• Tidak ada hasil yang ditemukan

Spatial Gradient Modeling of Water Yield Service Using Invest in Northern Sub-Basins of Kerman Province

N/A
N/A
Protected

Academic year: 2024

Membagikan "Spatial Gradient Modeling of Water Yield Service Using Invest in Northern Sub-Basins of Kerman Province"

Copied!
19
0
0

Teks penuh

(1)

Online ISSN: 2382-9931

Journal of Water and Irrigation Management

Homepage: https://jwim.ut.ac.ir/

University of Tehran Press

Spatial Gradient Modeling of Water Yield Service Using Invest in Northern Sub-Basins of Kerman Province

Malihe Erfani1 | Sharif Joorabian Shooshtari2 | Tahereh Ardakani3 | Fatemeh Jahanishakib4

1. Corresponding Author, Department of Environmental Sciences, Faculty of Natural Resources, University of Zabol,

Zabol, Iran. E-mail: [email protected]

2. Department of Nature Engineering, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran. E-mail: [email protected]

3. Department of Environmental Sciences & Engineering, Faculty of Agriculture and Natural Resources, Ardakan University, P.O. Box 184, Ardakan, Iran. E-mail: [email protected]

4. Department of Environmental Sciences, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran. E-mail: [email protected]

Article Info ABSTRACT

Article type:

Research Article

Article history:

Received: October 11, 2022 Received in revised form:

November 28, 2022 Accepted: April 3, 2023 Published online: April 14, 2023

Keywords:

Arid and semi-arid regions, Economic valuation, Ecosystem service, modeling.

The ecosystem service of water yield is affected by damaging human activities, and the estimation of its quantity through modeling is the first step to sustainable management of this service. This research applied the InVEST hydrological model to quantify the ecosystem service of water yield and its valuation in the northern arid and semi-arid sub-basins of Kerman province. First, for modelling the water yield were entered the maps such as annual average precipitation, depth of root limiting layers, plant accessible water capacity, land use/land cover (LULC), and the boundaries of the basin and sub-basins, and the approximate amount of actual evapotranspiration (AET) in each pixel. Then maps of estimated water yield in each pixel was obtained. The model calculated 5112.43 million cubic meters of water with a value of more than 418500 billion Rails are produced annually, the highest amount of water yield is in sub-basin one (Abargho-Sirjan) with 2103 million cubic meters per year and the lowest amount of water yield in sub-region three (north Kavir-e lut) with the amount of 741.84 million cubic meters. The results showed that the value of supply the water yield service is strongly influenced by the spatial changes of LULC. Dense range lands produce 27630.7 MCM of water per hectare, and each hectare of dense forest can produce 1104.6 MCM of water. Therefore the role of vegetation shows the influence of water infiltration and feeding of aquifers in high areas.

The results of this study can be used in spatial planning to reduce the destructive effects of floods and droughts, prevent land degradation and develop vegetation, feed aquifers, and also estimate damages in green accounting.

Cite this article: Erfani, M., Joorabian Shooshtari, Sh., Ardakani, T., & Jahanishakib, F. (2023). Spatial Gradient Modeling of Water Yield Service Using Invest in Northern Sub-Basins of Kerman Province. Journal of Water and Irrigation Management, 13 (1), 63-81. DOI: https://doi.org/10.22059/jwim.2023.349742.1024

© The Author(s). Publisher: University of Tehran Press.

DOI: https://doi.org/ 10.22059/jwim.2023.349742.1024

(2)

نا هﺎﮕﺸ اد تارﺎﺸ ا

یرﺎﯿآ و بآ

Homepage: https://jwim.ut.ac.ir/

:ﯽﯿوﺮ !ﻟا #ﺎﺷ ۹۹۳۱ - ۲۳۸۲

InVEST ! "

#

$

1 2 |

3 | ! |

" #

4

1.

. ! "#$ #

:& ' [email protected]

2.

. )* +, #- . ' / 0#12 , 3 !

:& ' [email protected]

3.

! , 3 0#12 ' /

. / '

. / '

:& ' [email protected]

4 . !

6 6 .

:& ' [email protected]

% & ' (

) #*

: % & , 7 89 :; <

- . / 19: / 07 / 1401

- . 0 1 07 : / 09 / 1401

- . 23 4 14 : / 01 / 1402

- . 5 25 : / 01 / 1402

) 6 7 :

B ' ' C!

. D+E .

- F+ ,#/ G

"

, .

&H I - J I -

. KL ;#M H+ ,#/ - )N+

; O ' 9 36 0 ! P ; , K Q . 7

J L H/ ' L - P

"

, R7 89 . , . S T

U 7

&

. !' / "

I V#; ' 7

InVEST

' H/

H+ ,#/ - . , KL ;#M

B ' ' C!

' L .

&S#T . 7

&H I - ; HW I -

/ +, 0 X

W

& < + .

. 7 P

! '

& ; , JH2

& Y

Z / . 7

KL ' < & ' '

[ +, / S ' . ' / ! ) P ]^, RW#9

(LULC

&S#T

&S#T

&<^ . 7

&

# 2 . ' . 7 ' "

W

& <

' <

<M

` M Q M

E ) ' (AET

7 9 : <

;#M W ' L KL '

9 7

&

, . L G , [ ,

0 X ,#M W

"

' &<^

a '#

& Y , 43 / 5112 + # 1 R W ' KL b

418500

;#M " ' ' 1

#W &/

R M P ' <

;#M KL '

&S#T

#E ) I - ( 6 ,

2103 + # 1 b

'

" , F/

M P e

;#M KL '

&S#T ' < ( ; HW G#; #/) &,

84 / 741 , b + # 1

& KL ;#M - &S 2 ]^, &/ f + .

M G W )NM

G gM , LULC

.

&

'#

. F/ M 9 M S ' h#HX ' &/

7 / 27630

# 1

b +

' + 7 ' F7 P j ;#M & ' E F/ M 9 6 ' + 7 7 6

/ 1104

# 1 &/ , KL b +

#Q L & CgM KL k#l ' ' 7 ! RW#9 R<

lM J ' 7 ' & ; ^ P f + . 7

&

, K Q G ) R7 / 36 .e ' I -

; ,

!#16 & ,#M S ' b QM .

#Q L & CgM 7 ! RW#9 7

F7 P j ' L G' - 7 . , ' / E e , .' T '

8 9 O 2: .0 '#6 +W#W .B . / ' .m 36 W b U ) 1402 .(

"

, . ! -

,#/

H+

;#M KL InVEST

'

&S#T 7 .

; HW +, / & .

