Homepage: https://jwim.ut.ac.ir/
University of Tehran Press
Surface Water Quantity and Quality Modeling of Goorsuzan Estuary in Bandar Abbas by Using Runoff-Rainfall Model, SWMM
Kimiya Aminizade1 | Mohammad Sadegh Ghazanfari Moghadam2 | Hossein Vahidi3
1. Water Resource Management, Department of Water Engineering, Faculty of Civil and Surveying Engineering, Graduate University of Advanced Technology, Kerman, Iran. E-mail: [email protected]
2. Corresponding Author, Department of Energy, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran. E-mail: [email protected]
3. Department of Ecology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran. E-mail: [email protected]
Article Info ABSTRACT
Article type:
Research Article
Article history:
Received: September 11, 2022 Received in revised form:
October 08, 2022
Accepted: October 30, 2022 Published online: April 14, 2023
Keywords:
Goorsuzan Estuary, Quality modeling, Rainfall-runoff, SWMM.
Due to population growth and industrial progress, the only important issue isn`t the lack of water resources, but besides that, the issues of runoff management, its quality, and urban wastewater management are also important. In this research, Goorsuzan estuary located in Bandar Abbas city, Hormozgan province, was studied in terms of water quality. SWMM rainfall-runoff dynamic model was used for quality modeling of regional runoff. Hydraulic modeling was done for four precipitation events. The results of the sensitivity analysis showed that three parameters, percentage of impermeability of sub-basins, curve number and channel roughness coefficient, were the most effective parameters, respectively.
Calibration and verification were done based on the objective functions of MRE and N.S. Its results were within the very good range of matching the model with the observational data for four times. Finally, qualitative modeling was done for four target pollutants, including COD, TDS, NO2 and PO4, and the qualitative results showed that the model was in good agreement with the observational laboratory data. At the end, three scenarios were considered to solve the problem. The first scenario showed the reduction of TDS pollutant concentration up to 84.52 percent. The results of the second scenario for COD, NO2 and PO4
pollutants reduced up to 100 percent and the application of the third scenario effectively reduced TDS, PO4, COD and NO2 pollutants. Based on the results of this research, the amount of water pollution around Goorsuzan without wastewater management is more than the standard and the runoff from rainfall does not help to reduce pollution.
Cite this article: Aminizade, K., Ghazanfari Moghadam, M. S., & Vahidi, H. (2023). Surface Water Quantity and Quality Modeling of Goorsuzan Estuary in Bandar Abbas by Using Runoff-Rainfall Model, SWMM. Journal of Water and Irrigation Management, 13 (1), 157-170. DOI: https://doi.org/ 10.22059/jwim.2022.340478.1017
© The Author(s). Publisher: University of Tehran Press.
DOI: https://doi.org/ 10.22059/jwim.2022.340478.1017
نا هﺎﮕﺸ اد تارﺎﺸ ا
یرﺎﯿآ و بآ
Homepage: https://jwim.ut.ac.ir/
:ﯽﯿوﺮ !ﻟا #ﺎﺷ ۹۹۳۱ - ۲۳۸۲
! - # SWMM
|1
2 3 |
1
.
!"
# $% &' !" % (& ) *+&,-) : ".
2 0&- 12( $% &' !3242 ) 12( 5 6' !3 5 6' 7289 9 2 .
# $% &' !" % (& ) *+&,-) .
: "
3 . 0&- 12( 5 6' 0&- 12( $% &' !3242 ) 12( 5 6'
# $% &' !" % (& ) *+&,-) : ".
! "#$
%&
: ()*
5 6' ;4
+ , - . + - /0 20: / 06 / 1401
+ , - . 1* 2 16 : / 07 / 1401
+ , - . 34 - 5 08 : / 08 / 1401
+ , - . + 67*
25 : / 01 / 1402
8 9 : :
C2 "2 "2D
E" 7 - "
7 C G&# !
.SWMM
HI J C
# "
&G
&
9'
5
! K
! 5 C
&
6
! . " "2D
"
L
# M -4 N 5 $ O J " K " P C2 "2 "2D Q5 6'
&G
&
R4 0 "2
" P
% .
! 7 C
!
#
&G
# 7 C 0 "
&
E"
- "
SWMM
. K G$
7 C
! 5
&
4 "
&
!
$ . % 1 S E" D" " T U
4&
N 9I
&
V&) ) W' X2G Y" $ " '
! C Z2I 5 - " K Z
V C
! 7 # [\
) L
$ " '
S . 2 5
-Y S J
! ] 5 2)
MRE
S N.S
1
$ # K U
!
7 2D ^ 0) E" " T 5
! ) 5 1 S . 2 7
C
!
#
&G
&$
! " T
_ ` K ] 5
COD TDS NO2
PO4
# K 1 S
$ U
#
&G
&
7 V ^ 0)
5
! C 5 ) 5
' " . 2
"
2 V&) )
"
2
! 7 O ]WI
"
KN 5
!
