/
11198
: *
! " # -
% &
.
()*
Escherichia coli
1
* 2
3
1 - -
!
"
#
2 -
% & '(
% )
* +
+,- . /0 1 %2 &
!
"
#
3 -
% & '(
- !
"
#
! / #
$ # %&'(
! /
1 /
! *(
98 -& & / 79
: 8 / 10 / 97 :
13 / 11 / 97
:" #
$ %&
"
"' ( ( ) ) * + , - ./ ( 0 1
) ( 2 .
3. 456 .
+8- 9 ) ( 2 5 :; ( $ %&
1< =>
"
* ?
@ ( A (B. 5 C . . D.E 4 F - .G H
+8- 1< ( $ %&
Escherichia coli (PTCC 1330) .3
I( ( :
1<
E. coli 3 < J
@ . $ %& . 1< . 9 KE / " L- M % 3N O 0
1 5 10 20
30 40 ( 50
* S- 5
0 4 8 12 16 20 24 28 ( 32 V W 3X . /
3 L Y 3 ; Z ( "[ L +8-
\ . 9.
. / V F% = 1< ] $ M0 W 1< / 5 (
"1 :
* / 1
5 10 20 S- S ^X A
_ ;-
1<
/ . S A * / -
50 ( S- / 1< .
<
A 3 . / * 5 30 40 ( 50 S- A S ^X / 5 5
,8- 1<
( 1
10 ( 20 ^X S- S.
A
1< / 3 + 5 5
. /
* / 1
- 30
#- 5 _ $ S- 0
A <
3.
( * ./
. 10 S.- . 9
S "
1 9 S , 0( . 40
( 50 0 - 5 3X S- 1< =>
A <
.
"F 1 ( ^
: )
1< "2% " "Z - E.coli
1< ` ( 5
X 9 _ H 0 ; L 1<
3 .3.
.-
A < ( A S ( A (B 9 a 1 5 .3 Z V L 1< 3 ; Z
Vb (
<
:
5 ,8- /
1<
) ( 2 1< G
.
" #
'; - <; =>4 ?;. @ ! ?* A
;5
;9 0 8 % *
';B' % ; 2
';
? % #2 ) ?B'4
C;
2 D;# . ?;
? + # *
; " # - ? 9# ' E 0 8 '
" ?& C
?;/ B * F'G' D# H % * IJ
?;; K&
;;;==> ;;+ % ;;& *
2 ;; #
?! +
;9* C; . ? L'8 " % * )
1 (.
D ;)*
O;PQ
; ;5 '; - ?;. @ ; % *
9 0 ; 8 '# ;&'# '# ;& - 2 OQ L'P %
Extremely low frequency (ELF)
; . #'
% *
9 0 8 ;9 E & 9 0 8 % * ELF
D # ;;- ) 2 ; )&
300 ,;4 * ( C;PQ ?;; ?;& ;9*
?B'4 '
; D;# S'9> 5 L T . + *
O ;9 %
% * U' ' D;# ';B T; D ; V;#
2 W > *
# 2 H CPQ ? 9 T
C # )
2 (.
D#
*
% 0 8
;9
;+
5 / 0 4 2
; . 5 ,4 *
%
% /;ZQ L ; & ,;&
) 9
3 .(
[ ;; ! ?;;& \] ;;/ 2 ;; # " ?;; );;
? ! - '; ;&
L ; & ;9 0 8 7 T; 'Q
+ . 7 ' 564 ?A
; 2 ;+
% *
9 9 0 8 9 0 8 ';B' #
L 2 ';PQ ); ;= =>4 F'G' * ^;P J
O9 5 D# C '
# ; ?; C/9 *
% )& S = 'B'
C; ? ?. @ '
) 4 ( D# .
*
% 9 0 8 # ; ; '4
2 ; 2 'B' V#U' ' C . C;`Pa ; 84 <;# 0
' '*
O#, " C;; . ;;*
O ;;9 ;;*
';;# L ;;= % *
b 5
L' '4 % %
O9 % *
* '
# b 564 )
5 6 ( .
9 0 8 7 '
#
;(
LK ! L
*
% '
# V
&
% 0 9=4 O 'P
H 5 4 C#
.