.' L KL 13

) 1 ( 63 - 81 . DOI:https://doi.org/10.22059/jwim.2023.349742.1024

: W 3M G ' + & ,n .

. ! # ©

(3)

1 . '

H+ ,#/ G - 0#3l )

(ES

. + ' 1

F+ ,#/ &/ e F7 O & 6 . . 7

' L

F7 h# M '# ' 7 !L R eO 36 P j ) O & ,#M F+ ,#/ o lT +

Birkhofer et al., 2015

' .(

&7 - . 7 G -

F+ ,#/

M F+ ,#/ " M ' H3 R< &/

2 H+6 & ,#

- l . D+E R /

; O W b QM R 9 KL G gM . 7

#7 W )N+

)

Cui et al., 2021

(

& .

F <+ 1XM # 2

; O

gM . 7

) P ]^, RW#9 / S ' . ' / (LULC

. 7 O G gM ' 1p q 2 2

# 0 F+ ,#/ G - +- W P . ,

'

+3 36

F+ ,#/ G - ' L ' LULC

gM )N+

P ' , W LULC

F+ ,#/ G - ) , .' S

Liang et al., 2021

F7 .(

X L P j G - &/

0# . 7 /' / & r M & F+ ,#/

+- W

&+

' a+

L B ' /' WL &/ ' .'#$M ' 7

, , ) / b s M 7 1H2 P aO . ' 'C!

Birkhofer et al., 2015

.(

M T KL ;#M

&t ' G - P M F+ ,#/ ,#M W

G 1 P h#HX KL ;#M '#a . , 7

& - ' & Y , 6 l, & CgM 7

, B' &1 ,# KL . 7 )

Haghdadi et al., 2018

( . KL ;#M

&<^ F+ ,#/ D+E ' 9 & ,#M . U' D + p G ;#M .' L .# Q, 9 ' . H7 .

! , B ' . ' # - KL W

. , +- F7

P j 0# . 7 1H2 +- W

#M

K#,' 6 - P / &- j )NM

' C!

)

Yang et al., 2021

(.

& ; ^ P j

; O &/

. 7 I V#; ' 7 R / ' gM u2 #M

&S#T e Q L . 7

, O K ' B' #W )NM

) ' C

Sun et al., 2015; Tahiru et al., 2020

( G gM. LULC

]^, gM

&S#T ) , ' C! ) KL 1H2 e Q L

Song and Deng, 2017

3 & &6#M .(

.' r1+Q . 7

P I 7 ' KL ;#M e ' G lM S ' R 9 ' L LULC

S ' P I 7 KL ;#M

8 H7 , ' '#- .

)

Haghdadi et al., 2018

( . ' 0 &/ , M*v KL # H/

&

8

&H I - J ' M I -

)NM ' E P 7 '

KL KL P ' 9 " M #W ' E

)

Sharafatmandrad and Khosravi Mashizi, 2021; Yang et al., 2020

- ' 9 36 .(

F HDM HT . H+2 E G 2* e KL F+ ,#/

. ! '#

) ,

Benra et al., 2021

P .(

J G 2*

"

, E . M &^ ' P ' # "#DT

" # / ;#M ' L . O I V#; ' 7 . 7

&+O & ,#M KL K# - &/

P M L 7 M' 2 ) KL q - ' ' e "

SWAT3

) (

Munoth and

Goyal, 2020

" ( . 7 B ' ' C!

) G* F+ ,#/ G - &j' w .

InVEST

4( )

Zhao et al., 2019

(

) H+ ,#/ G - . 2# D B#7 "

ARIES

5( )

Bagstad et al., 2015

P P .(

"

InVEST

&

& F+ ,#/ G - 1H2 ' ' + ! '#

' ' 8 P NM

" P . e . , W l+, KL

&

. 7 F/

M ) , 36 ' /

Yang et al., 2021

.(

! x 9 #6 B '

' C!

H2 . 7 9 0#3l P F+ ,#/ G - . & ,#M .

R7 89 7 , , . 7

&7 ' + , &+W &+WC! . 7

)

Millennium Ecosystem Assessment, 2005

.(

y - 9 . 7

F+ ,#/ G - . )

(PES

&1H6 L 6

&/ , , ' F7 F+ ,#/ o lT &

2 H+6 .

& e7 E T

) ,

López-Cubillos et al., 2022

.(

B ' ' C!

B ' & H+ ,#/ G - . D+E . . 7

r1+Q ) .' s .'

U D G 6 M /

7( 0 X

#W . B ' . ,' WL . 7 U D G 6 M

! / '

(4)

' E 1/ &+, !

z B ' W' WL ] 6 M . 7 L)8

B ' G ) . 0 ' +O' 7 + &/ 7

H+ ,#/ G - B ' ( + 7

] 6 M . 7

9 W L)

& &/ 7 W ' ' ' 0 F <+ '#

G -

F+ ,#/

, 9 ) ( #W

Ghermandi et al., 2010

H6 & l,N+ .(

.' L { - & ; . 7

&<^

a '#

36 B ' ' C!

, & e7 9 F+ ,#/ G - . P

' B ' ' C!

. XM . 7 .

, , ' C!

RQ '

) + [ +, ' b1s

Plummer, 2009

.(

& ; B*M I '

Costanza et al.

) ;#9 B ' (1997

17 P ' H+ ,#/ | , 16

M 54 'Y # 1 M

6# P HQM " , ' L R7 89

7

# j '# ' ' B '

' C!

/ sL H+ ,#/ G - .

)

TEEB, 2010

' .(

} j GY < M &/ 7

" , ' W - . 7

# '

&

'#

. ' &/

0 X ,' ~ ' M ' W

27 P ' O 1401

'Y# , !#! ' G' 2 #X+ 6

water yield

M 42200 &; <

" , ' 2022 " , W } j 2021

2020

&

M b M M 80700

285000 &/ , W + # / M &; <

M ' 7 ' KL # H/ F 1E g

. 7 B ' ' C!

k QM KL L' / • DQM ' KL . D+E .

, , F3 R< . ' )n G H HDM b, . 7 P M

/ , . )

Ghobadi and Moridi, 2022

( .

{#D- ' - G ; ^ & #H B '

' C!

,#M ' KL . D+E .

Balali and Kasbian Lal

) ( 2022

Pirikiya et al.

) ( 2021

. , W 0 X

Balali and Kasbian Lal (2022)

B ' ' C!

KL . '

'

&<^

H7 W -

' 3 2 ' " , ' 96

- 1395 . D+E B ' 0 X 7

b +

P ' P

3543

" ' M 4538 ' " ' . P HQM W P r1+Q J

[ , & ; ^

Pirikiya et al.

