• Tidak ada hasil yang ditemukan

humidity sensors dynamic range and sensitivity adjustment in Kelvincondensation-based Alteration of pore size distribution by sol–gel impregnationfor Sensors and Actuators B: Chemical

N/A
N/A
Protected

Academic year: 2024

Membagikan "humidity sensors dynamic range and sensitivity adjustment in Kelvincondensation-based Alteration of pore size distribution by sol–gel impregnationfor Sensors and Actuators B: Chemical"

Copied!
7
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Sensors and Actuators B: Chemical

j o u r n a l ho me p a g e :w w w . e l s e v i e r . c o m /l o c a t e / s n b

Alteration of pore size distribution by sol–gel impregnation for dynamic range and sensitivity adjustment in Kelvin condensation-based humidity sensors

F. Hossein-Babaei

a,∗

, S. Rahbarpour

b

aElectronicMaterialsLaboratory,ElectricalEngineeringDepartment,K.N.ToosiUniversityofTechnology,Tehran,Iran

bElectronicEngineeringDepartment,ShahedUniversity,Tehran159-18155,Iran

a r t i c l e i n f o

Articlehistory:

Received21May2013

Receivedinrevisedform29August2013 Accepted7October2013

Available online xxx

Keywords:

Relativehumidity Humiditysensor Dynamicrange Poresizedistribution Titaniumdioxide Sol–gelimpregnation

a b s t r a c t

Ithasbeentheoreticallyestablishedthatthedynamicrangeofsensitivityinporousdielectricceramic- basedresistiveorcapacitivehumiditysensorsismainlydeterminedbytheopenporesizedistributionin theirsensingpallets.Here,wedirectlyapplytheconceptonceramicresistivehumiditysensorsandutilize theresultsfortheexperimentalverificationofthetheoreticalmodel.Theopenporesizedistributionina numberofidenticaltitaniumdioxidepallets,fabricatedbythesinteringoftheslip-castpowderat1073K, ismodifiedintwodifferentdirections:(a)impregnationwithtitaniumtetraisopropoxide,followedbya heattreatmentat773Kincreasestheproportionofthefinerporesand(b)re-sinteringtheoriginalpallets at1223Kclosesthefinerporesandsubstantiallyshiftsthedistributiontowardslargerporedimensions.

Sensitivitymeasurementresultsareconsistentwiththetheoreticallyestablishedconcept:increasingthe populationoflargerporesheightensthesensitivitytohighrelativehumidity(RH)levelsandshiftsthe dynamicrangeofthepalletsfromtheoriginal20–85%to50–95%RH.Onthecontrary,increasingthe proportionofthefinerporesinthemicrostructureoftheceramicpalletenhancesthesensitivityatthe lowerRHrange,shiftingthedynamicrangeofthesensortothe2–25%RHrange.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Thelaboratory,industrial,anddomesticapplicationsofporous solid-basedresistive and capacitive humidity sensorsare wide spread. In the most common type of these sensors, the elec- tric conductivity and/or the dielectric constant of a porous ceramicorpolymerpalletchanges duetotheadsorptionofthe watermoleculestoitseffectivesurface.Thesechangesare,then, translated torelative humidity fluctuations in thesurrounding atmosphere[1].Asaresult,theoperationmechanismandthequal- ityfactorsofthesedevicesarestronglydependentontheprocessof watermoleculesdiffusionintotheopenporesoftheporouspallet andtheirabsorptiontotheporewalls.Therelationshipbetween theporeradiusandwateradsorptionmechanisminaporoussolid hasbeentheoreticallyestablishedmorethanacenturyagobyLord Kelvin:

rk= 2M

RTln(Ps/P) (1)

Correspondingauthor.Tel.:+982188734172;fax:+982188768289.

E-mailaddresses:[email protected],[email protected](F.Hossein-Babaei), [email protected](S.Rahbarpour).

wherein,M,andarethemolecularweight,densityandsurface tensionofwater, respectively.Pis thepartialpressureofwater vaporinthesurroundingatmosphereandPsisthesaturationpres- sureof water in thesame ambientconditions. Kelvinequation hasbeenverifiedexperimentallybytwodifferentopticalobserva- tiontechniqueswhichfacilitateddirectobservationofthesurface adsorbedwaterlayers[2,3].

