• Tidak ada hasil yang ditemukan

thuringiensis a c ab bc Bt Archips rosanus Bacillus thuringiensis Laboratory and field evaluation of Bacillus thuringiensis for the control of Archips rosanus in Mazandaran province R

N/A
N/A
Protected

Academic year: 2023

Membagikan "thuringiensis a c ab bc Bt Archips rosanus Bacillus thuringiensis Laboratory and field evaluation of Bacillus thuringiensis for the control of Archips rosanus in Mazandaran province R"

Copied!
14
0
0

Teks penuh

(1)

Bacillus thuringiensis Archips rosanus

Linnaeus Archips rosanus

Bacillus thuringiensis Berliner subsp kurstaki Archips rosanus

Dipping method LC50

LC90

Bt Citrus sinensis (L) Osbeck.Var novel

LC50

LC90

A. rosanus

Bt

EC B. thuringiensis

A. rosanus

B. thuringiensis a

c ab bc

Bt

Archips rosanus Bacillus thuringiensis

Laboratory and field evaluation of Bacillus thuringiensis for the control of Archips rosanus in Mazandaran province

R. PIROUZ1, M. R. DAMAVANDIAN2 and B. AMIRI BESHELI2 1- Graduated student; 2- Associate Professor; Department of Plant Protection, Faculty of Cultural Science, Sari Agricultural Sciences and Natural Resources University, Sari, Iran Abstract

In this study, the effects of Bacillus thuringiensis Berliner subsp kurstaki on the larval stages of Archips rosanus Linnaeus was investigated. Dipping method was used for bioassay in vitro LC50 and LC90 of the first and, the sum of second and third larval instars were shown to be 4480, 9010 and 4460 19040 ppm, respectively. A semi-field experiment on the two-year Washington navel (Citrus sinensis(L) Osbeck.Var novel) plants with 5 treatments and water as the control was conducted in a completely randomized design. After data analysis, LC50 and LC90 of the first and the second instars larvae of A. rosanus 96 hours after treatment were 2130, 13790 and 2840, 16840 ppm, respectively. The most suitable range of Bt concentration for controlling the first and second instars larvae was calculated 635, 4540 and 256, 5190 ppm, respectively. The field experiment was conducted in 3,000 m2 orchard of 30 hectares. In this experiment, four treatments namely, Malathion (2000 ppm), B. thuringiensis (0.5 and 1 percent) and water as a control compared with each other. The average number of alive larvae of A. rosanus on sample units trees in the first year had no significant difference, but in the second year on the trees for the control,B.

thuringiensis (0.5, 1 percent) and Malathion 7 days after treatment,were 5.466a, 2.4c, 4.4ab and 3.266bc, respectively. Overall results showed that microbial insecticide Bt has killing efficiency for the larvae in the orchards.

Key words: Archips rosanus, Bacillus thuringiensis, Bioassay, Citrus orchard.

Corresponding author: m.r.damavandian@gmail.com DOI: http://dx.doi.org/10.22092/jaep.2017.108121

(2)

Bacillus thuringiensis Archips rosanus

Archips rosanus (Linnaeus)

(Lep.: Tortricidae)

Mafi Pashakolaee et al., 2014

Aydogdu,

2014; Gu et al., 2014

Kot, 2007

Damavandian, 2007

Karaca et al., 2010

Mohamed Haggag and Mohamed, 2007

Aslam Khan, 2012

Bacillus thuringiensis Berliner Shikano

and Cory, 2014

Vatandoost, 2013 B. thuringiensis

Talaei-Hassanloei et al., 2014

AliNiazee, 1974 Bt

A. rosanus

Spodoptera exigua Hubner

B. thuringiensis var. kurstaki (Aramideh et al., 2006)

B. thuringiensis var. thuringiensis

B. thuringiensis var. kurstaki Spodoptera frugiperda Smith

(Knaak et al., 2010) B. thuringiensis var. kurstaki Helicoverpa armigera Hubner

(Abedi et al., 2011)

B. thuringiensis var. kurstaki Spodoptera exigua

Banna et al., 2012)

B. thuringiensis subsp kurstaki A. rosanus

(3)

Citrus sinensis(L) Osbeck.Var novel

A. rosanus A. rosanus

Dipping method

Bt A. rosanus P/PROBAN

Van Arc, 1983

Finney, 1971

.

