ContentslistsavailableatSciVerseScienceDirect
Electric Power Systems Research
j o ur na l ho me p ag e : w w w . e l s e v i e r . c o m / l o c a t e / e p s r
A high speed noncommunication protection scheme for power transmission lines based on wavelet transform
Ammar A. Hajjar
ElectricalPowerDepartment,FacultyofMechanicalandElectricalEngineering,TishreenUniversity,Latakia,Syria
a r t i c l e i n f o
Articlehistory:
Received30January2012
Receivedinrevisedform5October2012 Accepted30October2012
Available online 23 December 2012
Keywords:
Wavelettransform High-speedprotection Noncommunicationscheme Transmissionlines Transientcurrents
a b s t r a c t
Thispaperpresentsahigh-speedprotectionschemeforpowertransmissionlinesbasedonwavelet transform(WT).Itisanoncommunicationprotectionschemeasitdependscompletelyonlocallymea- suredcurrents.ItutilizesWT,whichactsasamulti-levelbandpassfilter,toextracttwodistinctbands offrequencyfromthefaultinducedhighfrequency(HF)transientcurrents;thefirstbandishighwhile thesecondbandisrelativelylower.Thespectralenergiesoftheextractedsignalsarethencalculatedto formtwodiscriminatingsignalsoftherelay(operativeandrestraint).Basedontheratiobetweenthese discriminatingsignalstherelaycandistinguishwhetherafaultisinternalorexternaltotheprotected line.
Theperformanceoftheintroducedprotectionschemewasevaluatedbysimulatingseveralfaultson 400kV–50Hztransmissionsystemusinganelectromagnetictransientprogram(EMTDC).Thesimulation resultsshoweddistinctperformanceoftheschemeirrespectiveofthefaulttype,faultinceptionangle, faultpositionandfaultresistance.Moreover,itisnotaffectedbyasystemconfigurationandsystem sourceparameters.
© 2012 Elsevier B.V. All rights reserved.
1. Introduction
EHVtransmissionlines protectionschemes canbeclassified intotwomaincategories:thecommunicationandnoncommunica- tionprotectionschemes.However,eachoftheaforesaidprotection schemeshasitsownproblems.Inthisrespect,theproblemsofthe noncommunicationprotectionschemes,suchasdistanceprotec- tion,are:itcannotprotecttheentirelineanditssettingisnoteasy.
Inthiscontext,thecommunicationprotectionschemes,suchasdif- ferentialprotection,weresolvedtheaforesaidproblems,butthey needanexpensiveandcomplicatedcommunicationsystem.Fur- thermore,thereliabilityandcostofthecommunicationprotection schemesarefunctionofthereliabilityandcostoftheusedcom- municationsystems[1].Hence,ahigh-speed,lowcostandreliable noncommunicationprotectionschemefortheentiretransmission lineprotectionisrequired.
Inthisrespect,thecommunicationprotectionschemes[2,3]and noncommunicationprotectionschemes[4,5]based ontransient componentswereoffereda high-speedprotectionof theentire line.However,theysufferedfromseverallimitations,suchasnot beingabletodetectfaultswithzerophaseinceptionangles,high resistancefaultsandareaffectedbyanychangeinasystemconfig- urationandsystemsourceparameters.
E-mailaddresses:[email protected],[email protected]
Togetridoftheaforesaidlimitations,theauthorsof[6,7]pre- sentedanoncommunicationprotectionschemebasedoncapturing thefaultgeneratedHFtransientvoltageswiththehelpoflinetraps andstacktuners.Theydesignedspecialbandpassfilters,with17 floatingpointcoefficients,toextracttwodistinctsignalsfromthe capturedsignalsinordertoformtheoperativeandrestraintsignals andhencetodistinguishwhetherthefaultisinternalorexternalto theprotectedline.However,installinglinetrapsandstacktuners ateachendofthelineincreasesthecostandlimitstheapplica- tionofthescheme.Tosolvetheaforesaidproblemtheauthorof [8]presentedanalternativeformofnoncommunicationprotection schemebasedonthefaultgeneratedHFtransientcurrentsthatdoes notrequirelinetrapsandstacktuners.However,thetechniquein [8]alonehasdifficultyindistinguishingbetweenafaultontheline closetoremotebusbarwithintheprotectedzoneandonthebus- barorclosetothebusbaroutsidetheprotectedzone.Inaddition, theuseoftwoneedlessmodalsignalsin[8]tocoveralltypesof faultsatlowspeedspeciallydesignedmultichannelsfilter,with8 floatingpointcoefficients,maylimititsapplication.Theauthorsof [9]usedtheso-called‘Chaari’recursivecomplexWT[10]toextract theaforesaidtwodistinctbandsoffrequency.However,therecur- siveWTrequireshistorical andfuturedataandrequiresa large numberofcomputations;e.g.,itneeds36realmultiplicationsand 35realadditionsforeach sample[10].Theauthorsof[11]used the‘db4’wavelet,whichhasabandpassfilterof8floating-point coefficients,toextract theabovementionedbands offrequency.