Based onthenatureofthe poroussolidused forpallet fab- rication,humidity sensor elementsaredivided intothree main categories of ceramics, polymer and electrolyte [4,5]. Ceramic palletsareofhigherphysicalandchemicalstabilitiesandareadvan- tagesfromtheviewpointofmanyqualityfactors:theyareoflonger lifetimes[6,7],providemorereproducibleRHmeasurementresults [8],canbeappliedforwatercontentmeasurementsatelevated temperatures[9],andcanberecoveredafterpoisoninginacon- taminatedenvironmentbythermalcleaning[6].Bulk[10,11]and thinfilm[12,13]ceramicelementsarebothutilizedforpalletfab- rication,butinallconfigurationsthesensingmechanismisbased onthemeasurementofthehumidity-sensitiveconductivityand/or dielectricconstantoftheceramicelement.

Humiditysensitiveceramicpalletsaremostlymadeofoxide- basedceramicdielectricsandwidebandgapsemiconductorssuch asTiO2[14–16],SnO2[17,18],ZnCr2O4[19,20],Al2O3[21,22]and MgCr2O4[23,24].Thephysicalpropertymonitoredinthemajority 0925-4005/$seefrontmatter© 2013 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.snb.2013.10.032

(2)

of these pallets is the electrical conductivity ()of the pallet, whichincreaseswiththeRHlevelinthesurroundingatmosphere.

Inselectingthepalletmaterial,emphasisisonhavinganefficient physical interaction with the water vapor in the atmosphere andalow,buteasilymeasurable,palletconductanceatzeroRH.

Theformercriterionismainlylinkedtothemechanismofwater layerformationontheeffectivesurfaceofthesolid.Theefficacy ofthis mechanism isquantitatively statedby thecontactangle betweenthesolid(metaloxide)andtheliquid(water)phases.A close-to-zerocontactanglemakesthematerialsuitableforpallet fabrication[25].Thelattercriterion,however,placesalimitonthe dryconductivityofthematerial,asahighroomtemperaturedry electricalconductivitycancovertheconductivityincreasedueto thewatervaporadsorption,particularlyatlowRHlevels.Thelower conductivity limit is usually dodged by appropriate electrodes shapeandsize[26]designedtobringthedeviceconductanceinto theeasy-to-measurerange.

Despite their many advantages quality factors, the dynamic rangeofnoceramicpalletaffordsfullRHmeasurementrange.A singlepallet isofacceptablesensitivityonlywithinaportionof the0–100%RHrange;abovethisdynamicrangethesensorissat- uratedandbelowthisrangethesensitivitydecaystounacceptably lowvalues.Inthesesensors,accordingtoKelvinequation,awider dynamicrangeisassociatedwithabroaderporesizedistribution pallet[1,27,28].Sucha palletshouldholdanoptimum blendof poresrangingfromafewnanometerstoseveralmicronsindiam- eter.Indeed,porosity,poresizedistributionandporemorphology ofthe ceramicpallet affectmany other qualityfactors,suchas responseandrecoverytimes,ingasandhumiditysensorsasthey controltheprocessofmoleculardiffusionoftheanalyteintothe palletstructure,aswell[29,30].Researchondesignandfabrica- tionofsolidswithspecifiedporesizedistributionforsensingat predeterminedRHrangesorbroadeningofthedynamicrangeofa particularclassofRHsensorsisstillgoingon[31].Atthepresent stateoftheart,coveringthefullRHrangewithasinglepalletis impractical[32].

TheRHdependenceofconductivityinporoussolidshasbeen thesubjectofnumerousinvestigations[33,34],andquantitative relationshipsbetweentheporesizeand thecapillarycondensa- tionofthewatermoleculeshasbeentheoreticallydevelopedsince asearlyasyear1958[27].ThemodelsuggeststhatastheRHin thesurroundingatmospheregoesdown,thecondensationofwater moleculesonthesolidsurfacerequiresfinerpores.Yamazoeetal.

haveanalyticallypresentedageneralmodelforthisrelationship, whichpredictsaclearrelationshipbetweentheporesizedistri- butionin thepallet structure and thedynamic range of itsRH sensitivity[4].Thepredictionsofthismodelhavebeenverifiedby thefabricationandcharacterizationofdifferentpalletsofdifferent porositylevelsandporesizedistributions[28].Here,forthefirst time,wearereportingthemodificationoftheporesizedistribution ofaspecifichumiditysensorceramicpalletwithdifferentmeansin differentdirectionsandobservethevariationofthedynamicrange ofthesensor.TheexperimentalworkiscarriedoutonTiO2whichis oneofthemostthoroughlyinvestigatedwidebandgapoxidesemi- conductorsutilizedforhumiditysensorpalletfabrication,aswell [35].Acomparisonofthesensorcharacteristicsbeforeandafter poresizemodificationclarifiedthechangesoccurredonthesensor dynamicrange.Weshowthatthesevariationsareconsistentwith thepredictionsofthepreviouslypresentedmodel[4].