: Bt

A. rosanus

(4)

Bacillus thuringiensis Archips rosanus

EC

B. thuringiensis subsp kurstaki

Bt

EC

Bt Bt

SAS

Bt

A. rosanus

(5)

A. rosanus

Bt

LC50

Bt

Bt LC90 Bt

A. rosanus

B. thuringiensis

A. rosanus

LC50 LC90

Bt

Archips rosanus

Bacillus thuringiensis

Table 1. The results of laboratory bioassay of L1, L2 and L3 of Archips rosanus treated with the different concentrations of Bacillus thuringiensis Larval stage The used dose

(ppm)

The predicted mortality

(%) (± SE)

L1

(3 days after treatment)

4480 50 11150

9010 90 34030

10290 95 41120

12700 99 54550

15400 99.9 69700

L2 and L3 (6 days after treatment)

4660 50 43470

19040 90 271170

23120 95 337830

30760 99 463060

39340 99.9 603610

(6)

Bacillus thuringiensis Archips rosanus

P 0.05

P 0.05

P 0.05 LC50

LC90

Bt

LC90

LC90

LC50

LC90

Bt

LC90

Bt

Bt

Bt

B.t

B.t B.t

A. rosanus P 0.05

B.t

B.t B.t

(7)

Bt

B.t B.t

Bt

p

B.t

Archips rosanus

Bacillus thuringiensis

Table 2. The mean mortality percentage (±SE) of L1, L2 and L3 of Archips rosanus treated with the different concentrations of Bacillus thuringiensis Larval stage Dose (ppm)

Mean mortality percentage (±SE) 48

(hr) after treatment

72 (hr) after treatment

96 (hr) after treatment

L1

2000 8.8±2.2a 18.2±5.3a 49.1±5.1a

5000 13.3±4.1ab 31.07±6.01ab 61.06±4.8a

8000 18.05±2.5bc 39.2±5.2b 74.7±5.04b

11000 22.7±0.5c 48.9±9.2bc 83.09±3.01bc

14000 31.6±3.8d 59.9±5.1c 94.1±3.6c

L2

2000 10±3.1a 22.8±7.1a 46.1±4.05a

5000 14.2±3.9a 31.7±2.8a 55.2±6.5a

8000 18±5.8ab 44.6±3.8b 72.2±5.4b

11000 24.4±2.3bc 53.1±2.6bc 76.6±3.5b

14000 30.4±4.2c 59.3±4.4c 81.1±3.2b

Mean with the same letters in mortality column are not significantly different

LC50

LC90

Bacillus thuringiensis Archips rosanus

Table 3.The LC50 and LC90 calculated for biopesticide, Bacillus thuringiensis on L1 and L2 of Archips rosanus

Larval stage Time (hr) after treatment LC50 (ppm)

(95%CI)

LC90 (ppm) (95%CI)

L1

48 21120

(15140 101790)

39540 (25330 247370)

72 11230

(9100 14980)

23390 (40490 18130)

96 2130

(635 4540)

13790 (10380 28120)

L2

48

72 10370

(8330 13700)

25610 (19670 42710)

96 2840

(256 5190)

16840 (13360 26200)

(8)

Bacillus thuringiensis Archips rosanus

Archips rosanus Bt

Table 4. The mean comparisons of number of alive larvae of Archips rosanus at three treatments (1% Bt, malathion and control) by Duncan test at different sampling times (first year)

Treatment Mean number of alive larvae (%mortality) 7d after treatment 14d after treatment

Control 2.068±0.03a (0) 0.332±0.001a (0)

Malathion 2.334±0.02a (32.99) 0.132±0.003a (53.14) B.t 1.8±0.04a (17.59) 0.534±0.004a (35.20) Mean with the same letters in mortality column are not significantly different