; C 'P;
';4
*
% % & + 2 % 'PB dQ DNA
E.coli
#
) C 7 .(
0 8 9 E & O& C 5 10
P K;94
30
= Q ? d
&
;+ f*
Escherichia coli
Staphylococcus aureus
# ) 8 ( . % ; # ?;. @
h ;;;
;;; )*
L ;;;
2002 ;;;5
;;;
0 8 9 C 5
%
E.coli
& i , &
; .
;;.4 T;; =
%
>4 ;;5 2 ;;. @ 2
;; #
;;
% *
0 8
;;9
j ;;
?;; DJ;; ;;*
;;
"
;;
?
% '0
;; ?;;&
Gerencser
;; )*
k;;9]
564 2
% b 8 C 5
9 0 2 5 #
V# >4
&
; P& ;.4 CQ
Seretia
marcescens S. aureus
i , ' 5 D# &
S. aureus
5 / 1 4 K94 6 ;+ V;# >4 CQ
6 4 7 2 E- % 5 CQ 7
'; ;5 ; CQ
) 9 ( .
Binni
;4 H;m C; 5 ;9 0 8 ;
110 + % 8 5 K94 P
E.coli
C ? +
) 10 .(
f* ;& % # . @ D n)*
40 % ;m
% & ;; ;;+
E.coli
?;;
;;9 0 8 ;; ?P ;;
i , C + )
11 (.
?. @
%
&
%
E.coli
E;-
2 6 4 CQ D
k; 4 4 ?;
; 8 10
P
;+ ob;] T; & ';@ K;94
;+ ;
;+
*
% 0 8
9 -
# D 2
*
% ^P J
ob]
E.coli
" & 2
# p ;
# ) 18 .(
;==> # ;
& ; ;+ ; ;9 0 8 564 , i ,; %
) 12-17 .(
G ] f* q- 2 o *
;+ ; 2
;
% & ; ;+ % *2 % 9 0 8
Escherichia coli
? ' Q
% ) % & V#
O; % & ; 9 % 2
.C ' U L = d>
/
11398
I( (
1< " L-
% & ; ?#';
Escherichia coli (PTCC 1330)
2
r ; ' 9 P& ,&
% & ; ;*
2 ; ) ;# % ;*
f* q- % & ; . ;+ ?; 4 ( ;# . ;m )PQ % *
` ' ? i C &
16 ' C & W > % @!
# ba )
Nutrient Agar
;@= j" ;+ \ 4(
C`Pa T#
106 L # % * 2 %
4
?B . + %
$ %& F
V# 2 H O
- s
? ' E B 2 ? 9* %
D# ? + . + (# 9 0 8 V# C#
,#p ; " t 2 H 9 0 8
" L
NF-5035
2 C P ?&
9 & u %
1 4 ,4 * 1 ,4 * 2
. ;+ %
; O - s
*
% 27 ?B +
?
;
?P
% u
"
* . + L &
1< / $ %& _ X V
'; C; & W ;> % % & ; ; '` D#
C;; & 2 . ;;+ C;; & # b;;a 24
% & ;; ? Q ;;
' i ?; . + T 4 T# @= j" ' 9 t
<
2 ;;
% C`Pa
;;*
% & ;; 2 ^;;P J %
` ';;
1# C & W >
C ? f# 2" u# % Et . "
;.4 ?; C; 5 C`Pa 2 100
* ;]
%
; 4 T
*
;; P&
) Et;; . ;;+ H ;; % & ;; (CFU
L'P;;
* %
C`Pa % &
IJ +
; 2
* % 0 4 8
12 16 20 24 28 32 ;9 0 8 ; +
( * ;+ ;) 4) H;m 1
5 10 20 30 40 50 ,;;4 *
% + 84 . + L'P
* ; % & ; %
D;;# . ;;+ ( ;; ' t;; ;; 2 H ;;
k; T;# ' & v 0 f# 2"
[K ;&
;Z4 3
C;; .)B f( ;; 2 ;; )0 % ;; . ;;+ ;;( ;; 4 2 % &
C; P- % ' , % & + ) 4 % *
;+ C; & % & ; ; B C; & W > % ] ) 4 ?& @# + . + 2 D )J4 % & C .)B L )Q + % i );+ C; P '; #2 % & +
B C & W >
?; C % % & 2 '/
;+ C & Et +
;#
C <; C; .)B
. + i )+ % &
# C ;#2 L'; 2 H ; ;
+ ?/ > L'P ( # 4 O 9=4) T9 '4 2 L'0 ) 19 (.