" _
2
! 1 O
" ]WI KN
&G,) D "
"
2
! 12
O E"
5 U ' C "
10 25 50 100 4
! . K $% a " (89 `I
"
2
! _ a(b Q5 # 7 )TDS
&
N 52 / 84 Y"
"
$ . U
"
2
! 1
! _ 5
!
COD NO2 PO4
)
&
N 100
" 7 Q5 # Y"
2
! 12
&
N
*"2Y
[\
! _ 5
!
TDS PO4 COD NO2
. Q5 # "
O
$ U L Q5 6'
&
N 24
7 C2 "2 "2D "
9'
&
Q K " 2 " $ I C
" C
&
N
# 24 Q5 # .
& : 7;
C .c G db
! 1 .e .1 I
&
f ! ) 1402 .(
7 C
!
#
#
&G -0
"2D C2 "2 O J "
G$
C 7
E"
-
"
.SWMM
!" &
13 ) 1 ( 157 - 170 . DOI:https://doi.org/10.22059/jwim.2022.340478.1017
: K ) * " $ 9 \ .
. 9 2 ©
1 .
& '
i C j " ) k
$ " ' L ) 2 l$ ! 5
. 2 $ ! 2m
L k
9 C & 9 2m L % &' K" " , KW Q& N& i4 5
Q&' C ) nI
2K )
Cosgrove et
al., 2000
(
"2 # " C . R 2) ! 5
i5 $%
"2 # L& T R 2) 7 I " ! 5
Q N% S&$ " &R m Q N% `&4
9P 1 ) * &42) !C" # Y % C &
K m2 2J # R m ! 5 .
& 5 VJ L
29- i " &9 2K
)
Yousefi et al., 2011
( 2 .
N5 # !
"2 # ! 5 S 5
D C
Ql 2J 5 ! 5
e ,$D 2K
EN " Q5 # &(P * &&o) VJ !2m ! 5
D C ( " * &&o) E2l$ N& ^k E" !2 4 * &&o) E " ! 5
K 2D ! 5
)
Moura Rezende et al., 2019
( & K . 9' Q N% ` 2 C "
" ! K ! 5 i5
D T C
Q N% * G9% 3 $& L # K 5
)
Smith et al., 1997
( .
!"2k
# I "
60 T " Y"
5 " 5
# `$l "
)
Council, 1993
(
&# 7+$D i ` 2 C (89 L "
"2D " G 29- 5
2K
)
Robert et al., 2010
( +& S &(P * &&o) i " [ C .
! K ! 5 $ "
D " &ok `&4
V& VJ # ! K 5C JK &% p 1 (Y Q 5C q&- !" $D K * G() 5
Ql V l) $ " ! K ] k 9 C q&- !C" # ! 5
)
Ahmadi et al., 2012
( `&4 L .
7 2- ` 2 K
! K +& !C
*" 9D Q5 # ! & 2(m "2a
! "2 5 K ! 5 L K" #
_ & 5 C2I
"
)
Payande et al., 2015
( ! K 5C i$9& . ` NS *"2Y
D " #
` J) V# i$& i$9& L I 2 C . 2K
" # " N& " &G&# H- " ! K +Z % V&# ) `&4
7 L&&R) " i ` 2 5 & QK2' c D ! R$ ` 2 ! " " &G&# . K f 0 " !C
K C2I L& # + i$9& 2# " m !
0 L ! 5 !C J C i4 L& r) & C C ! 5
" i& $9 * &[r) ! K " ! K !C a )
Toranjian, 2018
(
7 L .
" !C ! 5
i C ! K
2I " `s 9 L )
! K " Z
" K "
)
Aminizade, 1401
(.
7 !
&JK 7 t C G$ ! K " !C $&G&# &4 " &5 C
! 7 SWMM
WEB SWMM
!" Z )
Zeng et al., 2021
( ! K " &G&# t&4 " &5 QS ! 7 L C .
KN " L$% a " 5 0
0 &b ! Z2I " !
K S ! K ! 5 )
Gironás et al., 2010
( .
Hassan et al.
) 7 C (2021
7 ! + # K " SWMM
&R m Q N% C [\ ! K 5C JK !C
9 "2) o) 5 . 2 7 L ! K 5C JK [\ I k U $ # K G$ &(P * &&
Kong
et al.
) 7 C G$ (2017
1 SWMM
"N%
ArcGIS
" K " u($l !2 " " T ! " l [ "2a
7 ! K 5C i$9&
2 " ! " # C # I Q5 6' L U $ . # !C " 2 ! K 5C " 5
&G&#
. & " $ 2(0 N& 24 iSI Q5 # 2m "
Todeschini et al.
) 7 C G$ (2012
t) D" t "SWMM
" $ 2&' RP 7 7 t *
!"W &[r) " R4 0 L C ] 5 . # !C
vZ2I vZ2I 2(0 !" W &[r) U $ 2 ! K 5C JK " " ! &Dr) ! 5 ! 5
24 ! " ! K 9 C ! 5
. 2 0&-
Kaboli et al.