Bt Bt

Table 5. The mean comparisons of four treatments (1%Bt, 0.5% Bt, malathion and control) by Duncan test at different sampling times (second year) Treatment

Mean number of alive larvae (%mortality) After treatment

3 5 7 10 12 14

Control 6.066±0.07a (0)

6.334±0.05a (0)

5.466±0.05a (0)

6.734±0.07a (0)

6.8±0.06a (0)

8.866±0.05a (0) Malathion 1.00±0.02c

(82.69)

1.666±0.02b (72.39)

2.4±0.06c (53.9)

2.466±0.03b (61.56)

1.866±0.03b (71.2)

4.798±0.08b (26.64) 0.5% B.t 2.798±0.03b

(56.78)

2.668±0.02b (60.52)

4.4±0.04ab (24.55)

3.132±0.03b (56.4)

2.536±0.04b (5.05)

5.4±0.04b (26.28) 1% B.t 2.534±0.02bc

(56.15)

2.666±0.03b (55.82)

3.266±0.05bc (32.28)

2.134±0.02b (66.74)

2.202±0.05b (66.01)

3.4±0.04c (48.02) Mean with the same letters in mortality column are not significantly different

Bt Bt

Table 6. The mean comparisons of four treatments (1% Bt, 0.5% Bt, malathion and control) by Duncan test at sampling dates (21, 29 and 35 days after treatment) (sampling unit = 50 cm sprout)

Time (days) after treatment Treatment Mean

21

Control 25.60±3.5a

0.5% B.t 18.798±1.7b

1% B.t 11.132±2.3c

Malathion 10.532±3.1c

29

Control 22.932±3.8a

0.5% B.t 18.734±2.4a

1% B.t 14.066±3.2b

Malathion 9.932±1.9b

35

Control 14.466±2.5a

0.5% B.t 10.2±3.1b

1% B.t 6.066±2.2c

Malathion 3.532±0.9c

Bt

A. rosanus

Yezza and Tyagi (2006) Bt B.t

Hyphantria cunea Durry (Saruhan et al., 2014)

LC50

(9)

LC90

Vatandoost (2013) Bt

Ennomus

qurecinaria (Haufnagel) LC50 LC90

A. rosanus

Ennomus qurecinaria Bt

Ferro and Lopez

(1995) Javvi et al. (2005) LC50

Bt

Aramideh et al. (2006)

B.t

Knaak et al. (2010) B. thuringiensis thuringiensis

B. thuringiensis kurstaki Spodoptera frugiperda

Bt Khalil Arya et al., 1998

Bt

Mashhadi Jafarloo and Danyali, 1998

Boulton (2003)

Bt

Bt

B.thuringiensis var Kurstaki S. exigua (Hübner)

LC50 LC90

El-Banna et al., 2012)

Bt

Karimzadeh Esfahani et al.,

2012

LC50

A. rosanus

(10)

Bacillus thuringiensis Archips rosanus

A.rosanus

Bt

Bt

AliNiazee, 1974

Bt

Bt Bt

Bt

Bt

Bt Bt

Ferrari and Trevisan, 1978

Bt Vatandoost, 2013 .

Bt

Bt

Mascarenhas and Luttrell,

1997 Bt

Yezza and

Tyagi, 2006; Ibrahim et al., 2010

B. thuringiensis A. rosanus

Bt A. rosanus

(11)

Bt Bt

A. rosanus

References

ABEDI, Z., M. SABER, G. H. GHARAKHANI and E.

PARSAEYAN, 2011. Efficacy Azadirachtin and Bacillus thuringiensis and their interactions on Helicoverpa armigera (Lep.: Noctuidae). 2nd Iranian Pest Management Conference (IPMC)- 14 and 15 September 2011, Kerman, Iran.

ALINIAZEE, M. 1974. Evaluation of Bacillus thuringiensis against Archips rosanus (Lep : Tortricidae). Canadian Entomologist, No. 106:393 398.

ANONUMOUS. 2011. Pesticides as water pollutants - FAO:

Food and Agriculture Oranization of the UnitedNations. Home, http://www.fao.org

ARAMIDEH, S. H., M. H. SAFARALIZADEH, A. A.