2. Experimental 2.1. Samplepreparation

ThematerialusedforceramicpalletfabricationisTiO2powder (MERCK1.00808.1000) usedaspurchased fromthevender.The

Fig.1. TheXRDpatternobtainedfromthetitaniumoxidepowderusedforpallet fabrication;thepatterncontainsanatasepeaksonly.

resultofXRDexamination,giveninFig.1,revealedthatthematerial isofanatasephase.Noadditive,dopantorbinderwasintroducedto thepowderduringthepalletfabricationprocess.Aviscousslipwas preparedbytheadditionof40wt%distilledwatertothepowder.

Theslipwasdroppedas∼12mgdropletsontotheclosestpoint betweentwounparallelfine,d=60␮m,platinumwires,theendsof whichhadbeensparkweldedtofourrefractorymetalpostssecured inasegmentofalumina(Fig.2(a)).ThedistancebetweenthetwoPt wiresis1mmasmeasuredattheirclosestpoint.Theactualinter- electrodedistanceoccurringwithintheceramicbeadsproduced, measuredafterdryingandsintering,is∼0.5mmasobservedonthe brokenbeads.Thedropletformedasphereofslipsuspendingfrom thePtwires,whichwasdriedatroomtemperatureandformedan approximatelysphericalbead(Fig.2(a)).

ThedriedTiO2ceramicbeadalongwithitsall-refractorysupport structurecanentirelybeplacedinthefiringfurnace.Thismethodof samplefabricationpreventedthelooseninganddeteriorationofthe Pt–TiO2contactsbyunavoidablemovementsduringtheforming, dryingandsinteringprocesses.Drybeadsaresinteredat1073K for30mininaSiC-muffledelectricfurnaceinairandareleftinthe switchedofffurnacetocooldownovernight.Thephotographand aSEMcloseupofthesampleproducedareshowninFig.2(a)and (b),respectively.Thesamplespreparedaccordingtothisprocess arereferredtoasNsamples.

Asecondsetofthesamples,referredtoSsamples,areprepared byimpregnatingtheNsampleswithtitaniumdioxidesolprepared basedontitaniumalcoxide.Thedetailsofthemethodutilizedfor thepreparationofthealcoxidesolutionanditsconversiontoasus- pensionofTiO2nanoparticlesisgiveninRef.[36].Forimpregnation, anNsampleissoakedwithasoldropletofapredeterminedvol- umeproducedatthetipofaliquid sampler.Thevolumeofsol isdeterminedbasedonthevolumeoftheopenporeswhichare intendedtobefilledwiththesolliquid.Theimpregnatedsamples aredriedatroomtemperatureand,subsequently,annealedat773K inair.Theannealingprocessconvertstheresiduesofthedriedsolto TiO2nanoparticleswhichprecipitatewithintheopenporesofthe palletandmodifyitspore-sizedistributionbydividingthelarge micron-sizeporesintoanumberofnanopores.Asaresult,Ssam- ples,comparedtoNsamples,areofloweroverallporosity,buttheir poresizedistributionextendsdeeperintothenanoporeregion(see below).

Athird setof samples,referredtoasL samples,isprepared byre-sinteringanumberoftheNsamplesat1223Kforanother 30min.AlthoughLsamplesareoflowertotalporosity,thegrain growthduringre-sinteringleadstolargergrainsand,evidently, reduce the population of the smaller openpores. Typical SEM

(3)

Fig.2. Thephotographofthefabricatedceramicbeadhumiditysensor(a)andthe SEMmicrographofatypicalsamplefiredat1073K(b).

micrographsobtainedfortheTiO2beadsinN,S,andLsamplesare giveninFig.3(a)–(c),respectively,indicatingthattheporosityand themorphologyoftheporeshavesignificantlyalteredbysol–gel impregnationintheSseriesandover-sinteringtheLseries.