) 7 (2009
"2 # w ) K " ! K 9' !C
Q5 6' U $ $D ' 2 ) _ " * &&o) " # 2 2 L 5
# ] 5 ! 5 x J ) 2 TSS
"
! K 5C i$9&
7 D 2 *"2Y 7 ! " 1C_ G#SWMM
$&G&# &4 " &5 !C
. " " ! K "
*"2Y (#
t # 7 L E" 5 -
"
2)
" y&-Y `I ! D ' ! K ! 5
" ! K t&4 " &5 $&G&# `s 9 5
"
`I KC" ! 5 2 & " ! &G
)
Randall et al., 2019
(.
! 5 &' O J " K ) R4 0 0 "
!
"2D 1 V, 5 !3242%"2 u R) " # " 2m 5
2)
& ! 5
" O2 &P C ! " # $95 "2,- i& $9 z J)"
K "
5
% ! 5
& &K
$95 ` R) " N&% 3242&
)
Cochran and Brook, 2014
( "2D Q5 6' L ) R4 0 0 .
"2D C C2 "2 i$9& " # " # N 5 $ O J " K " P i ! 5
m
"
" !
C " " +Z % E" C K " 7 $ ! K 7 t D ! 5
. C '
_ $&G&# *+ " R4 0 L C ] 5
"2D L C . ! K " ! 5 5
*"2Y " i& $9
" E" C ! K ! 5
5 9' " ! K ! 5
*"2Y ` # z+$D " "
m L& 5 #
_ N& "
&4 R% VJ " ! " ! 5 ! 5
9 C 0&- 7 I " . m2) K Z I
"2D C " " E" P 2 " " 7 $ + 5"2D L # " & 5 m C O J " K " 5 ! 5
" ! K 9' 7 t D 7 $ " N&
"2D L ! " # G&# R4 0 L 5 5
6 "2D
V 7 C G$ e2,D L " . 2 " &9 ! K " " C2 "2 L SWMM
`& 9) "
C G$ " " K t # l
"
`I 2 2 ! 5
2m2 *+ `I m L 2
. "
7 C G$ 2 # ) G r$
$D K ! 5
L " . $% *"2Y 0 L " ! "2 R4 0 K
7 C G$ Q5 6' i5 SWMM
C L& T
! &
7 5 C ! 5
C2 "2 "2D " G&# # !C
S O J " K "
. K 1
2 .
! )
2 . 1 . &' * + ,-. / 01
I 9 !" # O" % U&(D ! " "2S 5 N 5 $ 2 m " P O J " K 71
$ 2(&#
{"N
$ L $ K L )
i5 T 29- N 5 $ N#
!" &(P M -4 C . 2K 1 !25
I " * &&o) L& & 2k 2
) 45 _ E" L& & GY !_ m"
200 (&
0 . $&4
"2D C Q5 6' L " R4 0 "2 C2 "2 "2D 1 O J " ! K ! 5
72k 3500 K 7 K C # $
&% om 72k " 2 m ) O J "
56 m"
30 &% om | &P 27
m"
54 &P . &'
Figure 1. Sub basins, Junctions and canals in SWMM model (Bandar Abbas city)
2 . 2 . SWMM
7
SWMM
7 t E" &
-
2) # "
7 C E" ! t) ! 5
" " * ( D"
)
Madrazo-Uribeetxebarria et al., 2021
( 7 L . 9 # q 2)
&
2
# K C 5
!
"2(%
5
&
L Z2I 7 "
5
! 1969 ) 1971
! +&
. K s "
* I+Y 2 # ) 7 L ! "
* &&o)
! R$
K 1 S
&&o) L D #
* 7 "
2016 9 C q&- p GI C q 2) ! +&
. K 1 S "2(%
! " % * R4 0 9 C p GI C C K" m 2
"
R 2) & 5 5 Q&
) 1 S 7 L ~P 2 %"
)
Toranjian, 2018
( L . ' * +k 7 ! 5
X2G
" _ T • R) &lJ) E"
5 " " " -0 !
&JK C I k " `&(-) NS) !
& C
"
JK
! K 5C ! 5
" # 7 L ! N C &
2) I " $ &( P
# " K 5 )
Gironás et al., 2010
(.
2 . 2 . 1
& 2 .
3 4 )
7 C q 2) 0 " " &4 " &5 ! ! &' C ` K +& 4 R C SWMM
. #
0 "
1 (
∆S = P − I − E − R
4 R L "
∆S
-0 * &&o) N&
E" P
X2G I
• R) &lJ)E
. "R
7 C " " ! 2 C L&&R) C & SWMM
4 I & &) & " " €
q K $9 # [
7 C l$ ! 2K
. i5 L& T 7 " X2G *_ R L&&R) !