) ( 2021

R M K ' ;#M e P

&

b M M ' - , LULC

s . ' / ' < &

3743 3601 3592

' + 7 ' b +

&

&/ L , !

R<

#M # j 1 6 +-' RW#9 € M L

7 R eO

' K ' ;#M R7 / q - ' KL k#l & ' e KL B ' .

24 M 43 . # ,# ' ' + 7 7 ' " ' # 1

•G ; ^

‚ - {#D- ' W +

"

, " KL ;#M - .

InVEST

/ ' W . ' # & #M .

& ; ^ '

Jafarzadeh et al.

) (2019

'

&S#T & [ ! & T Q

)NM " KL ;#M LULC

InVEST

&/ +O ' +- 9 2 ' LULC

R M e & KL ;#M e P 2449

b +

' ' + 7 '

, &

M ) 7LULC

2196 6 2269

ƒ 2257

b +

' '#- (' + 7 ' .

& ; ^

Yang

et al.

) ( 2020

'

&S#T

" HW ' P+,# &j ' I - e Q L B' &/ KL ;#M O o &/ P j s

M S ' RW#9 ' ' „ + H7 R

M P ' P / . 7

F/

M & ; ^ . , P

Sharafatmandrad and Khosravi Mashizi

) ( 2021

&M# M ' KL ;#M - &/ O 6 ' .

-

… 1 6 l12

& e ' b M M 1100

'Y 936 h # P ' < P MY ' + 7 ' 'Y

# LULC

.

Adelisardou et al.

) ( 2021

G gM ) P R eO WLULC

KL S ' R7 / . 3W 2 ' . 7

. / ' L l ' ) P ,' KL ;#M ' O 6 ' 6

Cui et al.

) #M#/ ' #- & ; ^ ' (2021

1 6 - 3W 2 ' P B + ! &/ w+, )NM

, &+W KL ;#M + „ 0 X & ; ^ .

W

,#M

Balist et al.

) ( 2022

'

&S#T +, ' E , & - ' ;#M R7 / / T / +, / . 7

M KL )NM

G gM I H 1E G gM LULC

O . , x 9

Yang et al.

) ( 2021

& ; ^ '

L ;#M G gM .

" + / #2 K ' ' L /

&S#T / ,' P j ' & - '

&/

)NM M' KL ;#M B' o lT J Q ) . , LULC

G - o lT ' W

(5)

& ; ^ ' . , ' KL ;#M &1H6 F+ ,#/

Resende et al.

) ( 2021

' E &6#M '#

. 7 #W O !

H2 ' a+ T +3 o lT J & W /

. W &t ' S ' , & W [ ,

& ; ^ f +

Benra et al.

) (2021

' 224

&S#T P HQM 1 W K# 6 ' e Q L " KL ;#M & Y , . 7

InVEST

J ^M

7 < P #- W

"

, .

& W < . 8 F/

M 1000 1 + . " , ' F7

P j

R 9

" , ' ! ' J ' +3 . 7 W 7 I - . 7

; T' R 9 &/

r S . 7 ' M

I - U &^1, M J & ; ^ ' . W 7 M

Ma et al.

) (2021

7 9 ' 0#

#j +- W -

&/ W W ,' 7 ! RW#9 r1+Q h # . KL ;#M - &1H6 H+ ,#/ G - P j

&

6 KL ;#M e6 &t ' 7 ! RW#9 h # , & ' . MY H+ ,#/ G - . 7

. /

Wu

et al.

) ( 2022

' KL ;#M - '

&

Weihe

+, '

Shaanxi

" , P j '# / 1985

M 2019

& W / . ,

H 1E #2 G ) ' E u '# ' LULC

f + .

L 7 r1+Q h # KL ;#M &/

G l+ LULC

- , S ' , #M < ' L ' < , ' el12 W ,

R M , . , 7LULC

H7 '#

. R 9 &/

W M H 1E G gM

LULC

&7 ' - . 7 M

&/ , W & X #M

R M M

0# 2 H+6 . 7 +- W

R eO J KL . S <M

&

8 I - J '

#W )

Balist et al.,

(2022

. R 9 R7 / / T 7 5

M 25

& ' - ' & Y , ! ' p'

20 M 25 p' , '

)

Mansouri Daneshvar et al., 2019

P *2 .(

†#, KL

' &;

Me R; j . /

P ' ' . #6#

KL l+, L ; H+T G gM KL L 1 O . 7

'#

. D+E l / ‡lT .

'#

) ,

Bozorg-Haddad et al., 2020

.(

+, / +,

&/ , '# / . 7

& # ! & , KL W # H/

.#

L O D KL H2 &/

P NM

#W

)

Management and Planning Organization of Kerman province, 2018

(.

W gM ) ' LULC

I -

; , # ' C! ) KL ;#M H+ ,#/ - e P , †#, +H . 7 X L

&/

;#M e

h# & &+ KL ) , LULC

Adelisardou et al., 2021

( P ' 1 M & eXM - LULC

P NM KL

+, P '

& 36

H+ ,#/ - P ' 9 .e '

. , .' S F7

P j & &6#M P

&/

'

f + G ; ^ „/

"

, KL ;#M H+ ,#/ - . B '

' C!

. †*- P q' S T & ; ^

' , M 2*

B ' ' C!

,#/ - P . D+E . H+

&

G'#p . '

P RQ ' S T & ; ^ '

/ +, ; HW I - F 1E . ' &/

F/ M L R M , MY H+ ,#/ - P H7 P

,

~, 9 36 &

Y n, : W 0 X G

1 - ' KL ;#M vO #M ' <

&S#T

" HW e Q L . 7 ˆ , ' <j / +,

2 - r1+Q h # ' KL ;#M G gM ˆ , & # jLULC

3 - . D+E B ' H+ ,#/ -

j KL ;#M ' <

ˆ ,

2 . )* *

#

2 . 1 . '+, - +

M' 39 / +, P

+, T

689111 / + #1 ,

&/

R 15 / 11 '# / T p'

. , { D+- #- & ' P

K# 6 ' +, E W

G*O

P 54 &6' 21 E

&<

M 59 &6' 34

(6)

E

&<

E W "#

26 &6' 29 E

&<

M 31 &6' 58 E

&<

; HW ‰ 2 W) ' ' E

1 ( ' L & ; ,) .

/ +, 1396

( & ; , ! ' ,#+ / +, .

129 1 e6 +

&H I - J '# / I -

K#

#W

<M a G H

7 I V#; ' '

&S#T &6' I z r;

- e/

. K - 1- f E [' O

W &/

P

&S#T RW & #-

&S#T &6'

<M F

#W ' S T & ; ^ .

