ก โˆ’ ๐œ๐‘˜)๐ผ๐‘–๐‘˜(๐‘ฅ)

โˆž ๐‘˜=1

which yields to

{

๐‘ฅฬ‡ (๐‘ก)=โˆ‘๐œ‡๐‘–(๐ดฬ‚๐‘–(๐‘ก)๐‘ฅ + ๐œ›๐‘–๐‘’ฬ‚๐‘–(๐‘ก))

3 ๐‘–=1

, ๐‘ก โ‰  ๐œ๐‘˜

โˆ†๐‘ฅ = ๐‘ฅ(๐œ๐‘˜+)โˆ’ ๐‘ฅ(๐œ๐‘˜โˆ’)= ๐ผ๐‘˜(๐‘ฅ) =โˆ‘ โˆ‘๐œ‡๐‘—

๐‘Ÿ ๐‘—=1

๐œ‡๐‘–(๐ตฬ‚๐‘–(๐‘ก)๐ผ๐‘—๐‘˜(๐‘ฅ))

๐‘Ÿ ๐‘–=1

, ๐‘ก = ๐œ๐‘˜

where

๐ดฬ‚1=[๐›ฟ1 ๐›ฟ1

โˆ’๐›ฟ2 โˆ’4], ๐ดฬ‚2=[๐›ฟ3 ๐›ฟ2

0 2] , ๐ดฬ‚3=[๐›ฟ1 3

โˆ’1 ๐›ฟ3], ๐‘’ฬ‚1=[0

โˆ’1], ๐‘’ฬ‚2=[0

0], ๐‘’ฬ‚3=[1 0].

The normalized membership functions of subsystem 1 are shown in Fig. 1. The uncertainties are considered as follows. It is also assumed that ๐ดฬ‚๐‘–๐‘™

= ๐ด๐‘–๐‘™+ ๐ป๐‘Ž๐‘–๐‘™ ๐น๐‘Ž๐‘–๐‘™ ๐ฟ๐‘Ž๐‘–๐‘™ , where ฮด1=[(1 โˆ’ 0.25%)(1 + 0.25%)],

ฮด2=[(2

โ„3โˆ’ 10%) (2

โ„3โˆ’ 10%)], ฮด3=[(0 โˆ’ 0.5%)(0 + 0.5%)]

and

๐ด1=[1 2 3โ„

โˆ’1 โˆ’4] , ๐ด2=[2 2 3โ„

0 2 ], ๐ด3=[1 3

โˆ’1 2] ๐น๐‘Ž1= ๐‘‘๐‘–๐‘Ž๐‘”(๐œ‰1, ๐œ‰2) , ๐น๐‘Ž2=[0 ๐œ‰1

๐œ‰2 0], ๐น๐‘Ž3= ๐‘‘๐‘–๐‘Ž๐‘”(๐œ‰1, ๐œ‰3) ๐ป๐‘Ž1=[0.25 0

0 0.1] , ๐ป๐‘Ž2=[0.1 0.4

0 0 ], ๐ป๐‘Ž3=[0.25 0 0 0.4] ๐ฟ๐‘Ž1=[1 1

1 0], ๐ฟ๐‘Ž2= ๐ฟ๐‘Ž3=[1 0 0 1]

where ๐œ‰๐‘–, ๐‘– = 1, โ‹ฏ ,5 are random numbers on interval [โˆ’1, 1]. Now by using the MATLAB LMI Toolbox, Theorem 3, the following solution is obtained.

๐‘ƒ = ( 2.1630 โˆ’0.0112

โˆ’0.0112 2.0250 ) โ„๐‘˜= 0.98, ๐‘ฃ๐‘˜= โˆ’0.998 (1

โˆ†๐œ๐‘˜

โ„ )= 1.0๐‘’ + 004 ร—[2.6313 2.6313]. ๐ต1๐ท1๐‘˜=[โˆ’0.9837 0.0020

0.0020 โˆ’0.9774] ๐ต2๐ท2๐‘˜=[โˆ’0.8849 0.0031

0.0031 โˆ’0.8776] ๐ต3๐ท3๐‘˜=[โˆ’0.8042 0.0039

0.0039 โˆ’0.7998], ๐ต4๐ท4๐‘˜=[โˆ’0.8197 0.0007

0.0007 โˆ’0.8215].