SWMM
2) f+Y L)"25 L)"25 E " - " K E " • L E " ) G$ *_ R C L K
•
f+Y
# G$ K )
Rossman et al., 2015
( L ! G$ "2 " E " . Q5 6'
‚2 "
" €2 L C &
`&4
" _ " &9 P ! R t 4 R `I C G$
)
Ven
Te Chow, 1988
( . i5 L& T
`&4 7 # " m C 5
€2 L C ! K q&- " 5
"
$%
. 2K
"2 |" 2 7 " ) R4 0 0 S ! C 1 X2G *_ R m " €2 l$ C n' " i& ) 1
" N%
"SWMM
2) Z2I C (Y $ 5
7 # 5
$ 5
# ! )
Zeng et al.,
(2021
R) Q56' L " . 39
Z2I C 39
R) 28 ! 7 # 7
C . K u R) 0 &4 " &5 !
2 . 2 . 2
& 2 .
_ 9' " ! R$ ! 5
" D ! 5 _ C D L& L " . " 2m ! K ! 5
5
`&4
&[r) *
9 C q&- ! " 5 9
5 Q&
)
! "
_ L& L " . $95 & 5 6&9# 5
5 2D
3242&
6&9# BOD
& &K 5 2D 72(- m 2 COD
) m 2 TDS
&
3 $& TSS
5
* G9%
_ 5 9' (Y ! 5
" 5 29- ! K ! 5
2K )
Metcalf et al., 1994
( 7 .
SWMM
+
&JK C S 2) ! " 0 &4 " &5 !
&JK C
" G&# ! ! 7 L . N& 0 ! 5
&JK C &G&# !
*"2Y i5 Nl "2$# " 4 I $ 2&' ! S | % C
! *_ R 1 b C nw #
! q 2$ 1 m
&o$
m ƒ 1 S " $&G&# " !C S iSI
. 5 i5 L& T
_ a(b 7 J) 7 C Q # C G$
7 # " " 5 5
Q5 # 5 5
)
Rossman et al., 2015
( .
_ L " R4 0 "2 ] 5 ! 5 Q5 6'
6&9#
5 2D
& &K 72(- m 2 COD
$& TDS NO2
* G9%
PO4
.
2 . 2 . 3 . & )
Ql "
&JK C " X2G 4 R €2 C & $ " 7 &4 " &5 ! i5
L& T
! C 1
7 C !
# # L&&R) "
O E " C X2G 4 R ! & " C Q5 6' L " R4 0 "2 Z2I €2
Z2I * +k . K $D ' 7 " u($l |" 2 i& ) nw . K - " K 5
7 # 5 C $ 9P ! 5
5 t # ! 5
Google Earth
P G)" ! 5 " ! $
1
" N%
Arc GIS
C * +k P ‚ l$
. K ‚ l$ O J " !" K * +k t ! 5 nw
* R4 0 O J " K 25 " t&$'2 & $9 C • R) &lJ) E" K 25 ! 5 L& &' )
Heydarzade, 2017
( 1 " K $D &4 " &5 7 V&) ) L . K G$
N&4 ! R ! 5
& 9I -Y
S 7 S
O L&R ] 5 2) 0 &4 " &5 7 S C n' . K 1 S K
7 C K ! . K $D ' G&# ! €
7 C Z2I C ! " # $ G&# ! _ ! K ! 5
] 5 ! 5
O E" N ! K ! 5 nw u R) ! K 9' $&G&# ! 5
O N&4 S) *_ R 4 2$ ! 5
9K 2K
. % V Z 5 !
2 . 2 . 4 .
*
! 2 " Q5 6' L "
& 0 G&# 7 !" W &[r) N& t 5 ! 7 ! m C n' # . 2K
5
_ a(b Q N% Q5 # ! "
2 " . K `&(-) &S "2D m D 5 . C f K V&) )
2 "
! & 2 " L " :7 KN " 2K
_ 1 D 9' ! 5 m D
&G,) D T 2K ]WI
&[r) _ a(b ! " ! . " "2D m D " 5
2 "
! " 2 " L " :1 m D 9' 2K
&G,) D ]WI 2K T
&[r) a(b ! " !
_ "2D m D ! 5 . " W
2 "
! " 2 " L " :12 E" 2K
5 C "
U ' 10 25 50 100 5 ƒ" 4
T
&[r) _ a(b ! " ! "2D m D ! 5
. " W
3 . 7 8* #
3 . 1 . / 9: ; 4 #
N& QS 7 t & 9I N&4 u R) ^Jk
&[r)
$ " ' !" W m D U $ ! " u($l ! 5
7 C !
)
Saltelli et al., 2000
.(
"2k $ " ' t * &&o) ƒ C" ! t&) $9& E " t & 9I N&4 (#
" 7 ! " $ " ' t * &&o) J9 " m D 7
C L " . ! Q5 6'
" & 9I N&4
&[r) 7 # „ & ! C V Z - " K ! " $ " ' Z2I C ! W' X2G Y" 5
‚ ! " 5
# "
[\
" L& l) " $ " ' L ) 2
K $D ' $9 &o$
)
Rezayi et al., 2019
( .
$ " ' L C 1 # 5 …# I ) 5
20 Y" ±
" " 1 # 5 * &&o) $K Q N% Q5 # &4 " C !