&S#T & m# . 7

&S#T

P P+O ! a ' ; . W 0 X .e/

&S#T I - G l+ F 1E 7 & L M

&S#T # 6 . 7

& . , +, .#

&/

- b S [ , PM'

+, " HW R

M 2# M L K# 6 I - O I -

F 1E F 1E '#/C . 7

&H . 7

& + I - J ^M a . ' .

&S#T '# / ' HW . 7 #M

&S#T ' ' 3j M I ' HW

&

b M M

#E - . ; HW G#; #/ X ' #/ 6 ,

&S#T #/

G#;

& / +, ' ) h lM' #E' & Y G gM & &6#M , 12

&/ W F <M RQ &, & (DEM

L ; HW RQ

&

12 , H 1E 7 W

&S#T W &+O ! a ' & ; ^ P ' ,' '# . 7

W) 1 .(

&

& '#

1/'#

76400 /

#1 +

&S#T

#/ e Q L G#;

&/ , W E +, P '

! '

Q +, 3W 7 .

6 /

O +, 3W 7 .

& - ' . , ' ' F 7

. W O † , 3M # Š

3W

W P ' E '

& - ' 7 . F3 P

&S#T W

.

&S#T

#E e Q L -

, 6 T 33114 /

#1 +

&+W +, 3W W E / +, K s ' 7

. , 6 ' I 3W P

' . ' ' E P

&S#T

6 1/ KL

&

& - ' 7

#/ H, & 7 . 7

, 6 ^E

&

6 ,

M KL 9 P

& - ' L t# M

&

. ,

&S#T

#/ e Q L X '

e T 31794 /

#1 + &+W E +, " HW '

W . , +, 3W 7 . , Q X O' ' ' / +, 3W

P ' ' E

& - ' 7 .

M' 2 L ' j I,#/ l7

.

! † Q L .' #

j' j '#W .

&S#T H2 ]^, & & ; ^ '# e Q L . 7

F/ M LULC

) " 6 . ' { D+- F/ M 9 F/ M 1

T (

I 7 'LULC

. 7 R 90 +, KL p' J

KL 7 . P NM

#W H2 L U D

' / RQ ' .

' ' E p K W RQ ' L |9 )

Sahidasht and Abasnejad, 2011

.(

Figure 1. Geographical location of the study area in Kerman province and number of sub-basins

(7)

2 . 2 . .#*/0 )*

"

InVEST

I r1+Q m < ' ' KL e

&S#T P HQM e Q L

.# ; ' gM & # j 7

L ;#M e LULC

RQ ' L 1H2 K M ' r1+Q . 7

)NM ' E b / M ' KL 6 " P . 7

KL 6

, ^, . 7

. , KL &/ ‰ O P /

' 6 H7 . 7

KL " ^, . 7 9 7 ' KL ;#M . /

&

# 2 H Q M &/ & Y , ! ' ' <

& , #W

!8 P M 9 7 ! RW#9 . 7 ) #W

Daneshi et al., 2021

. ' .(

& Y M 2 " . 7 . +,' . 7

W +9 & ; , B' P LULC

! [ +, ' KL e & ' / & Y JH2 6 ET

) (PAWC

.'#+/ & Y

&S#T 7

&S#T 7 9 + . 7

- e O '#+/ O (" e O# " 6)LULC

DO !

Z)

( 0 ' " P S T R7 89 ' . ' eO

InVEST 3.9.0

& . GY . 6 . W 6 ,

' L

0 P ' KL ;#M

& 6 ; T ' ' eO 0 X ,

O lW 36 &/ #W R

M B ' G te6 & & ' ' / B '

& 3M # |w, . , W &+- 9 . ' . 7

KL ;#M "

InVEST

# & 9 [ ,

KL ;#M L r M J , #6# .V KL " M

6 - &/ , L e

&S#T €' - #W Q M B' e J lM -

) ` M p T ^, k#l (ET

‰ O ' P . #W ‹ /

& ET

F <+ '#

) l HM (B' ) [ +, ' L &

+ (ET

) '

Shirmohammadi et al., 2020

m M' &/ , XM M I # .(

' B' & AET

Q M &

-

) +9 ` M

B' & (PET

KL & ; , 1H2 . 7

Yj (x)

9 ' ' x

&S#T

' e Q L & &6#M #M

h# LULC

&; & &6#M j

) 1 ( L ' &/ P HQM

AETj (x)

H7 & Y ,AET

p (x)

9 ' & Y , B' ) W x

Sharafatmandrad and Khosravi Mashizi, 2021

*2 & .(

AETj (x) / P(x)

" l+,

Zhang et al.

) ( 2001

& , &; ) #W 2

.(

&^ ' 1 (

= 1 −

&^ ' 2 (

=

L ' &/

Rj (x)

9 ' # - •- W

7x

&/

h# LULC

, j w (x)

&; &/

) 3 (

& , KL . T #W E

[ +, 7 !

&

G &; ' . , ! ' )

3 (

AWC (x)

FXT

KL E [ +, &/ , ! &/ , L e 7

' E 7 ! ' +- ' W & q - ' #M

Œ V b Sz

1DO ! ' + ' 9 I &/ W ) ,

Zhou et al., 2005

&; .(

) 4 ( •- W & , 36

&/ W l+, # -

ETo (x)

Q M H7 -

) 6 ` M (RET

kj (x)

b S ' 7 ! RW#9 ET

9 ) , x

Allen et al., 1998

.(

&^ ' 3 (

= ∙ + 1.25

&^ ' 4 (

! =" ∙ #

2 . 3 . 2

2 3 #

Water Yield

& Y

&S#T 7

&S#T & Y e Q L . 7 ) +, ' #7 DEM

SRTM 1 Arc-Second Global

W #1 (

(8)

,

https://earthexplorer.usgs.gov/

& Y &H7 . W .'#+/ & M W € Q+, l+, '# . +,' . 7

9 & ; ^ P ' 30

× 30 ) & #DM F+ , +

GCS_WGS_1984

# & ' &/ W & 3M (

&

, . , W ] S#M I 7 ' L

2 . 3 . 1 . 4 LULC

& Y P 9 '

- & 3M & 9 ) W

Eslami et al., 2022

& .(

, + '#a P & Y Esri

LULC

' #7 DM lM p T + , .