Theauthorsof[12]augmentedtheschemeof[8]withlinetraps 0378-7796/$–seefrontmatter© 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.epsr.2012.10.018
icaldata.Moreover,theyusedphaseinformationtodiscriminate thefaultedline.However,inadditiontoalargenumberofcompu- tationsrequiredbythescheme,installinglinetrapsincreasesthe schemecostandlimitsitsapplication.
Itisobviousfromtheabovesurveythatthefilteringalgorithm isthecoreofthenon-communicationprotectionscheme.Hence, suitablechoiceofthefilteringalgorithm,intermsofspeedandtime frequencylocalization,playsavitalrole.Therefore,thispaperusesa high-speedwavelet“PiecewiseLinearSplineWavelet”,whichhas abandpassfilterwith3coefficients,fordevelopingahigh-speed noncommunicationprotectionschemeforEHVtransmissionlines.
Inthisrespect,theWTwasusedtocapturetwobandsoffrequencies fromthefaultinducedHFtransientcurrents.Thespectralenergies ofthesebandswereusedforfaultedlinediscrimination.Computer simulationoftheschemeshowedthattheschemehasahigh-speed responseanddistinctperformanceirrespectiveofthefaulttype, faultinceptionangle,faultpositionandfaultresistance.
2. Theoryofwavelettransform
Waveletisawaveformofeffectivelylimiteddurationthathas anaveragevalueofzero.WTisrelativelyanewsignalprocessing toolfortransientsignalsanalysis.Itbreaksupasignalintoshifted andscaled(compressedordilated)versionsofthemotherwavelet (basisfunction).WThassomeuniquefeaturesthatmakeitmore suitablefortransientsignalsanalysisinapowersystem[9–13], suchas:
䊉It hasthepropertyof time-frequencylocalization,even, of a smalldisturbanceinasignal.
䊉WT has a strong capability of extracting the signal compo- nentsunderdifferentfrequencybandswhileretainingthetime domaininformation.
ThecontinuousWT(CWT)ofatime dependentsignalf(t), is definedasthesumoveralltimesofasignalf(t)multipliedbya scaledandshiftedversionsofamotherwavelet (t).Themother wavelet (t)canbedefinedasfollows:
b,a(t)= 1
√a
t−ba
(1) where“a”and“b”representthetimescalingandshifting,respec- tively.Thecoefficients Cf (a,b),or theCWT, aredefinedbythe followinginnerproduct:
Cf(a,b)=
+∞−∞
f(t)· ∗b,a(t)·dt (2) where“*”referstoacomplexconjugate.
WTofasampledsignalcanbeobtainedusingthediscreteWT (DWT)relation:
DWT(m,n)= 1
am0k
f(k) ∗
n−kam0 am0(3)
where theparameters a and bin (1) are replaced byam0,kam0, respectively,n,k,a0areintegers;a0issomeselectedspacingfactor (usuallychosenequalto“2”fordyadicgrid),andmisthescaling index0,1,2,3,....
Generally,WTconsistsofsuccessivepairsoflowandhighpass filters[14,15].Foreachpairthehigh-scale,lowfrequencycompo- nentsofthesignalf(t)arecalledapproximations(CA),whilethe low-scale,highfrequencycomponentsofthesamesignalf(t)are calleddetails(CD).Aftereachfilteringstage,everyseconddata pointisthrownawaytoavoidredundantdata.Fig.1depictsthe twostagesfilteringprocessofasignalf(t).
f(t)
High pass filter
CA1
High pass filter CD1
Low pass filter
Low pass filter
CD2
CA2
Fig.1.Twostagesfilteringprocessofasignalf(t).