" ‚
*"2Y 7 m ) 1 ( . O S&$
# K ~l 7 & 9I N&4 C V&) )
L
Z2I C W' X2G ^k Y" ! " $ " ' 5
&[r) …# I `P I 16
18 ! Y"
[\
" $ " ' L )
- " K ! R m
&[r) I …# I `P
†
13 ! Y"
2 $ " ' [\
! C V Z D " 1
7 # 5
&[r) …# I `P I
" T m D U $ ! " ! Y"
V&) ) Q&
)
&[r) ! " " *
7 m D ] " &5 . " W
Table 1. Sensitivity analysis result
3 . 2 . < <
% m D 9 m " 7 ! m ! 5
5
$G S ) 5 ! 5
2K )
Hassan et al.,
(.2021
L "
Q5 6' ] " &5 C
ƒ"2 D" ) 5 ! 5 13
/ 10 / 1394 4
/ 10 / 1394 2
E" C S 30
/ 10 / 1392 17
/ 10 / 1394 !
-Y S
. K G$
"2a S
-Y S C 7 K G$ i $ " '
)
Rezayi et al., 2019
( 7 m " # )
1 ( V&) ) .
i5 L& T L " G$ "2 ] 5 2) Q5 6'
Q ) - # J9 ! 0D L& & ) u( $
*"2Y C
. K u R)
0 "
2 (
= ∑ ∗
0 "
3 (
= 1 −∑ ∗
∑
_ *_ R " # Z(xi)
7 Z*(xi) ) 5
L& & ̅ ) 5 ! 5
R) N
. 5
t N - u( ) Q ! ) L ! C S
t ) )"2Y
Z L T 5 # V
t N t " 2D " &9 ^ 0) K )
. 5 i5 L& T C S - J9 ! 0D L& & ) !
tT2# ! V Z L " T 5 R GY
2D " &9 ^ 0) & U $ K GY t N )
7 U $
7 m . ) 5 ! 5
) 2 ( E" 5 ! " ] 5 ) L V Z . 5
Table 2. N.s and MRE coefficient result
N.S Coefficient CoefficientMRE
Rainfall
0.83 0.14
2014/20/1
0.91 0.04
2015/25/12
0.95 0.15
2016/3/1
0.90 0.15
2014/7/1
Output Peak flow rate change values Rate of
change Initial Value
Section Parameter
+13 % + 10%
Estimate of available tables Sub basin
CN -10 % -9 %
+3 % + 20 %
Concrete = 0.014 Canal
Manning’s roughness Coefficient
-4 % -20 %
+16 % + 10 %
Estimate of Land use, Available reports and Google earth Sub basin
Percent of Impervious area
-18 % -10 %
5 # K 5 •2% 7 m "
" T 7 2D " &9 ^ 0) - " E"
5 " ) 5 ! 5
S (I
-Y S S&$ O L . 2 Q5 6' "2 0 &4 " &5 7 # K ! &
2D
7 C ! K .
3 . 3 .
*=
. , )
0 &4 " &5 7 S C n' 7 2)
_ . D ' R4 0 "2 0 " " G&# !C ! R$ ! 5
9' "
" P N&4 "2 5 6&9# _ " T Q5 6' "2 (89 O Q5 6' L " # &
52D
& &K
72(- m 2 `# COD
$& TDS NO2
* G9%
PO4
ƒ"2 E" ! 12
/ 10 / 1400
&JK 7 m . K !C
) 3
! " # ( ! K ! 5
9K S) 2) 5
Q " 2K ) ! ! " # R4 0 L " # 5
Z2I C R 2) ! K ! " # 5 R 2) $%
! " # L&&R) C n' . K u R) $% &
Z2I C ! 5 5
*_ R
9K S) _ !2K
U $ 5 _ G&# 7 U $ 5 C ! 5
) 7 m " "2D m D " 5 4
(
` K *"2Y ) ! 5
2 ) ( 3 ) ( 4 ) ( 5 . ( _ a(b # 2 G&# 7 L U $ ! 5
TDS COD
NO2
Q& `P I E" C " "
C 40 n' 2 " $ N& C Q& Y"
2&K C &
L a(b €2 $ ! 5
_ i5 Q5 # " $ I ) 5 2D " &9 ^ 0) 7 U $ L L& T
. K ) 5 ! 5
Table 3. Buildup and wash off functions
PO4
NO2
TDS COD
Sub basin Land use
BU:
Power WO:
EMC BU:
Saturation WO:
EMC BU:
Power WO: Exponential BU:
Power WO: Exponential Urban development
lands
BU:
Power WO: EMC BU:
Saturation WO: EMC BU:
Power WO: EMC BU:
Power WO: EMC Urban undevelopment
lands
Table 4. Observational and Standard qualitative result
The percentage difference between the measured concentration and standard concentration Pollutant standard concentration
at estuary output ("#
$
Pollutant concentration at estuary output ("#
$
Pollutant
+81.25 % 60
320 COD
+37.54 % 3000-10000
16012 TDS
-10 % 10
9 NO2
-95.5%
6 0.27
PO4
Figure 2. Qualitative results of COD pollutant in return period rainfalls (return period rainfall’s concentrate respectively in 5, 10, 25, 50 and 100 years is 221.82, 198.36, 171.04, 151.17, 134.75 mg/lit)
0 50 100 150 200 250
concentrate(mg/l)
time(minute) COD
T=100 Years T=50 Years T=25 Years T=10 Years T=5 Years