2.2. Characterization

Theapparent density ofthe ceramic pallets is measuredby utilizing standard weighing and immersion techniques (ASTM D7263). This parameter is measured on dummybead samples accompanyingN,SandLsamplecategoriespreparedandprocessed via identical fabrication routes. Dummy samples are not con- nectedto wires and these standard tests could becarried out withoutbreaking which can introduce additional errors in the results.Theporosityofeachsamplecategorywasthencalculated bycomparingitsapparentand bulkdensities.Theeffectivesur- facesofthepowdereddummysamplesaredeterminedbynitrogen adsorptionmeasurementsusing Belsorp-miniIIsystemat 77K.

Obtainingreliableporesize-relatedinformationfromtheobtained gasadsorptiondataishamperedbythetype-IIInitrogenadsorption

Fig.3. TheSEMmicrographsofthefabricatedtitaniumdioxidebeadsof(a)N(a),S (b),andL(c)types.

isotherm[37]observedforallthesamplecategories.Theresultsof density,porosityandeffectivesurfacemeasurementsarepresented inTable1,indicatinghigherbulkdensityandlowertotalporosity valuesfortheSandLsamplescomparedtothoseofNsamples.The magnitudesofbothdensityandporositychangesinSsamplesare consistentwiththeamountsofsolidTiO2introducedintothebulk bythesolimpregnationandsubsequentthermalannealing.Incase

Table1

Physicalspecifications ofthethreesamplecategoriesfabricated.Thelasttwo columnsarebasedontheresultsofnitrogenadsorptionmeasurementsat77K.

Sampleclass Density(g/cm3) Porosity(%) Totalarea (m2g−1)

Totalporevolume (cm3g−1)

N 1.4±0.1 70 7.647 0.51

S 1.7±0.1 60 8.086 0.47

L 2.5±0.1 40 2.676 0.30

(4)

Fig.4. TheXRDpatternsobtainedforN(a),S(b)andL(c)samples.

ofLsamples,however,bothchangesareowingtotheextraphysical shrinkageandfinerporeclosurewhichoccurduringre-sinteringat 1223K.

TheXRDpatternsobtainedforN,LandSsamplecategoriesare giveninFig.4(a)–(c),respectively.WhilethestartingpowderTiO2is ofanatasephase,allsamplecategoriesareanatase-rutilemixtures.

ThelatterphaseisthemorestablephaseofTiO2andisproduced fromanataseattemperaturesabove873K;Lsamplescontainmore rutileduetothehigherre-sinteringtemperatureutilized.Poresize distributionswereestimatedbasedoncomparativelineaveraging amongthedummysamplesforsizeandpopulationoftheporeson theSEMmicrographsobtainedfromtheasbrokensurfacesofthe differentdummysamplessimilartothoseshowninFig.3(a)–(c).

TheresultsaregiveninSection3.

Theconductanceofeachsamplesensor,measuredbetweentwo electrodewires,isobtainedatdifferentsurroundingRHlevelsat 298±0.2K.For this measurement,thesample ismounted ona probewhichcanbeinsertedintoachambercontainingairwith apredeterminedRHlevel.Theexperimentalsetupispresentedin Fig.5.Thetemperatureattheouterchamberiscontrolledusing

Fig.5.Theschematicsoftheexperimentalsetup.

(c)

0 50 100 150 200 250 300 350 400 450 500 0

20 40 60 80

Pore size (n m)

Vol (% )

Pore size (n m)

0 50 100 150 200 250 300 350 400 450 500 0

20 40 60 80

Vol (% )

(b) (a)

0 50 100 150 200 250 300 350 400 450 500 0

20 40 60 80

Pore size (n m)

Vol (%)

Fig.6. Theestimatedpore-sizedistributionsofsampleclasses(a)N,(b)S,and(c)L.

asystemcomprisingaPT100temperaturesensor,aPIDcontroller connectedtoadistributedfinewireheatingelementonthecham- berwhichstabilizesthetemperatureinthechamberat298±0.2K.

Tominimizetheelectrode-ceramicconnectiondeteriorationdue totheelectrochemicalcorrosion,conductancemeasurementswere carriedoutat17Hz.Atthisfrequency,thecapacitiveadmittance ofthesampleandparasiticcapacitorsparalleltothesampleare insignificantcomparedtoitsconductance.Closedchambersofdif- ferentRHlevels,intherangeof2–95%,wereobtainedbyinjecting predeterminedvolumesofdistilledwaterintothedryair(RH=2%) chamberusinga micro-sampler.Theinjectedwaterwasevapo- ratedtoobtainthespecifiedhumiditylevelinside thechamber.