L' D#
T9 '4 2 L'0GT
D ; 2t
'P O 9=4 .4b
2 % &
.4B
L 2 % &
+ .
Y " SF-
% *
? C
"
2 H ,;
SPSS 19
?;9# = . ; ; % ; " ?#,(4 ' D
;*
;
H * ') .C #b- ( &'4 ' 2" 2 H 2 ,
Microsoft Office Excel 2015
. + O
"1
E # ?#,(4 564
; ;+ 2 % * ' &
% + % *2 % ' & D# T = 5 9 0 8 % &
E.coli
;H4 m V# w@
; . %
L B) 1
.(
+ % & ; % + % *2 % ^P J % *
E.coli
; + ?&
10 D# ; ,;4 *
;;.4 f# ,;;
L'P;;
* ;; # ;; % & ;; %
H4 + % * ) 4
; . V;# w@; %
+ . ') (# m
;
* % 1 5 10 20 ,;4 *
? P& '0 O # ; ;= f# , dQ
;.4 L'P;
;;+ ;;+ % & ;;
;;
*
% 30 40 50 ,;;4 *
% & C .)B f* & dQ
E.coli
D;# D ; . ;+
+ * ) 4 30
% ;H 5 D# ,4 *
f* ;;& d;;Q C;;+ b % & ;; L'P;; ;;.4 O # ;;
. ( H;m= ;+) * + ) 4 ? C/9 %
L B) + % & C .)B 2
.(
_( Z 1 . K ( " SF- -
+8 ( * /
* 5 (
1< _ ;- 1 c0 E.coli
/ 5
1 84 ?B % 2"
) (DF F')(
. ) (SS D
. ) (MS # = F P-value
' & 5 1 70 / 5957 70 / 5957
**
16 / 11380 0001 / 0
7 58 / 290 51 / 41
**
29 / 79 0001 / 0
2 8 46 / 1917 68 / 239
**
83 / 457 0001 / 0
2
× 56 84 / 275 93 / 4
**
41 / 9 0001 / 0
@!
144 39 / 75 52 / 0
T&
216 96 / 8516
(%) 84 k# G 91
/ 8
_( Z 2 . +8- * /
;- 1 c0 ( d 1
1< _ E.coli
/ 5
(,4 *) +
.4 O #
% & L'P
0 50e
/ 4
1 37c
/ 5
5 68c
/ 5
10 48a
/ 7
20 46b
/ 6
30 91d
/ 3
40 29de
/ 4
50 32de
/ 4
+ % * ) 4 5
30 40 50 ; 2 ,;4 *
) % !64 + 2
Lag phase
% & (
E.coli
? C/9
;* ) 4 # ; ; f# ,; * + ) 4 56;4
% %
!64 ?P]
% * ) 4 . + % & % 10
20 ,4 *
; ;+ ; ;) 4 f# ,; dQ 30
d;Q ,;4 *
. ;+ % & + C 5 2 2 f* &
* s ;&
2
+
* %
? + % & ; # ) + %
% & ;; ;; ;;(# % ;; 84 ';;
?;;. @ ?;;)*
+ % * ) 4
; 12 # ;) ;+ CQ ;
) & T & '!