Figure 3. Qualitative results of TDS pollutant in return period rainfalls (return period rainfall’s concentrate respectively in 5, 10, 25, 50 and 100 years is 4127.17, 3644.96, 3107.21, 2470.01, 2438.2 mg/lit)
Figure 4. Qualitative results of NO2 pollutant in return period rainfalls (return period rainfall’s concentrate respectively in 5, 10, 25, 50 and 100 years is 6.44, 6.19, 5.84, 5.56, 5.29 mg/lit)
Figure 5. Qualitative results of PO4 pollutant in return period rainfalls (return period rainfall’s concentrate respectively in 5, 10, 25, 50 and 100 years is 0.15, 0.13, 0.11, 0.1, 0.09 mg/lit)
0 1000 2000 3000 4000 5000
concentrate(mg/l)
time(minute) TDS
T=100 Years T=50 Years T=25 Years T=10 Years T=5 Years
0 1 2 3 4 5 6 7
00:15:00 00:45:00 01:15:00 01:45:00 02:15:00 02:45:00 03:15:00 03:45:00 04:15:00 04:45:00 05:15:00 05:45:00 06:15:00 06:45:00 07:15:00 07:45:00 08:15:00 08:45:00 09:15:00 09:45:00 10:15:00 10:45:00 11:15:00 11:45:00 12:15:00 12:45:00 13:15:00 13:45:00 14:15:00 14:45:00 15:15:00 15:45:00 16:15:00 16:45:00 17:15:00 17:45:00 18:15:00 18:45:00 19:15:00 19:45:00 20:15:00 20:45:00 21:15:00 21:45:00 22:15:00 22:45:00
concentrate(mg/l)
time(minute) NO2
T=100 Years T=50 Years T=25 Years T=10 Years T=5 Years
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
00:15:00 00:45:00 01:15:00 01:45:00 02:15:00 02:45:00 03:15:00 03:45:00 04:15:00 04:45:00 05:15:00 05:45:00 06:15:00 06:45:00 07:15:00 07:45:00 08:15:00 08:45:00 09:15:00 09:45:00 10:15:00 10:45:00 11:15:00 11:45:00 12:15:00 12:45:00 13:15:00 13:45:00 14:15:00 14:45:00 15:15:00 15:45:00 16:15:00 16:45:00 17:15:00 17:45:00 18:15:00 18:45:00 19:15:00 19:45:00 20:15:00 20:45:00 21:15:00 21:45:00 22:15:00 22:45:00
concentrate(mg/l)
time(minute) PO4
T=100 Years T=50 Years T=25 Years T=10 Years T=5 Years
3 . 4 . ) * . , 8* #
. C f K U $ K m 7 " C !2 " R4 0 "2 0 G&# &4 " &5 7 ! m C n'
3 . 4 . 1 .
*
O 2 " ! m
! E" ! 7 12
/ 10 / 1400 ~l
K 2 " L #
&[r) _ ! " !
TDS
_ P ! "
5 x J )
&[r) .
&[r) a(b ! " 2 " L ) " a(b TDS
52 / 84 Y"
Q5 #
Q5 # a(b)
$%
2480 (&
1 ` K) & " C S a(b - ( $&4 6
.(
Figure 6. Diagram of the first scenario (percentage pollutants concentration reduction in the outlet by removing the waste water upstream of the treatment plant)
3 . 4 . 2 .
> *
! m U $ 2 "
! E" ! 1 12
/ 10 / 1400 2 " L # 2 2 L
&[r) i T _ ! " ! &
! 5
COD NO2
PO4
_ L a(b $K
N& ) " 5 100
_ ! . Q5 # Y"
l [ 2 " L TDS
i#
) _ P J9 ! b Q5 # " 5
. $K a(
Q5 # Y"
2 " L " _ L a(b 48
/ 15 Q5 # a(b) $%
13532 (&
1 L a(b 9 2$ 2 ( $&4
` K) 2D " $ a(b - " _ 7
.(
Figure 7. Diagram of the second scenario (percentage pollutants concentration reduction in the outlet by removing the waste water from the treatment plant)
0
84.52
0 0
COD TDS NO2 PO4
The graph of percentage pollutants concentrate reduction at the outlet of the estuary
Percentage pollutants concentrate at the out of the estuary by removing upstream wastewater
100
15.48
100 100
COD TDS NO2 PO4
The graph of percentage pollutants concentrate reuction at the outlet of the estuary
Percentage Pollutants Concentrate reduction by removing wastewater of Wastewater treatment plant
3 . 4 . 3 .