(5)

0 20 40 60 80 100 0.0

0.5 1.5 2.0 2.5 3.0x 10-7

RH (%)

Conductance (S)

S

N L

At 298K

1.0

Fig.7.Theelectricalconductanceofthethreesampleclassesmeasuredinairat differentRHlevels.

ThestableRHlevelsweremonitoredbyacommercialhumidity sensor(HIH4000)priortoeachmeasurement.Theoutputofref- erencesensorwascalibratedinclosedchambersofstandardRH levelsobtainedusingdifferentsaturatedsaltsolutions[38].

3. Resultsanddiscussion

TheporesizedistributionsobtainedforsamplesN,SandLare giveninFig.6(a)–(c),respectively.Theresultsindicatethatcom- paredtoNsamples,Ssamplesareofhigherconcentrationofthe fineopenporeswhilehavingaloweroverallporosity.Thelatteris owingtotheoxideparticlesgrownfromthesolmaterialdriedand decomposedwithinthelargerpores.Thesameprocessincreases thepopulationofthefineporesowingtothepartialfillingofthe largerporesand thefactthatthesolid aggregatesproducedare composedofnanoparticlesandincludenanopores.Thesituation istheotherwayroundintheLsamples:manyofthefinepores havebeeneliminatedorclosedduringtheexcessivegrowthwhich occurredinre-sinteringleadingtoahigherdensityandlowerover- allporositycomparedtoNsamples.Thesameprocessincreasesthe volumepercentageofthelargerporesofthesamplesasdepicted inFig.3(c).Althoughthepopulationoflargerporesincreased,the netporosity in L samplesis lowerthan that in theoriginal N- samplesduetotheoveralldimensionalshrinkageoccurredduring re-sintering.Thesefindingsareconsistentwiththeexperimental datapresentedinTable1.

PalletconductanceinairwithaspecifiedRHlevel,GRH,ismea- suredatdifferentRHlevels;typicalresultsobtainedforthethree samplegroupsarepresentedinFig.7.Theconductanceofallsam- plecategoriesmeasuredinvacuum(105Torr)isbelow108Sand, hence,theGRHvaluesgiveninFig.7arealmosttotallyowingto thepresenceofhumidair.EachGRHisrecordedafteralongstay inthespecifiedatmosphere.AccordingtoFig.7,G95%inallsam- plesarealmostequal.Thisisdescribedbasedonthefactthatat close-to-saturationRHlevels,almostalltheporesarefilledwith theliquidandtheconductanceisdefinedbythegeometryofthe electrodes.Onthecontrary,thevaluesobtainedforG2%vary∼100 timesamongthethreesamplecategories.Thisstemsfromthefact thatatlowerhumiditylevels,Kelvincondensationoccursinthe nanometricporeswhichareofverydifferentconcentrationsamong differentsamplecategories.

Priortoeachtransientresponsemeasurement,theG2% ofthe samplewasmeasuredbykeepingthesensorfor30minatRH=2%;

thelowesthumiditylevelutilized.Asuddenexposuretoadiffer- entbut constantRHlevelcausestheconductance ofthesensor

Fig.8. Normalizedtransientresponsesandrecoveriesrecordedforthehumidity sensorsfabricatedbasedonthepalletclassesof(a)N,(b)S,and(c)Ldepictingthe limited,butdifferent,dynamicrangesofthethreesampleclasses.

pallet,G(t),tovarywithtime.Thetransientresponseofthesensor isdefinedas:

X(t)=G(t) G2%

(2) inwhich,G(t)isthetransientconductanceofthesensor.Consider- ingthedifferent,butconstant,valueofG2%foreachpallet,theX(t)

(6)

0 20 40 60 80 100 0

10 20 30 40 50 60

RH (%)

SensiƟvity (arbitrary unit)

N

L S

At 298K

Fig.9.ComparisonoftheRHsensitivitiesestimatedbasedontheexperimentaldata giveninFig.8andothersimilargraphs,forthestatedsampleclasses.

profilerelatedtoeachsampleis,withachangeofscale,similarto thatoftherespectiveG(t).Thenormalizedtransientresponsesare presentedinFig.8(a)–(c).