CONCLUSION

In this paper, a new approach based on extended Lyapunov theory is proposed to stabilize the uncertain affine T-S fuzzy impulsive control systems. Two classes of uncertain affine T-S fuzzy impulsive control systems have been presented and it is shown that under some sufficient conditions, impulsive controller can be developed to stabilize uncertain affine T-S fuzzy systems. It has been also shown that the stabilization parameters can be determined by solving a set of matrix inequalities. Through this conditions, there is no need to set pre- defined controller parameters to solve matrix inequalities where there solutions indicates the stability (uniformly, asymptotically) of affine T-S fuzzy systems.

APPENDIX

Lemma A.1 (Xie [32]). Given matrices ๐‘„, ๐ป, ๐‘…, ๐ธ of appropriate dimensions with ๐‘„ = ๐‘„๐‘‡ , ๐‘… = ๐‘…๐‘‡ and ๐‘… > 0 then

๐‘„ + ๐ป๐น๐ธ + ๐ธ๐‘‡๐น๐‘‡๐ป๐‘‡ < 0,

For all F satisfying ๐น๐‘‡๐น < ๐‘…, if and only if there exists some ฯต > 0 such that๐‘„ + ๐œ–๐ป๐ป๐‘‡+ ๐œ–โˆ’1๐ธ๐‘‡๐‘…๐ธ < 0

REFERENCES

[1] Z. Yang, D. Xu, Stability analysis and design of impulsive control systems with time delay, IEEE Trans. Automatic Control 52 (8) (2007) 1448-1454.

[2] Y. Zhang, J. Sun, G. Feng, Impulsive control of discrete systems with time delay, IEEE Trans. Automatic Control 454 (4) (2009) 830-834.

[3] Z. H. Guan, H. Zhang, Stabilization of complex network with hybrid impulsive and switching control, Chaos, Solitons &

Fractals 37 (5) (2008) 1372-1382.

1

โˆ’3 โˆ’1.5 1

4

โˆ’1.5 โˆ’3 1

๐‘ฅ1 ๐‘ฅ2

4

Fig. 1. Membership functions ๐‘€13

๐‘€12

๐‘€11

(6)

[4] Y. W. Wang, M. Yang, H. O. Wang, Z. H. Guan, Robust stabilization of complex switched networks with parametric uncertainties and delays via impulsive control, IEEE Trans.

Circuits and Systemsโ€”I 56 (9) (2009) 2100-2108.

[5] Z. H. Guan, D. J. Hill, X. Shen, On hybrid impulsive and switching systems and application to nonlinear control, IEEE Trans.

Automatic Control 50 (7) (2005) 1058-1062.

[6] C. Li, F. Ma, G. Feng, Hybrid impulsive and switching time-delay systems, IET Control Theory Appl. 3 (11) (2009) 1487โ€“1498.

[7] G. Zhong, Y. WU, B. Zhang, Y. Kong, Robust exponential stability of uncertain discrete time impulsive switching systems with state delay, Journal of Control Theory and Applications 5 (4) (2007) 351โ€“356.

[8] H. Xu, K. L. Teo, X. Liu, Robust stability analysis of guaranteed cost control for impulsive switched systems, IEEE Trans. Systems, Man, Cybernetics-Part B: Cybernetics 38 (5) (2008) 1419-1422.

[9] Z. H. Guan, G. Chen, X. Yu, Y. Qin, Robust decentralized stabilization for a class of large-scale time-delay uncertain impulsive dynamical systems, Automatica 38 (12) (2002) 2075โ€“

2084.

[10] X. Liu, K. Rohlf, Impulsive control of a Lotka-Volterra system, IMA Journal of Mathematical Control & Information 15 (3) (1998) 269-284.

[11] Z. Peng, Y. Li, X. Liao, C. Li, Impulsive synchronization of Lรผ chaotic system based on small impulsive signal, Internat. J. Theor Phys 47 (3) (2008) 797โ€“804.