') 1 .(
* / .1
( (S- ) $ %& d 1
1< / E.coli
9
"'#
g 9
.3 ( $ %& _ X ( ) / -
5 2
; % ;9 0 8 ;+ O #
% &
E.coli
2 ?& % + % *2
20 24 2 . CQ
; % & ; %
;
* %
. ;+ * ; % & ; C; .)B ,; D# ^P J ( "2
#
?&
% & ; ;+ C 5 2 ?P] 2 D#
?)* .C . /0 = D#
2
;*
% ;
? +
? ,B 2 4 ;+ % !6;4 2 ; ?;& CQ ;
% + % *2 ?)* % & + > C % &
H4 . * + ) 4 m V# w@ %
L B) 3 .(
') 2 5 2
* C; 5 V# ^P J %
.C; % & ) # + % D# ;
/
11598
2 % & C .)B ' 8
;+ CQ ;
9 0 8 5
+ ; % # ;+ f* & ?&
2 . ;; % & ;; C;; .)B % ;;+
% ;;*
12 16
; + , CQ 5
; * & ; d;Q ,;4 *
+ #2 5
% & % !64 2 ,4 *
? # f# , 2 # ? # ? ?B'4 .C
*
% & + % ) A f# , dQ D )*
) # ; ;+ ;) 4 D# T = 5 P& 5 + . H4 ' C/\ % &
* ;+ ;) 4 ; %
;)* . ; ;m V# w@
?;& '0 ';)
2
* ) 4 C IJ %
30 40 50 2 ?)* ,4 *
?
? + 2 ,B | ; 2 > ?& # *
;; 2) C;; % & ;;
28 30 f* ;;& d;;Q (CQ ;;
;;+ % & ;; C;; .)B
;;
10 ?;;)* ,;;4 *
% & ; ;+ } f# , D# 2 % * ) 4
;; ;;+ % ;;* ) 4 ?;;)* ;; ;;
;;H4
. ) ;& (# % " m V# w@ % ';)
2 .(
_( Z 3 . +8-
* 5 1 c0 ( $ %&
1< _ ;- E. coli
/ 5
(CQ ) 2
% & L'P .4 O #
0 1e
4 1e
8 60d
/ 2
12 11c
/ 5
16 71b
/ 7
20 84a
/ 8
24 84a
/ 8
28 41b
/ 7
32 75c
/ 4
;9 0 8 ; ;+ 564 E # ?#,(4 u#
;; % T;;9 ;; '4 ;;# 'P;; O ;;9=4 F ;;+ 2
)
Generation Time
;; (
| 2
% & ;; ;;
E.coli
w@
5 . H4 m ;& (# %
L B) 4 5 .(
+ d;Q ;9 0 8 ^P J % *
; 84
| T\ '4 CQ % % #2 % & ; ;
E.coli
+ . + 1
4 30 ;# T;9 ; '4 ; 2 ,4 *
; % & ; ;+ ; )& % & ; # ;) O 9=4 * 2 ?;; F ;;+ ) # ; ;;# # ;;) 2 ; % ;; CQ ;
. & T\ '4
5* +8-. 2 =2/
d 1 $ %& d 1
1< / ( (3X ) E.coli
_( Z 4 . K ( " SF- +8-
* / d 1
5 ( (S- ) h
( 1<
E.coli
1 84 ?B % 2"
) (DF F')(
. ) (SS D
. ) (MS # =
F P-value
) 4 7 70 / 930 96 / 132
* 94 / 2 035 / 0
@!
16 91 / 723 24 / 45
T&
23 61 / 1654
(%) 84 k# G
33 / 8
. w@ **
% P 01>
/ 0 . w@ * %
05 / 0
<
P 01<
/ 0 . ns
< P 05 / 0
_( Z 5 K ( " SF-. +8-
* / d 1
1< / #- 5 ( (S- ) E.coli
1 84 ?B % 2"
) (DF F')(
. ) (SS D
. ) (MS # =
F P-value
) 4 7 51 / 1134 07 / 162
* 25 / 3 024 / 0
@!