ThesensitivityofthesensoraroundaspecifiedRH,SRHisdefined as:

SRH= dGRH

dRH

RH (3)

DuetothenonlinearityoftheGRH(RH),asshowninFig.7,Eq.

(3)resultsinahumidityleveldependentsensitivity,i.e.ataround RH1,thehumiditysensitivityofapallet,SRH1,canbesignificantly differentfromthatofthesamesensoratRH2.Thesensitivitiesof thedifferentsamplepalletsareestimatedbasedontheGRHvs.RH diagramsshowninFig.7.Theresults,presentedinFig.9,depict thedynamicoperationrangesofthethreedifferentsensorclasses, indicatingthatnoneoftheN,S,andLsamplecategoriescancover thecompletehumidityrangewithitsdynamicrange.Theoriginal NsamplespresentamediumRHdynamicrangecoveringfrom20%

to80%.InLsamples,thedynamicrangeshiftstowardshigherRH rangeof60–95%,whiletheS-typepalletsdemonstrateashiftof dynamicrangetolower2–25%RHrange.

Foreachsample,theresponsetime,thetimerequiredforG(t)to ascendfrom5%to95%ofitssteady-stateresponselevel,afterasud- denexposuretoahigherRHsurrounding,andtherecoverytime, measuredinareversefashionatsuddenRHfalls,weremeasured ontherecordedtransientresponses.Typicalnormalizedresponse andrecoverydiagramsrelatedtothethreedifferentsamplecate- goriesaregiveninFig.10.Thelongerresponseandrecoverytimes observedintheS-samplesareconsistentwiththeexpectedlonger diffuse-inanddiffuse-outtimesofthetargetmolecules[30]into thesesamplesofmoreintricateporetopography.

0 20 40 60 80

0 0.2 0.4 0.6 0.8 1.0 1.2

N L

Time (s)

S

Normalized conductance

Fig.10. Normalizedresponseandrecoveryprofilesofthestatedpalletclasses obtainedatthemidstoftheirrespectivehighsensitivityranges.

4. Conclusion

TheporesizedistributioninanumberofTiO2humiditysensing palletswasaltered in twoopposingdirections. Thisresultedin threecategoriesofsamplehumiditysensorsofidenticalnatures butwithdifferentporesizedistributions.Allthesamplesunder- wenttheassessmentsofmajorsensingqualityfactorsin2–95%

humidityrange.Themeasurementresultsareconsistentwiththe predictionsofthemodelswhichdescribethehumiditysensingpro- cessbyconsideringtheadditionalelectricalconductionintroduced bythenetworkofwaterlayersformedbyKelvincondensationon theeffectivesurfaceoftheporousstructureofthedielectricpallets.

Particularly,thepresentedresultsexperimentallyverifiedthepre- dictedrelationshipbetweenthedynamicrangeofthesensorand theporesizedistributioninhumiditysensingpalletsforthefirst time.

References

[1]Y.Shimizu,H.Arai,T.Seyama,Theoreticalstudiesontheimpedance-humidity characteristicsofceramichumiditysensors,Sens.ActuatorsB:Chem.7(1985) 11–22.

[2]L.R.Fisher,R.A.Gamble,J.Middlehurst,TheKelvinequationandthecapillary condensationofwater,Nature290(1981)575–576.

[3]L.R.Fisher,J.N.Israelachvili,DirectexperimentalverificationoftheKelvinequa- tionforcapillarycondensation,Nature277(1979)548–549.

[4]N.Yamazoe,Y.Shimizu,Humiditysensors:principlesandapplications,Sens.

ActuatorsB:Chem.10(1986)379–398.

[5]B.M.Kulwicky,Humiditysensors,J.Am.Ceram.Soc.74(1991)697–708.

[6]Z.M.Rittersma, Recentachievementsin miniaturisedhumidity sensors—a reviewoftransductiontechniques,Sens.ActuatorsA:Phys.96(2002)196–210.

[7]M.Li,X.L.Chen,D.F.Zhang,W.Y.Wang,W.J.Wang,Humiditysensitiveproper- tiesofpureandMg-dopedCaCu3Ti4O12,Sens.ActuatorsB:Chem.147(2010) 447–452.

[8]Z.Y.Wang,L.Y.Shi,F.Q.Wu,S.Yuan,Y.Zhao,M.H.Zhang,Thesol–geltemplate synthesisofporousTiO2forahighperformancehumiditysensor,Nanotech- nology22(2011)275502–275510.