2 MY E + I lM &6' 85

" , & m# p' 2020

" IH/ & Y P . W & 3M B # L J H2 . ! . 7

&<

W . ) ,

Karra et al., 2021

& ' .(

!#! DM &<^ . L .Y p W J ^M Ž'

& ; ^ '#

H . ! p T &1T '

6 G < 0 / 7 M 7

[ , ) 7 ! RW#9 •- W & ' L (NDVI

| DM € Q+ 10

11 +w, 2020 )

eModis NDVI V6

, W #1

https://earthexplorer.usgs.gov

/(

&< &

F/

M I lM F/ M 9 F/

W . 3 ' & & Y 9 M |9 30

J *9 W &< 7 +

6 S ' . ' / S ' # 6 F/ M 9 . 7

. 7 F/

M M F/ M 9 M F/

F/

M F/

&

. L ,

2 . 3 . 2 . ) 4

S T & ; ^ ' F 1E . 7

KL

#7 ) 36 .

WorldClim version 2.1

B' P & < ;#M 36 (

l+, & Y , W

.

2 . 3 . 3 . 4 ET

. +,' & Y ;#M 36 q'#M "

& 6 ET

&; IH/

) 5 ( . W l+,

&^ ' 5 (

$%& = '% ∗ 0.013 ∗ +,-./ 0+,-./ 12.3304∗ 5 06

7

' &/

L H7ETo

) & 'ET mm.d-1

(

Tmean

&6' b T & ' ,#+ . + ,

! MRs

) . W'#-

MJ.M-2.d-1

( ) Q M 3 . !µ

MJ.Kg-1

. , (

2 . 3 . 4 . 6 2 ,, * 7 4 8 9 4

. +,' & < P 9 7 ' & ' / & Y JH2 P 7

W &<^ q - JH2 .

& ; ^ '#

) q - 36 9

FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009

& (

& . L , . & ' JH2 „/ T *2

r1+Q h#

[ , LULC Canadell et al.

) ( 1996

Tallis et al.

) ( 2011

&

. L ,

2 . 3 . 5 .

; < = > 4 2 ?

KL O o E

[ +, &; J ! )

6 ( & , W :

&^ ' 6 (

PAWC = 54.509 − 0.132 ∗ SAND − 0.003 ∗ SAND1 − 0.055 ∗ SILT −

0.006 ∗ SILT1− 0.738 ∗ CLAY + 0.007 ∗ CLAY1− 2.688 ∗ SOC + 0.501 ∗ SOC 1

(9)

L ' &/

SAND SILT

CLAY

& SOC

q - ' ;L # [' 1 , PW b M M . W

& Y

& q - 36 9 & Y q - O JH2 . 7 ) L ,

Fischer et al., 2008

.(

+ ' 9

& Z

!8 ) b S I # 2 & ' ' B' . 7

I M 30 &t ' 7 / . 7 -' &/

B' R M e L e W R

M ) P . , &; #M

0.2 * N

&/ #W P HQM M N

) " , ' B' . 7 -'

N> 1 mm

. , ( ,'

< & ' , T P MY " P &/ , 7

+ ' 9 ' B' Z

)

Haghdadi et al., 2018

( +, , W #7 , & M |9 & ; ^ P ' P .

+ ' 9 P e / +, " HW ' " , ' B' . 7 -' M P M 8

. W &+O ! a '

2 . 3 . 6 . A = * B

l+, '# e O# b S . 7 " '

[ , G <

' " e O# " 6 ' LULC

P . #W 7

!8 &< 7 . 7

& 'LULC

!8 . 6 " 6) + 7 ' . +,' & < ' "#1, 7 . 7

1 I r ' 7 .(

&<

&< 7 G l+ !8 I W #+, 7 LULC

L ' , LULC Lucode

] p 2 . T

7 . &<

LULC LULC_desc

[*/ 7 0 r p#M

LULC LULC_Veg

G < . I ' < . '

G < , . lp 7 ! LULC Root_depth

) 7 ! RW#9 G < . & ' JH2 „/ T 1

+ (

Kc

b S &< 7 . !ET

b S . W LULC

& m# ET kj

9 ' h# & &6#M x

)LULC I

(

&; & &6#M )

7 ( & , h# & &+ b S P . #W ' LULC

lp M 5 / 1 ) ' ' E

Sharp et al.,

(2018

" 6 ' L <

) 1 ( . , W &t '

&^ ' 7 (

I =MNLOM",L 〈 # 〉∙〈 # 〉L

MN L

LOM

& , 9 [ < ' KL ;#M "

#W

&

L "

[ < ' . 7

&S#T

&S#T &t ' ' f + e

. /

Table 1. Biophysical table used in Kerman province to implement the water production model

Area (ha) Root depth

Kc Land use/land cover

8944.65 0

1 Playa

160112.34 1200

0.5 Sparse forest

217604 1200

0.5 Dense forest

269466.75 800

0.7 Agriculture

101122.74 0

0.6 Residential

3244385 5

0.1 Bare

3375481 1000

0.5 Sparse range

4750376.13 1000

0.5 Dense range

2 . 4 . ) C D <

S & &6#M 36 +, KL

B ' ' C!

. D+E . KL H2 M P P NM j) KL H2 ( 7 M

P U D

L ' /) . . O ! ' E &6#M '# ( t X L

&/

' B ' ' C!

.

#, 7 ' O ! a ' e7

&

KL W

s X . . O ! ' E ' / P

' E , H

&

. & &/

MY P E +H / &/ , ,

. I

T O S + -

w .

&+O ! a ' KL & ; ^ ' . W

Gholami

) ( 2013

B ' ' C!

. ' KL

RQ 7 . r1+Q B ' & / +, -

&

' /

! .

#2 -

& IH/ +, '

.e ' S

& , ' . W

P E & ; ^ H . 7 ,

&

. ' / KL .

K W p

. B ' & b + 7 -

+,

&

b M M

(10)

12990 '

"

25570 '

"

25660 '

"

&

&/ L , 7

E H

<T

<

KL " , ' 1391 . , " H2

0'#M ‹ J

& , 1 !' 0'#M ‹ ! ' L

)

www.amar.org.ir

•1 " , / ' ( & m#

E H e7

&

' / KL .

. , "

1400 k &; J : W & ,

= ' B '

; ^< ' •1 a '#

•1 '

; × ^< ' •- W 2) /"

^< ' •- W 2 a '#

(

3 ' e7

&

KL . ' / LULC

. •1 81949 '

"

<M)

" ‘ 8200 ( #M .

7

b +

KL

" , ' 1400 36 B ' ' C!

. . W &+O ! a '

3 . E F7 *

3 . 1 . 2

* * #

& < & 3M p T f + W ' KL ;#M " . ' . 7

) 2 ( W &t ' B' & Y , P & < .