16 55 / 797 85 / 49
T&
23 05 / 1932
(%) 84 k# G
17 / 8
. w@ **
% P 01>
/ 0 . w@ * %
05 / 0
<
P 01<
/ 0 . ns
< P 05 / 0
3 +8- . * / (S- ) $ %& d 1
( / 5 ( h
( 1<
E.coli
_( Z 6 9 c " # . +8-
( * /
* 5
( = 0 - h
( 1<
" H 1< /
E.coli
(,4 *) +
) T9 '4 2 *
( # 4 O 9=4
T9 f* & 2
| ) (
0 49b
/ 36 90c
/ 20
1 86bc
/ 28 33ab
5 32c
/ 26 33bc
/ 25
10 53d
/ 23 04b
/ 30
20 33c
/ 26 46a
/ 40
30 59b
/ 33 44c
/ 20
40 03ab
/ 37 98b
/ 30
50 58a
/ 45 37b
/ 31
+ 10
,4 * ;* % &
53 / 23 ?;=
V#
'4 D;# C;+ (L'P; # 4 O 9=4) T9
;* % & ; * ;+ ) 4 ?& ' ] 49
/ 36 ?;=
V#
w@; * ) 4 ?)* ? C+ ( T9 '4 . H4 m u - ;) 4 2 ;. . ';) (#
10
% * ) 4 k 4 4 ? ,4 * 5
20 1 ; 2 D# ; )& ,4 *
# T\ '4 1# 4 /Q ?
# ;4 O ;9=4 2 D# 4
% ;;* ) 4 . ;; ;; ;;+
40 50 d;;Q ,;;4 * ,;;
# f ;; 2 % . ;;+ % & ;; T\ ;; '4 ;; 2
| # T9 f* &
; ;+ % ;* ) 4 ?;)* ;
?; 9 0 8 ;) 4 ,B
30 ; 2 f# ,; d;Q ,;4 *
| 84 = . + % &
| % &
) 4 30
; . H4 * + ) 4 ,4 * ; %
L B) 6 ') 3 .(
"F 1 ( ^ )
%
;*'4 - ~ ;. ; 2 ';B' 2
%
'
%
# 0 8 9 HP J
; ?;&
# D j'P@ 5 C D ) *'4 -
;#
'P@ ;
%
2 b ^P J 'B' T\ '4 +
"
* 564 C>4 * )
20
;- .(
f* q ?; ;G ]
;;
0 8 ';;4 - ;;5
;;9
%
& ;;
%
E.coli
. + ? ! -
# u
;+ ?& G ] ?. @
*
%
^;P J
; D ; ; ~ ;. ; 2
;#
D
* dQ 84 4 T
2 #
*2
% +
&
%
E.coli
'+
; ;+ . % *
1 5 10 20
* ,4
? P& '0 ,; d;Q
# f
& ; L'P; ;.4
%
E.coli
, +
# f + 4
50 ; ,;4 *
+
%
& ;
% f* ;& ^; '
# C;
& ; .
%
E.coli
564 C>4
; 10 ,;4 *
;
# D ,;
# f ;.4
L'P 30
,4 *
# D L'P; ;.4 f* ;&
. +
?; ; ^P J % * ;+
G ] f* q-
%
*2 2
% +
%
&
%
; ,
84 dQ + b 5 4
+ 2 ')
%
&
%
E.coli
? . + '>
%
?&
;+
; 5 30 40 50
& ; % !6;4 + 2 2 ,4 *
% ,;
# f ;
+ 10 20
* ,4 ,; d;Q
# f
;+
; 30
& + C 5 2 2 f* & dQ ,4 *
%
. +
f* q-
;;;*
%
? ;;;
U
;;; )*
C;;;
)*
& ?& +
%
*
# ~ ;. ?;&
;
9 0 8
?
? ') ? C/9
*
% , * +
# f
/
11798
) ;;+ ;;+
15 21 f* q;;- .(
#
;;
% C;; "
)*
?& ') 0 8
;9
;+ ; 2
P ? K94 6
16 4 4 ? CQ k
f* ;& dQ
,
# f
& +
% + + P&
) ';+
22 .(
;#
D
;;]
?;;& C;;
' ) ;;+
L ;; ;; )*
2003
K
%
+ +
2 / 7 - 10 P K;94
12
?=
& + f* & dQ
%
;+ + P&
';+
) 23 ( .
• D n)*
L ;)Q ?;& ; ; )*
E - % * 0 8
9
& 5 O& ;4 f* &
% &
E.coli
) 24 ( . ?9# =
;#
D f* q- ;*
;
G ] f* q-
# D kP@
+"
'+
; ?&
% *
0 8 ^;;P J
;;9 4 ;;H 56;;4
% 84 ;;
;;
+
%
% &
& [ m'ZJ *
%
E.coli
.