[9]M.A.Hassen,A.G.Clarke,M.A.Swetnam,R.V.Kumar,D.J.Fray,Hightemperature humiditymonitoringusingdopedstrontiumceratesensors,Sens.ActuatorsB:

Chem.69(2000)138–143.

[10]E.Traversa,Ceramicsensorsforhumiditydetection:thestate-of-the-artand futuredevelopments,Sens.ActuatorsB:Chem.23(1995)135–156.

[11]I.C.Cosentino,E.N.S.Muccillo,R.Muccillo,Developmentofzirconia–titania porousceramicsforhumiditysensors,Sens.ActuatorsB:Chem.96(2003) 677–683.

[12]X.Chen,L.Rieth,M.S.Miller,F.Solzbacher,ComparisonofY-dopedBaZro3thin filmsforhightemperaturehumiditysensorsbyRFsputteringandpulsedlaser deposition,Sens.ActuatorsB:Chem.148(2010)173–180.

[13]C.T.Wang,C.L.Wu,C.Chen,Y.H.Huang,Humiditysensorsbasedonsilica nanoparticleaerogelthinfilms,Sens.ActuatorsB:Chem.107(2005)402–410.

[14]F.Hossein-Babaei,S.Rahbarpour,Porositymodificationfortheadjustmentof thedynamicrangeofceramichumiditysensors,in:3rdInternationalConfer- enceonSensingTechnology,2008,Tainan,Taiwan,2008,pp.648–651.

[15]L.L.Chow,M.M.F.Yuen,P.C.H.Chan,A.T.Cheung,ReactivesputteredTiO2thin filmhumiditysensorwithnegativesubstratebias,Sens.ActuatorsB:Chem.76 (2001)310–315.

[16]G.Gracia-Belmonte,V.Kytin,T.Dittrich,J.Bisquert,Effectofhumidityonac conductivityofnanoporousTiO2,J.Appl.Phys.94(2003)5261–5463.

[17]S.P.Yawale,S.S.Yawale,G.T.Lamdhadeb,Tinoxideandzincoxidebaseddoped humiditysensors,Sens.ActuatorsA:Phys.135(2007)388–393.

[18]G.Korotchenkov,V.Brynzari,S.Dmitriev,ElectricalbehaviorofSnO2thinfilms inhumidatmosphere,Sens.ActuatorsB:Chem.54(1999)197–201.

[19]M.Bayhan, N.Kavaso˘glu,Astudy onthehumiditysensingpropertiesof ZnCr2O4–K2CrO4ionicconductiveceramicsensor,Sens.ActuatorsB:Chem.

117(2006)261–265.

[20]S. Pokhrel, B. Jeyaraj, K.S. Nagaraja, Humidity-sensing properties of ZnCr2O4–ZnOcomposites,Mater.Lett.57(2003)3543–3548.

[21]R.K.Nahar,V.K.Khanna,W.S.Khokle,Ontheoriginofthehumiditysensitive electricalpropertiesofporousaluminaoxide,J.Phys.D:Appl.Phys.17(1984) 2087–2095.

[22]K.K.Mistry,D.Saha,K.Sengupta,Sol–gelprocessedAl2O3thickfilmtemplateas sensitivecapacitivetracemoisturesensor,Sens.ActuatorsB:Chem.106(2005) 258–262.

[23]S.S.Pingale,S.F.Patil,M.P.Vinod,G.Pathak,K.Vijayamohanan,Mechanismof humiditysensingofTi-dopedMgCr2O4ceramics,Mater.Chem.Phys.46(1996) 72–76.

[24]G.Drazic,M.Trontelj,Preparationandpropertiesofceramicsensorelements basedonMgCr2O4,Sens.Actuators18(1989)407–414.

[25]A.J.Moulson,J.M.Herbert,Electroceramics,seconded.,Wiley,2003,pp.215.

(7)

[26]M.Urbiztondo,I.Pellejero,A.Rodriguez,M.P.Pina,J.Santamaria,Zeolite-coated interdigitalcapacitorsforhumiditysensing,Sens.ActuatorsB:Chem.157 (2011)450–459.

[27]J.H.D.Bore,TheShapesofCapillariesandtheStructureandPropertiesofPorous Material,Butterworth,London,1958,pp.68–94.