107 M

231 1 + ) W ' / +, " HW ' 2

- e . , W (a

& ' e 6 ET

1 / 1292 M

8 / 1756 1 + & , W W) 2 - M lp < & q - JH2 & < .(b

81 1 + &<^ '

& ; ^ '#

) W W 2 - .(c

KL O o E

[ +, ! 15 / 0 M 54 / 0

&

W) L , 2

- .(d

Figure 2. Maps used in the InVEST water yield model a: annual average precipitation, b: reference

evapotranspiration, c: soil depth, d: plant accessible water capacity and e) land use/land cover

3 . 2 .

" l+,

InVEST 3.9.0

7 9 7 ' KL ;#M e

&S#T

&

;#M e G gM & . L ,

M lp / +, ' 9 ]^, ' KL 4

/ 177 1 + # R M K# 6 K# 6 ' KL ;#M e P K s

& ; ^ '#

"

, W) W . 3

.(

(11)

KL h#HX e f +

;#M W

& AET

, L &< ' r1+Q LULC

&

" 6 y W )

2 ( . ,

R M ' L |9 F/ M 9 M ' KL ;#M / e P 7 F/ M F/ M LULC

W KL ;#M P .

*9 S ' ' P MY . ' / S ' ' ' + 7 7 '

#

F/

M

& ' < P " 6) L ,

2 .(

]^, ' KL ;#M e ,'

&S#T 7 &/ , P 7

' HW &S#T 1

e 2103 # 1

" , ' b + R

M P

&S#T ' HW 3 8 / 741 " , ' b + # 1 F/

M ' ' KL ;#M e P

" 6) 3 ( e . &<^ ' 9 7 ' AET

& ; ^ '#

& ' 56 M 294 1 + W P HQM W)

4 .(

Figure 3. Map of water yield per pixel (mm)

Table 2. Amount of produced water (M3/ha) in different land use/covers in Kerman province

SD Max

Min Mean

Sum LULC

0 0

0 0

0 Playa

260.6 1703.4

69.2 659.7

1663704961.6 Sparse forest

197.3 1461.5

38.7 620.9

1104558789.7 Dense forest

275.2 1481.1

71.01 735.8

2201157216.7 Agriculture

0 0

0 0

0 Residential

187.1 1679.9

0 84.9

3058259198 Bare

187 1681.9

60.6 561.8

21049121921.5 Sparse range

268.1 1766.5

11.9 524

27630736571.7 Dense range

Table 3. Actual evapotranspiration, precipitation and produced water in each sub-basin in Kerman province

Area (ha) Actual evapotranspiration

(mm) Precipitation

(mm) Water yield

(MCM/ year) Water yield

(M3/ha/year) Sub-Basin

3120030 125.2

192.6 21030.0

673.9 1

3385030 97.4

130.2 1110.3

328.03 2

1975200 85.2

122.7 741.8

375.6 3

3647700 103.4

135.1 1157.1

317.2 4

(12)

Figure 4. Estimated actual evapotranspiration per pixel (mm)

&S#T . 7 ' HW 1 4 " 6) &+W ' KL ;#M e P MY 4

( F/ M 9 M . 7LULC

F/

M F/

. ' ' KL ;#M B ' ' < P MY S ' [ ,

' L 9 B ' P & m# . 7 7

S ' e

F/ M 9 F/ M F/ 6 . ' / R

M " 6) ' +, KL ;#M - B ' ' ' F3, P 5

/ B ' .(

&<^ KL ;#M 41 850 438 367 570

. , #M

Table 4. The economic value of water yield service under sub-basins in 2021

Sub-basin Total value of water yield (Rail)

Pixel statistics of each sub-basin

Mean Min Max SD

1 172000348873000 497364320 0 130374750 253838460

2 90966110720000 242082320 0 582307940 167960430

3 60730816888200 277230070 0 531001880 170368950

4 94807107194500 234146630 0 587294560 1915627290

Table 5. The economic value of water yield service by land use class in 2021

LULC Total value of water yield (Rail)

Playa 0

Sparse forest 136423806851200

Dense forest 90573820755400

Agriculture 180494891769400

Residential 0

Bare 250777254236000

Sparse range 1726027997563000

Dense range 2265720398879400

3 . F7

' P R7 89

&

'#a ' L J E / +, ; HW J KL

F7 P j , W J

/ ;#M KL

3 '

# H/ ' L P

I 8M +, M

I . 7

"

, . 3

&+O ! W &1$ &/ 7 ]S .

KL

&

8 ' J

&H I -

& & H7 I -

# 2 I R; j y ^ …'e

# ,

&

! M

& F7 H6 W' ; R eO L bE +

S <M . P U

1 #2 G gM

H 1E . '

(13)

e

&S 2 P )NM &+W C!

M &

L X

&

…'e W M W R; j P

P . ,

,' S

R 9 #6#

R 9 W

KL . ' H7

' .

&

.e ' ' '#- W

f + .

P R7 89

y ^ &;#< ,' 36 &/ W

S

&/ B' KL ;#M &;#< '

<

' M T ' '

&<^

& ; ^ '#

W) 3 (

" HW

&

, eO K# 6 F/

M P e B' 107 1 + '

; HW P M &<^ &^<

'

&S#T . 7 2 3 R M P e B' '

# 6 H E P M 331

1 + ' ' HW &S#T 1

. ,

+ ' 9 R< 6 ET

)n . ' P M e

;#M KL j ' u2 &/

P P+O' RQ

!'e B'

. #W

H7 '#

W ' &/

) 2 ( W

F/

M e P L 1 / 1292 1 + ' E

&S#T ' HW . 7 2

4

R M P e L 8 / 1756 1 + ' E

&S#T ' HW 2 . + ' 9 . , & Y JH2

/ & '

) 1 + W ' &/ , ( )

2 ( < &

lp M 81 1 + 7 &<^ ' . #W

&6#M

&

JH2 q -

'

&<^

& ; ^ '#

'

&S#T 7

&/

b W F/

M

# JH2 q - R M

# O e q - M

&+O W M

, P

#M W 3 KL e R M P ' F7 . ' / S ' ' <+, " H+T +T , R

M

& < <M &/ 7

&<^ P ' LULC

F7

#- &<^ P ' S ' P . ' / J

& ; ^ '#

NM E W . KL O o -L + ' 9 E

[ +, ! . , P + ' 9 7

e L ,

&/

.' 3 E

' q -

# . l+,

! E [ +, , KL O o .

E [ +, ! H7 '#

W ' &/

) 2 ( E

& ' , 7 15

/ 0 M 54 / 0 &/

&

b M M F/

M ' ' < P ' HW &S#T

4 M b; s 7 ! RW#9

F/

F/ M R

M ' ' < P ' HW &S#T

2

& F/ M 9 M b; s 7 ! RW#9 . L ,

;#M ' <

KL

"

, .