> *
E" # K " 2 " L "
C " ! 5 U '
10 25 50 100 a(b ! " N& T ) 4
_ m D " 5 "2D
&[r) C " # 2 & 2 " L U $ . " W 5
V&) ) a(b ! "
_ ! 5
TDS PO4
COD NO2
" " a(b 5 Q5 # [ )
` K
! 5 8 9 10 11 (
*"2Y
_ L a(b 2(0 " 5
_ Nm " $ a(b - ) COD
_ a(b . " L& ' $ICOD
C " E" "
100
& 2D " $ I 4 ` K)
8 ( .
Figure 8. Diagram of the percentage COD concentrate reduction in return rainfalls 100,50,25,10,5 years
Figure 9. Diagram of the percentage TDS concentrate reduction in return rainfalls 100,50,25,10,5 years
Figure 10. Diagram of the percentage NO 2 concentrate reduction in return rainfalls 100,50,25,10,5 years 57.76
52.61
46.38
37.82
30.46
T=100 T=50 T=25 T=10 T=5
Percentage pollutant concentrate reduction
Return period(Years)
Percentage pollutant concentrate reduction (COD)
84.76
82.87
80.58
77.22
74.20
T=100 T=50 T=25 T=10 T=5
Percentage pollutant concentrate reduction
Return period(Years)
Percentage pollutant concentrate reduction (TDS)
39.89
36.82
33.64
29.66
26.82
T=100 T=50 T=25 T=10 T=5
Percentage pollutant concentrate reduction
Return period (Years)
Percentage pollutant concentrate reduction (NO2)
Figure 11. Diagram of the percentage PO 4 concentrate reduction in return rainfalls 100, 50, 25, 10, 5 years
Figure 12. Diagram of Percentage scenario’s effectiveness for COD, TDS, NO2, PO4
` K ^Jk )
12 ( N& T ) _ 5 ! 2 " 5 2K
&[r) a(b Q5 # Y" " W
2 " L " _ 5 C T ) 5
. !
2 "
! _ Q5 # ! 7 [\ TDS
. 2 2 "
! ! 1
COD NO2
PO4
2 "
! _ ! 12 ! 5
TDS PO4
NO2
2m 2 " L& 2 C 2 V
Q5 # 38 / 46 _ ! Y"
. 5 Q5 # 2D C S I ) " _ L a(b 9 2$ COD
4 .
&< # ,
" E" & 7 C Q5 6' L "
7 ! SWMM
K " C2 "2 "2D G&# &4 " &5 !C
! " $ " ' # 2 & 7 & 9I N&4 . K G$ O J "
" W' X2G ^k Y" ( m C V&) )
7 # ! C V Z - " K Z2I C 5 i5 . 2 7 m D * &&o) " ` 2 L ) [\
-Y L& T S
] 5 2) O 7 S
N.S
7 2D " &9 ^ 0) MRE
" . 2 K J[ ) 5 ! 5
7 Z2I C ! " # L&&R) C n' ) R4 0 "2 0 " G&# !C 9K S) *_ R 5
K _ !2 5
_ a(b U $ m D " 5
5 C U $ ! 5
&
QS L U $ # . K &S
67.86 64.29 60.71
53.57
46.43
T=100 T=50 T=25 T=10 T=5
Percentage pollutant concentrate reduction
Return period(Years)
Percentage pollutant concentrate reduction (PO4)
0
84.52
0 0
100
15.48
100 100
46.38
80.57
33.63
60.71
COD TDS NO2 PO4
percentage senario's effictivness
pollutant
percentage senario's effectiveness for pollutants
First senario's effectiveness percentage Second senario's effectiveness percentage Third senario's effectiveness percentage
G&# 7 2D " &9 ^ 0) C # I 2 ) 5 5
"
" ! m C n' K u R) 2 "
H- U $ 7 V 7 !2 " # K L&&R) `&(-)
_ ! ) _ ! 1 !2 " TDS
! 5
COD NO2
PO4
_ ! 12 !2 " 2 ! 5
TDS NO2
V _ C )
PO4
D "
. 2 TDS
7 (# S&$
&JK ! 7 L # 2 & SWMM
Z2I !C ! K ! 5
" $&G&# &4 " &5 *"2Y
V " &9 " H-
" & " C 2) . ! K ! 5
5 .
@+ A 0B
‡&5 . " 2m 9 2 L& R% |" R) 2
6 .
@
Ahmadi, Z., Shahnazari, A., Fazlavali, R., & Ashrafzade, A. (2012). Investigation of adequacy of Masal City Drainage Network and Suggestions for Improvement by Using MIKESWMM Model. Iranian Water Research Journal. (In Persian)
Cochran, J. K., & Brook, S. (2014). Estuaries. 1-4. https: //doi.org/10.1016/B978-0-12-409548- 9.09151-X
Council, N. R. (1993). Managing wastewater in coastal urban area. National Academy Press.
Gironás, J., Roesner, L.A., Rossman, L.A., & Davis, J. (2010). A new applications manual for the Storm Water Management Model (SWMM). Environmental Modelling and Software, 25(6), 813-814. https: //doi.org/10.1016/j.envsoft.2009.11.009
Hassan, M., Zwain, H. M., & Hammed, W. (2021). Results in Engineering Modeling the impacts of climate change and flooding on sanitary sewage system using SWMM simulation : A case study.