[28]K.Katayama,K.Hasegawa,T.Takahashi,T.Akiba,H.Yanagida,Humiditysen- sitivityofNb2O5-doppedTiO2ceramics,Sens.ActuatorsA:Phys.24(1990) 55–60.

[29]M.H.Seo,M.Yuasa,T.Kida,J.S.Huh,K.Shimanoe,N.Yamazoe,Gassensing characteristicsandporositycontrolofnanostructuredfilmscomposedofTiO2

nanotubes,Sens.ActuatorsB:Chem.137(2009)513–520.

[30]F.Hossein-babaei,M.Orvatinia,Analysisofthicknessdependenceofthesen- sitivityinthinfilmresistivegassensors,Sens.ActuatorsB:Chem.89(2003) 256–261.

[31]J. ShahAuthor Vitae, R.K. Kotnala, B. SinghAuthor Vitae, H. Kishan, Microstructure-dependent humidity sensitivity of porous MgFe2O4–CeO2

ceramic,Sens.ActuatorsB:Chem.128(2007)306–311.

[32]T.Islam,L.Kumar,S.A.Khan,Anovelsol–gelthinfilmporousaluminabased capacitivesensorformeasuringtracemoistureintherangeof2.5–25ppm, Sens.ActuatorsB:Chem.173(2012)377–384.

[33]D.U.KimAuthorVitae, M.S.Gong, Thickfilmsofcopper-titanateresistive humiditysensor,Sens.ActuatorsB:Chem.110(2005)321–326.

[34]F.Hossein-Babaei,V.Ghafarinia,Compensationforthedrift-liketermscaused byenvironmentalfluctuationsintheresponsesofchemoresistivegassensors, Sens.ActuatorsB:Chem.143(2010)641–648.

[35]P.M.Faia,C.S.Furtado,A.J.Ferreria,Humiditysensingpropertiesofathick- filmtitaniapreparedbyaslowspinningprocess,Sens.ActuatorsB:Chem.101 (2004)183–190.

[36]F.Hossein-Babaei,M.Keshmiri,M.Kakavand,T.Troczynski,Aresistivegassen- sorbasedonundopedp-typeanatase,Sens.ActuatorsB:Chem.110(2005) 28–35.

[37]M.Khalfaoui,S.Knani,M.A.Hachicha,A.B.Lamine,Newtheoreticalexpressions forthefiveadsorptiontypeisothermsclassifiedbyBETbasedonstatistical physicstreatment,J.ColloidInterfaceSci.263(2003)350–356.

[38]A.Carotenuto,M.Dell’Isola,Anexperimentalverificationofsaturatedsalt solution-basedhumidityfixedpoints,Int.J.Thermophys.17(1996)1423–1439.

Biographies

FaramarzHossein-BabaeireceivedtheB.S.degreeinelectronicengineeringfrom Amir-KabirIndustrialUniversity,Tehran,Iran,in1971,andtheM.S.degreein materialsscienceandthePh.D.inelectricalengineeringfromtheImperialCollege, London,UK,in1975and1978,respectively.HehasbeenProfessorofElectronic MaterialsattheElectricalEngineeringDepartmentofK.N.ToosiUniversityofTech- nology,Tehran,Iran,since1980,andhasbeenAdjunctProfessorattheDepartment ofMaterialsEngineering,UniversityofBritishColumbia,Vancouver,Canadafrom 2002to2007.Hehasfoundedanumberofhi-techspin-offcompaniesmostlyactive inthefieldofhightemperatureelectronicmaterialsandtechnology.Hispresent researchinterestsincludeelectricheating,electrophoreticdepositionofelectroce- ramicmaterials,microfluidics,metaloxidegassensorsandartificialolfaction.Prof.

Hossein-BabaeireceivedtheKhwarizmiInternationalAwardforhisoutstandingR andDworkonhightemperaturesystemsin2006.

SaeidehRahbarpourreceivedtheB.S.degreefromAmirKabirUniversityofTech- nology(TehranPolytechnic),Tehran,Iranin2003,theM.S.degreeandPh.D.from K.N.ToosiUniversityofTechnology,Tehran,Iranin2005and2011respectively,all inelectronicengineering.SheiscurrentlyassistantprofessorinShahedUniversity.

Herresearchinterestsincludethephysicsofoxidesemiconductorsandthefabri- cationandassessmentofbothSchottkytypeandchemoresistivegasandhumidity sensors.

Referensi

Dokumen terkait