" W

InVEST

S T & ; ^ ' 4

/ 5112 W ' L b + # 1

&/

h#HX

;#M KL ' ' 3j

&S#T , F7 P j [ , P

"

, . R M P & m# KL ;#M e

&S#T

#E - 6 , 2103

# 1

b +

& ; ^ ' &/ , F/ M 9 M b; s 7 ! RW#9 . ' &/ W . 7

Yang et al.

) (2020 Adelisardou et al.

) (2021 Balist et al.

) ( 2022

' 7 ! RW#9 F/ M R< H7

gM 0 2 q - # ' ‡lT P ` D &/ , W DlM & LULC

. W

&S#T G#; #/

KL ;#M ' ' E KL ;#M . ' ' F/

M & .

&S#T

#E - 6 , &/ '

#M

&

;

M ; s F/

M . W S ' F/

&S#T ' < X ' #/

8 / 1110385346

b +

e KL

F/

M & ' ;#M . ' HW &S#T

4 H 7 T O U*+- ; ' . #W

F/

M T KL ;#M ' < P

8 / 741 b + # 1 & m# &/ W

&S#T

#; #/

h# #j 1 Y &/ , ; HW G W LULC

L ' H 1E )n

.

R< S T & ; ^ ' P P MY . ' / S ' &/ .# & . , . 1/ ' KL ;#M ' LULC

& ; ^ &/ , ' ' ' + 7 T ' KL ;#M

Pirikiya et al.

) (2021 Jafarzadeh et al.

) ( 2019

Wu et al.

) ( 2022

F7 +, ' . ,

b W 9 G 2 lM' ' / +, 1 6 S ' H2

& . ' ' E KL k#l p O ; P H7

F/

M P ' .

) F/ M F/ 1 6 S ' ' ' < P . ' ' + 7 T ' Y KL ;#M , 3 S ' 7

/ 659

b +

'

) F/ M 9 1 6 S ' MY ' a+ J (' + 7 9

/ 620

b +

& ; ^ ' . , (' + 7 '

Jafarzadeh et al.

) ( 2019

& &/ ' ' KL ;#M e P MY 1 6 S ' ƒ 2 ' |9 e O !#9#M W ' 7 W 12

&<^

& ; ^ '#

R< . , S T

#9 K ' ;#M R7 / 1 6 RW G ; ^ ' q - & L k#l R eO

(14)

Haghdadi et al.

) ( 2018

Pirikiya et al.

) ( 2021

M S ' . , ,' G ) & e F/

M ' F/ M 9 F/

' &/ ' ' E KL ;#M . . 7

&

b M M "

8 / 561 524

b +

, ' + 7 ' S ' L |9

9 / 84

b +

R / 9 & &6#M . ' ' E ' + 7 7 ' e G gM +, r1+Q O !#9#M W ' LULC

E KL ;#M lM J ' 1 6 S ' . , & 6#M

W ' S ' b W 9 M ' M S ' ]^ . 7

' E J

P . ' R< &/ , F7 O . ;#M KL . . MY . C9k#l p O b W R7 / '

& ' O !#9#M W MY */LULC

& ; ^ ' . 7

Jafarzadeh et al.

) ( 2019

P e

7LULC

F/

M . , W B' e! M S ' KL ;#M e P

7 ' F/ M R< . , )n W ;#M KL e ' 7 ! RW#9 F/ M e e 7 ! RW#9 6 LULC

RW#9 & ; ^ ' 7 !

Pirikiya et al.

) ( 2021

O !#9#M 2 *2 . , W e #2 R< #M

' KL ;#M ! e ' H 1E )n r1+Q LULC

S' & b W 9 + 7#/ J &/ j

F/ ! ' +, O ' . M

& b1^ P . / W ' y#S

) 2 - (r;

G ; ^ f + f + P . #W

Yang

et al.

) ( 2020

Balist et al.

) ( 2022

F7 F7 . ' #- & ; ^ ' P j

Yang et al.

) ( 2021

. , W NM e

Yang et al.

) ( 2021

&/

+T M' KL ;#M B' )NM . , LULC

& ' . 3W J G ; ^ .' &j ! - , S' P 9 . C9k#l 12

O Y KL ;#M .' W ,

/ &1H6 )

Pirikiya et al., 2021

(

& R7 89 P ' I P ;

l+, " &/

W 3 M ' / . 3W J .

R ' j

[ < ' M

&<^ . 7

& , M L' / .

& . 3W J ' lp & I e < H2 '#

,

F7 . , L

& P j 0 2 ; . 3W J ' &, PW [' p' & , +, f + C9 k#l y#^, & ,#M W

&

, J , { D+- #- & ' &<^ .e j T &/ ( #/) ` S' RW#9 . , # ' a+ '# L

k#l P & ' +O ' ' KL q # M #! J ' ' a+

P 7 . ' KL ;#M '

&6#M u '# ' # &

&/ O ! &X + #M H+ ,#/ - ' M T R< 7 ! RW#9

;#M

KL l / o lT J X P

' '#- Y H7 7 ! RW#9 o lT G E . 6 W

, H7 '#

& ; ^ ' &/

Resende et al.

) (2021

Pirikiya et al.

) ( 2021

&+W C! & p h#S# P & F7

W h# & F+ ,#/ G - . h#S# P ' + LULC

&

'#

, , . 6 ' Dl

&+O ! a ' 7

) ,

Ma et al., 2021

.(

U D 9 / +, '

P M 1p , . ' / KL . 7LULC

& &6#M L P NM

&H I - I -

KL &<^ #

B ' P , . 7

H7 KL ;#M .' C!

.'#

R 9 &/

' W M

B ' . RQ P &/ W 0 X . ' / RQ ' W ) G ; ^ , ' KL .' C!

Balali and Kasbian Lal,

F7 &/ , &+O ! ' E e (2022

' B ' f + [ , . , & ; ^ P f + +,

&S#T KL .' C!

' HW . 7

1 M 4

&

' E b M M 5525718

2689535 3080026

2601369 / B ' H ;#M KL ' + 7 7 ' #M

& b E & ; ^ '# &<^ KL ;#M H+ ,#/ - 42

" , ' #M ' 1 ' e7 1400

H7 . , .'#

E &/

& ; ^ ' ; P H7 & , G l+ r1+Q J ' L H/ & &6#M KL b + 7 B ' , ' a+

& B ' [ , S T

& KL b + 7 W ' ,

0 X & ; ^ L ) / +, ' W

Gholami, 2013

(

. W l+, /k & 0 Y

&/ , [ , KL b + 7 B ' &j !

1 !' 0'#M ‹ ' L

&

W '

, P

e7

&

W P+O ! a ' " ,

91 &/ # .