G ] f* q-
& ; L'P; % 2
%
E.coli
,
?
;. ' & ; ' Q
%
%
;*2
%
+
%
&
% ?;& =A * ?& + IJ +
&
% ~ .
;#
D
;*'4 -
% 0 8
;9 ;
84 +
% S'9> "
2 .C 4
;*
%
20 24
& CQ
%
# D ,
& ; L'P
%
;#
D
?; ; 2 ,B
; 40 50
.)B ,4 * C
&
% C/9 , * + ? ') ?
# f
4 .
;;* )
% 30 40 50 ;; ;; 2 ?;;)* ,;;4 *
?
? + 2 ,B
;*
# | ; 2 ; ;> ?;&
& ;;
% ;; 2) C;;
28 30 (CQ ;;
d;;Q f* ;;&
.)B
;;
C
& ;;
%
;;+
;;
10 ?;;)* ,;;4 *
4
* )
% 2
# D ,
# f
& ; ;+ }
%
.
* q- L )Q ?
0 8
;9 ;
+ 10 - 7 / 2
; K;94 P 2
12 - 0
?;=
.)B f* & dQ C
% &
*
% ) + o 4 * 5
.(
5
# + 0 8
;9
% ; 2 CQ ;
& T\ '4 }
% 4 L )Q ?& C
* )
% ^P J
) + 2
#
|
& ;
% ?;& ;+ IJ;
+ 0 8 ^P J % *
9 84 dQ 2#
%
%
| T\ '4 CQ
& ;
%
E.coli
. ;+
+ 1
;4 30
;9=4 ;* ; 2 L';0 ,;4 * O
'P f* &
# C
&
% CQ
% ?; F +
9=4 O
? . & + '>
%
?&
;+
; 10 ,;4 *
# D , ? CQ
# D ,
; '!
; .
40 50
& ; T\ ; '4 2 CQ ,4 *
%
;+ f* &
#
%
& ; ;
%
E. coli
CQ ; ;
)&
% 9=4 ? F + O
n)* . & + D
564
0 8 9
% 84 ; 2
;
|
& ; ;
%
)*
4 ?
* )
% + 0 8
9
?;
,;B
4 ) 30 ,; d;Q ,4 *
# f
| ; 2
& ; ;
%
.)B + C
&
% )& CQ
% f* &
# C .
f* q;;-
% ;;*
h ;;
;; )*
,;;
;;
0 8
;9 50
% & ;+ %,;4 *
;*
%
Escherichia
coli Staphylococcus aureuscoli Leclercia
adecarboxylata Paracoccus denitrificans
Rhodococcus erythropolis Sphingomona
paucimobilis
) C f* &
16 ( 564 .
# D
;
*
%
&
% L'P ^P J * '4
0 2
#
<
b 5
%
% . C O#, "
O 9 * b; 5 ';# L ;= % *
%
% L' '4
*
% O9
* m ! C 4
;#
) + ... L'P a 6
7
;! .(
;==> 2
; ,
;
? + ?&
;#
D 56;4
; '4 0 2
;#
<
56;4
%
>
W 2
& ;
% 84 T;\
;
;
#
? ;
'+ CO2
% ) + ...
15 .(
# u G ] f* q-
? €'Z!
&
% 5
;+
2 0 8
9
? '`
% & f &
E.coli
D;# ? ;* ) 4
;9
;H ';
?; . P& '0
+ IJ L )Q 5
0 8 9 +
*
% p
) 30 ;;4 50 ,;;4 *
?;; ( | ;; k/;; ';;)Q '0 f* ;;&
% & C .)B
E. coli
4 'm +
?&
L ;)Q
;
0 8 9
;+
*
%
• ;- D
;4 [ ;m'ZJ 10
,;4 *
% ;+ ; 84 ; D# ? / . + # , 5 % &
';
?;. @
; ?;
L ;)Q 2
; ,;
9 C+
. ?;B'4 ; G ] f* q- u# ? ?B'4
% & ;; ?;; # ?;;
E.coli
% & ;; V;;#
;;)
% 2
Q D L ;;]
O;; ;;9 % & ;;
;; * q- ';;
U L = [ m'ZJ . +
'4 2 u#
f* q- D#
.C9B % & C .)B f* & f# ,
W ( 2 -
);;+ ?;; 4 ;;= =>4 v ;;0 T;;m ] ?;; = D;;#
965012697 C;# )] C;>4 ?;& j'Z
%' . % D# ; ?& +
?P ;
T)Q ? k4 . #"