[12] Y. W. Wang, Z. H. Guan, H. O. Wang, Impulsive synchronization for Takagiโ€“Sugeno fuzzy model and its application to continuous chaotic system, Physics Letters A 339 (3) (2005) 325โ€“332.

[13] I. Zamani, M. Shafie, Fuzzy impulsive control with application to chaos control, in: Fuzz-IEEE conf., Jeju, Korea, 2009, pp. 338-343.

[14] I. Zamani, M. Shafie, Fuzzy affine impulsive controller, in: Fuzz- IEEE conf., Jeju, Korea, 2009, pp. 361-366.

[15] X. Zhang, A. Khadra, D. Li, D. Yang, Impulsive stability of chaotic systems represented by T-S model, Chaos, Solitons &

Fractals 41 (30) (2008) 1863-1869.

[16] Q. Zhong, J. Bao, Y. Yu, X. Liao, Exponential stabilization for discrete Takagiโ€“Sugeno fuzzy systems via impulsive control, Chaos, Solitons & Fractals 41 (4) (2009) 2123-2127.

[17] Q. Zhong, J. Bao, Y. Yu, X. Liao, Impulsive control for Tโ€“S fuzzy model-based chaotic systems, Math. Comput. Simul. 79 (3) (2008) 409-415.

[18] I. Zamani, M. H. Zarif, S. R. Musawi. "A new approach to relaxed stability conditions of fuzzy control systems." Control,

Automation and Systems, 2007. ICCAS'07. International Conference on. IEEE, 2007.

[19] I. Zamani, M. H. Zarif. "Nonlinear controller for fuzzy model of double inverted pendulums." World Academy of Science, Engineering and Technology 34 2007 (2007).

[20] I. Zamani, M. H. Zarif. "On the continuous-time Takagiโ€“Sugeno fuzzy systems stability analysis." Applied Soft Computing 11.2 (2011): 2102-2116.

[21] I. Zamani, M. H. Zarif. An approach for stability analysis of TS fuzzy systems via piecewise quadratic stability. International Journal of Innovative Computing, Information and Control 6.9 (2010): 4041-4054.

[22] M. Hosseinzadeh, N. Sadati, I. Zamani, Hโˆž disturbance attenuation of fuzzy large-scale systems, Fuzzy Systems (FUZZ), 2011 IEEE International โ€ฆ, 2011.

[23] I. Zaman, N. Sadati, M.H. Zarif. "On the stability issues for fuzzy large-scale systems." Fuzzy Sets and Systems 174.1 (2011): 31-49.

[24] I. Zamani, N. Sadati. Fuzzy large-scale systems stabilization with nonlinear state feedback controller. Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on. IEEE, 2009.

[25] C. Hu, H. Jiang, Z. Teng, Fuzzy impulsive control and synchronization of general chaotic system, Acta Appl. Math. 109 (2) (2010) 463-485.

[26] H. B. Jiang, J. J. Yu, C. G. Zhou, Robust fuzzy control of nonlinear fuzzy impulsive systems with time-varying delay, IET Control Theory Appl. 2 (8) (2008) 654โ€“661.

[27] X. Liu, S. Zhong, Tโ€“S fuzzy model-based impulsive control of chaotic systems with exponential decay rate, Physics Letters A 370 (3) (2007) 260โ€“264.

[28] I. Zamani, M. Shafiee, Type III Fuzzy Impulsive Controller Based on PDC, IFAC Proceedings Volumes, 2011.

[29] M. Mahdian, I. Zamani, M. .H. Zarif, Hybrid Nonlinear fuzzy impulsive control with application to Memristor-Based Chaotic System, The 12th Iranian Conference on Fuzzy Systems, University of Mazandaran, Babolsar, Iran,October, 23-25, 2012.

[30] I. Zamani, M. Shafiee, Type III fuzzy impulsive systems and stability analysis, Fuzzy Systems (FUZZ), 2010 IEEE International Conference on, IEEE, 2010.

[31] K. Zhu, Stability analysis and stabilization of fuzzy state space models, PhD thesis, Dep. mathematical, Duisburg-Essen Univ., 2006.

[32] L. Xie, Output feedback H_โˆž control of systems with parameter uncertainty, Internat. J. Control 63 (4) (1996) 741-750.

Referensi

Dokumen terkait