PORMIRZA and R. PARVIZI, 2006. The survey of susceptibility of larval, prepupal and pupal stages of Spodoptera exigua H. to Steinernema carpocapsae in laboratory conditions and on the beet plant, Journal of Agricultural sciences and Natural Resources, No. 12:

159-166. (in Persian with English summary)

ASLAM KHAN, M. D. 2012. Microbial control of Spilarctia obliqa (Lep.:Arctiidae), Department of Biology, Faculty of Science, Jazan University. Jazan -114.

Kingdom of Saudi Arabia.

AYDO DU, M. 2014. Parasitoid abundance of Archips rosana (Linnaeus, 1758) (Lep.: Tortricidae) in organic

cherry orchards, North-Western Journal of Zoology, No. 10: 42-47.

BOULTON, T. J. 2003. Response of non target Lepidoptera to Foray 48 B Bacillus thuringiensis Var kurstaki on Vancover Island, British Colombia, Canada, Environmental Toxicology and Chemistry, No. 23:

1297 1304.

DAMAVANDIAN, M. R. 2007. Laboratory and field evaluation of mineral oil spray for the control of citrus red mite, panonychus citri (McGregor). Acta Agriculturae Scandinavica, Section B- Soil and Plant Science, no. 57: 92-96.

EL-BANNA, A., I. S. ABDEL-WAHAB, A. S. EL-AKAD, and N. S. AMIN, 2012. Efficiency of the bioagent Bacillus thuringensis Kurstaki on the lesser cottonleafworm, Spodoptera exigua (Hb), Journal of Biological Science, No. 5:141-145.

FERRARI, R. and M. TREVISAN, 1978. Control of Hyphantria cunea and repercussion cultures of Bombyx mori , Informatore fitopatologico, No. 37:55-58 . FERRO, D. N. and R. LOPEZ, 1995. Larviposition response

of Myiopharus doryphora to Colorado potato larvae treated with lethal and subletal doses of Bacillus thuringiensis Berliner subsp.tenebrionis. Journal of Economic Entomology, No. 88: 870-874.

(12)

Bacillus thuringiensis Archips rosanus

FINNEY, D. J. 1971. Probit analysis. 3 rd Edition, Cambridge University Press, pp: 333.

GU, K., H. MAO and Z. YIN, 2014. Production of marker- free transgenic Jatropha curcas expressing hybrid Bacillus thuringiensis -endotoxin Cry1Ab/1Ac for resistance to larvae of tortrix moth (Archips micaceanus), Biotechnology for Biofuels, No. 7:68.

IBRAHIM, M. A., N. GRIKO, M. JUNKER and L. A.

BULLA, 2010. Bacillus thuringiensis, a genomics and proteomics perspective, Bioengineered Bugs, No. 1:31- 50.

JAVVI, E., M. H. SAFAR ALI ZADEH and A. A.

POURMIRZA, 2005. Studies on the effect of Bacillus thuringiensis var. kurstaki on different larval instars of Colorado Potato Beetle, Leptinotarsa decemlineata (Say), and the role of synergists in enhancement of it s efficiency under laboratory conditions, Journal of Water and Soil Science, No. 8: 187 199.(in Persian with English summary)

KARACA, G., I. KARACA, N. YARDIMIC, O.

DEMIROZER, B. ASLAN and H. CULAL KILIK, 2010. Investigation on pests, diseases and present early warning system of apple orchards in Isparta, Turkey.

African Journal of Biotechnology 9(6):834-841.

KARIMZADEHESFAHANI, J., M.H., BESHARATNEJAD, Z. KAZEMZADEH and M. R. REZAPANAH, 2012.

The lethal effect of three commercial formulations of Bacillus thuringiensis Berliner on Plutella xylostella L., The 2nd National Seminar on Food Security, Islamic Azad University Savadkooh Branch, 18-19 october, 2012 Savadkooh, Iran. (in Persian with English summary)

KHALIL ARYA, A., M. DANYALI and M. MOSTAAN, 1998. Control of Yponomeuta malinellus by Bacillus thuringiensis and its comparison to Zolone phosphorus pesticide. Proceeding of the 13th, Iranian Plant Protection Congress 23-27 August 1998 Karaj, Iran, pp. 125. (in Persian with English summary)

KNAAK, N., A. R., FRANZ, G. F. SANTOS and L. M.