3. Principleofthenoncommunicationprotection
IfafaultoccursonatransmissionlineawidebandofHFtran- sientcurrentsignalswillbeinducedatthefaultpoint,thenthey willtraveltowardtheline’sbusbars,whichconstituteadisconti- nuitypoints.Accordingly,partofthesignalswillcontinuealongthe adjacentline(s)whiletherestwillreflectbackandforthbetween afaultpointandtheline’sbusbarsuntilapostfaultsteadystateis reached.
Theprincipleofanoncommunicationprotectionschemecanbe explainedusinga400kVtransmissionsystem(showninFig.2);
thelengthsoflinesaregiveninfigure.Theprotectionrelay‘Ryzis assumedtobeinstalledonline‘L2’nearbusbar‘Y’,andisresponsi- blefortheprotectionoftheentireline‘L2’.CSrepresentsthestray capacitanceof thebusbar(typically0.1F [6–10])thathaslow impedanceathighfrequencyandhighimpedanceatlowfrequency.
In thiscontext, abusbaris normallyconnectedtomany power equipmentssuchaspowertransformersandgeneratingunits,the characteristicsoftheseequipmentswilldeterminethebusbarto groundimpedancethatisnormallyconductiveinnature.However, atsignificanthighfrequencies,thecapacitanceandcapacitivecou- plingbecomethedominantfactorinthebusbarimpedance[6,8].
Therefore,asignificantamountofthetransientcurrent,particu- larlythehigherfrequencycomponents,willbeshuntedtoground throughthebusbarcapacitance.Thisfeatureisthekeytodevelopa noncommunicationprotectionschemeinwhichthebusbarsatboth endsofaprotectedlinecanbeusedasboundariestotheprotected zone[8].Whenanexternalfaultoccursonatransmissionsystem showninFig.2,e.g.,atpointF2online‘L3’,thetransientcurrent signalI2,whichcontainswidebandofHFcomponents,willtravel towardbusbar‘Z’.Whenthissignalreachbusbar‘Z’partofit,I1, willcontinuetotravelintoline‘L2’,andtherest,Io,willbeshunted intogroundbyabusbarcapacitance.Asaresult,therelay‘Ryz’will measureanattenuatedcurrent,I1,ratherthantheinitialcurrentI2. However,theattenuationwillbelargerathigherfrequencythan thatatlowerfrequencysincethebusbarimpedanceintoground decreaseswithincreasingfrequency.Incontrast,thereisnosuch attenuationincaseofaninternalfault,e.g.,afaultatpointF1on lineL2.Thisimportantfeaturecanbeusedtodiscriminatebetween internalandexternalfaults.
The introduced high-speed noncommunication protection schemedependsonusinghigh-speedWT,whichactsasamulti- levelbandpassfilter,tocapturetwodistinctbandsoffrequency, oneoflowfrequencylevelandtheotherofhigherfrequencylevel.
Theratioofthespectralenergiesofthehigherbandtothelower bandwillbeusedtodiscriminatebetweenexternalandinternal faults.
4. Relaydesigndescription
Ablockdiagramoftheintroducedprotectionschemeisshown inFig.3.
S2
S1
Ryz X
L1=100 km Y
Z W
S4 I1
F3
Cs
L2=120 km
Cs
S3
L3=140 km
Cs Cs
F1 F2
I0I2 I1
Fig.2. Aonelinediagramofthestudiedtransmissionsystem.
4.1. Modalcurrentsignal
To eliminate any noise induced in the line due to mutual couplingbetweenadjacentparallellinesand/ormultiplecircuits sharingthesamerightofway,theoutputsoftheCT’s(Ia,IbandIc) arecombinedinordertoformamodalcurrentsignalasfollows:
Im=Ia−2Ib+2Ic (4)
Thismodalsignalissufficienttocoveralltypesoffaultsthat encounteredinpractice;andensuresimmunitytoalldisturbances otherthanthoseassociatedwiththeprotectedline.Itisworthmen- tioningthattheintroducedschemecanbeapplieddirectlytophase
Fig.3. Aflowchartofthedevelopedprotectionscheme.
currents(Ia,Ib andIc), butinsodoingthecomputationburden willbeincreased(threephasesignalswillbeprocessedinsteadof onemodalsignal).Moreover,therelaystabilitywillbejeopardized underexternalfaultsduetoamutualcoupling.