&

, KL ' L F/

M . " , &

1400

&

(15)

e7

&

. 7 r/ & m#

W V j Ž T .

F/

’H9'#M# M 7

s H7 &+W #6 P

j KL '#

7

/ l MY . e . # ' '#- P

' ' KL B ' E T a '# 2 " , '

1400 7

. F7 P j

. 6 y

7 .

KL O'

+, ' E &+ . eO 7 #- I e L ' KL B ' e / ' &6#M

^ B ' & m# r1+Q G ; F/ ' KL ;#M - .' C!

) , E B ' & B ' #

Gholami,

2013; Balali and Kasbian Lal, 2022

r1+Q . 7' e J ' KL & e7 R eO 0 e; &/ , (

, , 3 " + / 36 .' C!

#Q L & 1QM .'

; ^ ' 7 &

Ghobadi and Moridi

) ( 2022

. , W & p#M e

4 . G

# H,6 0 *

KL ;#M ' L

&

# 2 H+ ,#/ G -

B ' ' C!

L .

&

8 L G* R M 36 &/

0 &X 9 , G 2* ' E ' +- ' , . H7 . ' /

&

G'#p P ;#$ H/

;

& ' H,

, , ' C!

. P o lT & X &/ +,' . 7 7 #W

. /

' KL ;#M H+ ,#/ - ,'

&S#T / +, ; HW . 7 h # ' R< *2 &/

e O !#9#M W ! ' e R< LULC

P M /

& . , h # #M M' 2 r1+Q J ' LULC

M e ' ! ' e &/ +W M + 7#/

)NM ' E #- KL ;#M e ' 7

)n P . ' 7

' + 7 b W 9 J ' &/ 1 6 S '

e ' . MY KL e ' ' E M S ' MY ! ' M

;#M M &

&<^ ' KL ;#M / e . /

& ; ^ '#

4 / 5112 # 1

b +

B '

41 850 438 367 570 &/ L , & #M

&

12 Y , , R S ' P R< M S ' .

E & &6#M S ' P P . , # 7LULC

b W ' W 7 ! RW#9 #<M G'#p ' . 7

R< #M )n

#Q L & CgM ' . &/ &<^ 1 6 S ' . W &+W 7

&

H2 '#

E + 7#/ J '

. + 7 K* , & L M . !#16 K ' 2 , R7 / 36 7 ! RW#9 #<M e

! & ; ^ P + 7#/ J ' 7 ! RW#9 o lT . ' . 6 . 7

' KL U D

+W J '

/ +, &t '

7 &/ j . F/ L 9 r .#, 7 J D , L

I -

; ,

3M ' / +, 7 ! RW#9 # H/ . /

&

8 KL ;#M .Y +9 J '

&S#T

#E -

P ' K* , & X 6 , W +, . 7

F7 KL # H/

O ^, . 7

& . '

RQ . D+E r1+Q . 7 -

H M +, P 2 H+6 & ; ^ P f + . /

& ' #M

36 .e '

, K Q G ) R7 / I -

; ,

& &6#M '# 7 ! RW#9 & ,#M S ' b QM . !#16 e '

F HDM . ! ' E ! F7

P j &6#M &

P

&/

R 90 KL p' '#

KL / +,

. 7

P NM W R M U D . ' / 36 #W

; O 0 X . 7

#Q L .' 36

#Q L & CgM 7

U D .# ; y*p

&

8 ' . ' / 3 9

. #W

' & ; ^ P f + ' / ' #M

B ' o lT #; J P M 36 F+ ,#/ G - , . 7

& H+ ,#/ - 7 L ' &/ g+ j ' K# g+ I # 2

& ; ^ #W

Ma et al.

) (2021

&

&/ ' / 3 9 L G ; ^ .

#W . F7 P j l+, B '

' C!

G - . j F+ ,#/

& !

G' - ' L ' . 7

L 6 e , .' T ' + F HDM &6#M '# #M

. ! ' E !

(16)

&

1/'#

' ! B '

' C!

y & F+ ,#/ G - {#D-' . R L . 7

, , ' C!

. 7 . 7

&S#T #W ' e Q L RQ l! #M

, W J< ' ' 9 & ,#M & ' Fa2 F/

.' G' - . 7 . !#16 L ' . #W

5 . 0

$

# 1. Ecosystem services

2. Land Use/ Land Cover

3. The Soil and Water Assessment Tool

4. Integrated Valuation of Ecosystem Services and Tradeoffs 5. Artificial Intelligence for Ecosystem Services

6. Payment for ecosystem services 7. Eliciting consumer preferences 8. Revealed preference methods 9. Stated preference methods

10.Normalized Difference Vegetation Index

6 . 6

< *

' E ' HW 7 89 y € Q+ S T &; <

110 - 46 / 1316 ‹'#

17 / 03 / 1400 O H12 G' a

.' O D+E +O ' /' , & 1/ &1 , P &/ # '# / o lT ,

+, / ' o lT ,

/ ' E M

! .

6 . I= , J -

7

& #!

# ,#M O ‰' M

! . ' #6

7 . I ,

Adelisardou, F., Jafari, H.R., & Malekmohammadi, B. (2021). Impacts of land use and land cover change on the interactions among multiple soil-dependent ecosystem services (case study: Jiroft plain, Iran). Environ Geochem Health, 43, 3977-3996.

https://doi.org/10.1007/s10653-021-00875-5.

Allen, R.G., Pereira, L.S., Raes D., & Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56, FAO, Rome.

Bagstad, K.J., Villa, F., Batker, D., Harrisoncox, J., Voigt, B., & Johnson, G.W. (2015). From theoretical to actual ecosystem services: mapping beneficiaries and spatial flows in ecosystem service assessments. Ecol Soc, 19(2), 64-69. https://doi.org/10.5751/ES-06523-190264.

Balali, H., & Kasbian Lal, F. (2022). Economic Valuation of Groundwater in Agriculture Sector (Case Study: Hamedan-Bahar Plain). Journal Of Agricultural Economics and Development, 36(1), 37-48. (In Persian).

Balist, J., Malekmohammadi, B., & Jafari, H.R. (2022). Detecting land use and climate impacts on water yield ecosystem service in arid and semi-arid areas. A study in Sirvan River Basin- Iran. Applied Water Science, 12, 4. https://doi.org/10.1007/s13201-021-01545-8.

Benra, F., De Frutos, A., Gaglio, M., Álvarez-Garretón, C., Felipe-Lucia, M., & Bonn, A.

(2021). Mapping water ecosystem services: Evaluating InVEST model predictions in data scarce regions. Environmental Modelling & Software, 138, 104982.

Referensi

Dokumen terkait