/
11998
References
1. Fojt L, Strašák L, Vetterl V. Extremely- low frequency magnetic field effects on sulfate reducing bacteria viability.
Electromagnetic biology and medicine;
2010; 29(4), 177-185.
2. Kavet R. EMF and current cancer concepts. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association; 1996;
175(5), 339-357.
3. Villard S, Allen A, Bouisset N, Corbacio M, Thomas A, Guerraz M, Legros A.
Impact of extremely low-frequency magnetic fields on human postural control. Experimental brain research;
2018; 1-13.
4. Samarghandi MR, Khoshniyat R, Rahmani A R, Roshanaei G, Poormohammadi A, Saedpanah K. A study on the Effect of Magnetic fields on Microorganisms existing in Water. Journal of Research in Environmental Health; 2016; 2(1), 11-19.
5. Strašák L, Vetterl V, Šmarda J. Effects of low-frequency magnetic fields on bacteria Escherichia coli. Bioelectrochemistry;
2002; 55(1-2), 161-164.
6. Falahati A, Boluri B. The effect of sine magnetic fields on growth E. Coli. Journal of Shahid Sadughi University of Medical Sciences; 2000; 7, 59-63.
7. Al-Harbi FF, Alkhalifah DH, Elqahtani ZM, Ali FM, Mohamed SA, Abdelbacki AMM. Nonthermal control of Escherichia coli growth using extremely low frequency electromagnetic (ELF-EM)
waves. Bio-medical materials and engineering, (Preprint); 2018; 1-12.
8. Fojt L, Strašák L, Vetterl V, Šmarda J.
Comparison of the low-frequency magnetic field effects on bacteria Escherichia coli, Leclercia adecarboxylata and Staphylococcus aureus.
Bioelectrochemistry; 2004; 63(1-2), 337- 341.
9. Gerencser VF, Barnothy MF, Barnothy JM. Inhibition of bacterial growth by magnetic fields. Nature; 1962; 196, 539- 41.
10. Binhi VN, Alipov YD, Belyaev IY. Effect of static magnetic field on E. coli cells and individual rotations of ion–protein complexes. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association; 2001;
22(2), 79-86.
11. Ramon C, Ayaz M, Streeter DD.
Inhibition of growth rate of Escherichia coli induced by extremely low‐frequency
weak magnetic fields.
Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and
Medicine, The European
Bioelectromagnetics Association; 1981;
2(3), 285-289.
12. Lekhtlaan-Tynisson NP, Shaposhnikova EB, Kholmogorov VE. The effect of the extremely weak field on the cultures of bacteria Escherichia coli and Staphylococcus aureus. Biofizika; 2004;
49(3), 519-523.
13. Ishizaki Y, Horiuchi SI, Okuno K, Ano T, Shoda M. Twelve hours exposure to inhomogeneous high magnetic field after logarithmic growth phase is sufficient for drastic suppression of Escherichia coli death. Bioelectrochemistry; 2001; 54(2), 101-105.
14. Stepanian RS, Barsegian AA, Alaverdian ZHR, Oganesian GG, Markosian LS, Aĭrapetian SN. The effect of magnetic fields on the growth and division of the lon mutant of Escherichia coli K-12.
Radiatsionnaia biologiia, radioecologiia;
2000; 40(3), 319-322.
15. Xu YB, Duan XJ, Yan JN, Du YY, Sun SY. Influence of magnetic field on activity of given anaerobic sludge.
Biodegradation; 2009; 20(6), 875.
16. Strašák L, Vetterl V, Fojt L. Effects of 50 Hz magnetic fields on the viability of different bacterial strains. Electromagnetic Biology and Medicine; 2005; 24(3), 293- 300.