FIUZA, 2010. Histopathology and the lethal effect of Cry proteins and strains of Bacillus thuringiensis Berliner in Spodoptera frugiperda J.E. Smith

Caterpillars (Lep.:Noctuidae), Brizilian Journal of Biology, No. 70: 677 684.

KOT, I. 2007. Parasitic entomofauna of leaf tortricids (Lep.:

Tortricidae) occurring in apple orchards.Electronic Journal of Polish Agricultural, No. 10: 27.

MAFI PASHAKOLAEE, S. A., R. NOURI, H. BARARI, and M. R. BABAEE, 2014.Preliminary investigation of biology of Archips rosanus (Lep.: Tortricidae) in orchards of Thomson orange in Sari, Iran. The 2nd Sustainable Agriculture and Natural Sources, Mehrarvand Institute of Technology, Abadan, Iran, 1- 8. (in Persian with English summary)

MASCARENHAS, V. J. and R. G. LUTTRELL, 1997.

Combined effect of sublethal exposure to cotton expressing the endotoxin protein of Bacillus thuringiensis and natural enemies on survival of bollworm (Lep.: Noctuidae) larvae, Environmental Entomology, No. 26: 939-945.

MASHHADI JAFARLOO, M. and M. DANYALI, 1998.

The influence of several microbial insecticides on Yponomeuta malinellus in East Azarbayejan province.

Proceeding of the 13th, Iranian Plant Protection Congress 23-27 August 1998 Karaj, Iran. (in Persian with English summary)

MOHAMED HAGGAG, W. and H. A. L. A. MOHAMED, 2007. Biotechnological Aspects of Microorganisms Used in Plant Biological Control, American-Eurasian Journal of Sustainable Agriculture, No. 1: 7-12.

ROMEIS, J., A. DUTTON and F. BIGLER, 2003. Bacillus thuringiensis toxin (Cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neu: Chrysopidae). Journal of Insect Physiology, No. 50 : 175 183.

SARUHAN, I., I. AKCA and R. KUSHIYEV, 2014. Toxicity of Some Biopesticides to the Fall Webworm, Hyphantria cunea Durry (Lep.: Arctidae), Egyptian Journal of Biological Pest Control, No. 24: 255-257.

SHIKANO, I. and J. S. CORY, 2014.Genetic resistance to Bacillus thuringiensis alters feeding behaviour in the Cabbage Looper, Trichoplusia ni Hubner, PLoS ONE, No. 9: 85709.

TALAEI-HASSANLOEI, R., R. BAKHSHAEI, V.

(13)

HOSSEININAVEH and A. KHORRRAMNEZHAD, 2014. Effect of midgut proteolyticactivity on susceptibility of Lepidopteran larvae to Bacillus thuringiensis Subsp Kurstaki, Perspective Article, No.

4:1-6.

VAN ARC, H. 1983. Introduction to probit analysis with (LSTATS) P/PROBAN, Science Bulletin, Department of Agriculture, Republic of South Africa, No. 399.

VATANDOOST, A. 2013. The bioassay study and calculation of LC50 and LC90 of Bacillus thuringiensis on Ennomus quercinaria (Haufnagel) in

Mazandaran province. The second National Congress on Organic and Conventional Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran, 21 22 Aug., 2013, pp. 382 384. (in Persian with English summary)

YEZZA, A. and R. D. TYAGI, 2006. Correlation between entomotoxicity potency and protease activity produced by Bacillus thuringiensis var. kurstaki grown in wastewater sludge, Process Biochemistry, No. 41:794- 800.

(14)

Bacillus thuringiensis Archips rosanus

Referensi

Dokumen terkait

Iran 2 Associate Professor, Faculty of Natural Resources, University of Tehran, Karaj, I.. Iran 3 Professor, Faculty of Soil and Water Engineering, University of Tehran, Karaj,