Results in Engineering, 12, 100307. https: //doi.org/10.1016/j.rineng.2021.100307
Heydarzade, M. (2017). The Impacts of Climate Change on Peak Dischrge and Flood Prone Areas of Urban Estuaries (Case Study: Parts of Bandar Abbas City). P.H.D thesis, Hormozgan University. (In Persian)
Inc. Metcalf & Eddy , George Tchobanoglous , H. Stensel, Ryujiro Tsuchihashi, F. B. (1994).
Wastewater Engineering: Treatment and Resource Recovery 5th Edition (5th ed.). McGraw Hill; 5th edition (September 3, 2013).
Kaboli, H., Moazed, H., Delghandi, M., & Hemmati, M. (2009). Quantitative and qualitative prediction of surface wastewater in urban basins using software EPASWMM. Fifth National Conference on Watershed Management Science and Engineering of Iran. (In Persian)
Aminizade, K. (1401). Surface water quality modeling in Goorsuzan estuary using SWMM.
Master thesis, Graguate University of Advanced Technology, Kerman. (In Persian)
Kong, F., Ban, Y., Yin, H., James, P., & Dronova, I. (2017). Modeling stormwater management at the city district level in response to changes in land use and low impact development.
Environmental Modelling and Software, 95, 132-142. https:
//doi.org/10.1016/j.envsoft.2017.06.021
Madrazo-Uribeetxebarria, E., Garmendia Antín, M., Almandoz Berrondo, J., & Andrés- Doménech, I. (2021). Sensitivity analysis of permeable pavement hydrological modelling in the Storm Water Management Model. Journal of Hydrology, 600(126525). https:
//doi.org/10.1016/j.jhydrol.2021.126525
Moura Rezende, O., Ribeiro da Cruz de Franco, A. B., Beleño de Oliveira, A. K., Pitzer Jacob, A. C., & Gomes Miguez, M. (2019). A framework to introduce urban flood resilience into the design of flood control alternatives. Journal of Hydrology, 576, 478-493. https:
//doi.org/10.1016/j.jhydrol.2019.06.063
Payande, A., Hadizade zaker, N., & Niksokhan, M. (2015). Numerical assessment of nutrient assimilative capacity of Khur-e-Musa in the Persian Gulf. Environ Monit Assess, 187(4097).
(In Persian)
Randall, M., Sun, F., Zhang, Y., & Jensen, M. B. (2019). Evaluating Sponge City volume capture ratio at the catchment scale using SWMM. Journal of Environmental Management, 246(May), 745-757. https: //doi.org/10.1016/j.jenvman.2019.05.134
Rezayi, F., Bahremand, A., Bedri sheykh, V., Dastoorani, M., & Tajbakhsh, M. (2019). Calibration and Evaluation of the SWMM Model in Runoff Simulation in District 9 of Mashhad City. Water and Sustainable Development, 5(2). https: //doi.org/10.22067/jwsd.v5i2.67930. (In Persian) Robert, W., Black, P. W., & Moran, J. F. (2010). Response of algalmetrics to nutrients and
physical factors and identificationof nutrient thresholds in agricultural strams. Environmental Monitoring and Assessment.
Rossman, L. A., Envronmental Scientist, E. U. S. E. P. A., & National. (2015). Storm Water Management Model User’s Manual Version 5 . 1.
Saltelli, A., Tarantola, S., & Campolongo, F. (2000). Sensitivity analysis as an ingredient of modeling. In Statistical Science, 15(4), 377-395. https: //doi.org/10.1214/ss/1009213004 Smith, R. A., Schwarz, G. E., & Alexander, R. B. (1997). Regional inter-pretation of the water
quality monitoring data. Water Resource Research, 2781-2798.
Todeschini, S., Papiri, S., & Ciaponi, C. (2012). Performance of stormwater detention tanks for urban drainage systems in northern Italy. Journal of Environmental Management, 101(2003).
https: //doi.org/10.1016/j.jenvman.2012.02.003
Toranjian, A. (2018). Modeling runoff quantity and quality in Hamedan urban catchment using storm water management (SWMM). Master thesis, Ali Sina University- BU. (In Persian) Ven Te Chow. (1988). Applied Hydrology (Internatio). McGraw-Hill Publishing Company.
Cosgrove, W. J., & Rijsberman, F. R. (2014). World water vision: making water everybody’s business. Routledge. https: //doi.org/http: //dx.doi.org/10.4324/9781315071763
Yousefi, A., Khalilian, S., & Balali, H. (2011). Strategic Importance of Water in Iranian Overall Economy: A CGE Modeling Approach. Journal Od Agriculture Economics and Development, 25(1). (In Persian)
Zeng, Z., Yuan, X., Liang, J., & Li, Y. (2021). Designing and implementing an SWMM-based web service framework to provide decision support for real-time urban stormwater management. Environmental Modelling and Software, 135. (September 2020), 104887.
https: //doi.org/10.1016/j.envsoft.2020.104887