17. Gholami M, Dehghani FE, Zarghampour Z, Mirzaei R, Dehghani NM. Performance of ultrasonic process on removal of fecal indicator bacteria of Escherichia coli and enterococcus faecalis from drinking water; 2012; 36-41.
18. Selamat R, Abustan I, Arshad MR, Kamal NHM. Removal of Escherichia coli via low frequency electromagnetic field in riverbank filtration system. In IOP
Conference Series: Earth and Environmental Science; 2018; 140(1), 012011.
19. Widdel F. Theory and measurement of bacterial growth. Di dalam Grundpraktikum Mikrobiologie; 2007;
4(11), 1-11.
20. Dutreux N, Notermans S, Gongora-Nieto MM, Barbosa-Cánovas GV, Swanson BG.
Effects of combined exposure of Micrococcus luteus to nisin and pulsed electric fields. International journal of food microbiology; 2000; 60(2-3), 147- 152.
21. West RW, Hinson WG, Lyle DB, Swicord ML. Enhancement of anchorage- independent growth in JB6 cells exposed to 60 hertz magnetic fields.
Bioelectrochemistry and Bioenergetics;
1994; 34(1), 39-43.
22. Aarholt E, Flinn EA, Smith CW. Effects of low-frequency magnetic fields on bacterial growth rate. Physics in Medicine
& Biology; 1981; 26(4), 613.
23. Nascimento LF, Botura G, Mota RP.
Glucose consume and growth of E. coli under electromagnetic field. Revista do Instituto de Medicina Tropical de São Paulo; 2003; 45(2), 65-67.
24. Li M. Sterilization of Escherichia coli cells by the application of pulsed magnetic field, Journal of Environmental Sciences, 2004, 16(2), 348–352.
/
12198
Time and Intensity of Electromagnetic waves impacts on the Growth phase of Escherichia coli bacteria
Namdari F*1, Moosavian M2, Bakhshipour M3
1. Assistant professor, Department of Electrical and Power Engineering, Faculty of Engineering, Lorestan University, Khorramabad, Iran, [email protected]
2. Ph.D. Student, Dept. of Plant Protection, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
3. Ph.D. Student, Department of Electrical and Power Engineering, Faculty of Engineering, Lorestan University, Khorramabad, Iran
Received: 29 Dec 2018 Accepted: 2 Feb 2019
Abstract
Background: Electromagnetic fields have various effects on the biochemical and cellular behavior of microorganisms due to radiation. It is necessary to investigate more extensively the effects of these magnetic fields on some microorganisms, such as bacteria. The purpose of this study was tp investigate the effects of magnetic fields on Escherichia coli bacteria (PTCC 1330).
Materials and Methods: E.coli bacteria were prepared in liquid growth medium at the proper density. Then, the bacteria were placed in a magnetic field of 0, 1, 5, 10, 20, 30, 40 and 50 Hz at 0, 4, 8, 12, 16, 20, 24, 28 and 32 time intervals. Afterwards, their population was calculated, and the impact of these waves on the bacteria growth phases, based on the factorial pattern, was measured.
Results: Field intensities of 1, 5, 10 and 20 Hz caused an increase in the number of bacteria cells.
With increasing field intensity to 50 Hz, the growth of bacteria was reduced. Field intensities of 5, 30, 40 and 50 Hz caused an increment in the time of the lag phase, and field intensities of 1, 10 and 20 Hz caused an increment in the time of the stationary phase. At 1 to 30 Hz field intensities, the duration time of each cell division was reduced, and at 10 Hz field intensity, this reduction reached a minimum. But at a field intensity of 40 and 50 Hz, the time velocity of bacteria reproduction decreased.
Conclusion: Given that E.coli bacteria is a pathogen, and at the same time a very important bacteria in scientific activities, the results of this study could be used in procedures to increase and decrease the population of this bacteria population.
Keywords:Stationary phase, Log growth, Bacterial disease, Microorganism, Anti-bacterial.
*Citation: Namdari F, Moosavian M, Bakhshipour M. Time and intensity of electromagnetic waves impacts on growth phase of Escherichia coli bacteria. Yafte. 2019; 21(1):111-121.