4.2. Antialiasingfilter
Toavoidanyerrorinasubsequentdigitalsignalprocessingaris- ingduetosignalaliasing(arisingfalsefrequenciesinasignal)the modalsignalispassedthroughananalog2ndorderButterworth filterwithacutofffrequencyofaroundhalfthedigitalsampling frequency.Insodoing,anyunwantedhighfrequencies(noise)can beremovedbeforesampling.
4.3. Ahigh-speedwaveletfornoncommunicationprotection Digitaldecompositionfilterconstitutethemainpartofanon- communicationprotectionrelay.Therefore,suitablechoiceofthis filter,intermsofspeedandtime-frequencylocalization,playsan importantroleinrealizingahigh-speedrelay.Inthispaper,WTthat representsamulti-levelbandpassfilter,ischosen.Asuitablechoice ofamotherwaveletplaysalsoavitalroleintermsofspeedand time-frequencylocalization.Inthisrespect,theso-called“Piece- wiseLinearSplineWavelet”ischosensinceitismoresuitablefor transientsignalsanalysisinterms ofspeed andtime-frequency localization[15].Inthiscontext,thehigh-passfilterofthiswavelet has3coefficients,soitissimplerandspeederthanotherfilters usedin[6–12].Fig.4showstheaforesaidmotherwaveletwithits transfermodulus.
Thechosenwaveletistunedtoextracttwosignalsofdifferent bandsoffrequencies(IH,IL)fromthefault inducedHFtransient currentsignalinamodaldomain.Thefirstsignal,IH,hasfrequen- ciesbandof[50–100kHz],withcenterfrequencyof75kHz,which canbeobtainedbyapplyingtheDWTwithdetail1(d1),whilethe secondsignal,IL,hasfrequenciesbandof[6.25–12.5kHz],withcen- terfrequencyof9.37kHz,whichcanbeobtainedbyapplyingthe
Fig.4.Apiecewiselinearsplinewaveletwithitstransfermodulus.
transientsignalsarealsoinduced,buttheircontentsoffrequencies arelessthanthoseinducedbyafaultaswillbeshownlaterinthe simulationresults.Athresholdvalue‘ε’ischosentobecompared withd1coefficientstodetecttheabnormalcondition,ifawavelet coefficientofd1ismorethanthisthresholdthespectralenergy routinewillbetriggeredtocomputethespectralenergies(EH,EL) ofthecapturedsignals(IH,IL),respectively,overa1.5mswindow length(300samples),toproducetheoperative,Eop,andrestraint, Ere,signalsoftherelaythataregivenasfollows:
EH(n)=Eop(n)=S
nk=n−m
IH2(k) (5)
EL(n)=Ere(n)=
nk=n−m
IL2(k) (6)
wherenrepresentstherecentsample,mrepresentsthenumber ofsamplesinachosenwindowandSrepresentsascalingfactor, whichischosentobe100inthisstudy.
Thediscriminatingsignals,EopandEre,arecomputedsample bysampleandconsequentlytheenergyratioiscomputedateach sampleasfollows:
Ratio(n)= Eop(n)
Ere(n) (7)
Iftheenergyratiois≥1for1ms(200sample),thentherelay discriminatesaninternalfaultandissuesatripsignal,elsetherelay discriminatesanexternalfaultandrestraint.
5. Protectionschemeperformanceevaluation
In order toevaluatetheperformance of thedeveloped pro- tectionschemeit isprogrammedinconjunctionwithWTusing MATLABenvironment.TheEMTDCprogram[16]isusedtosimu- latedifferenttypesoffaultsatdifferentpositions,faultresistances andfaultinceptionanglesonastudied400kV–50Hzpowertrans- missionsystem,showninFig.2.Thetransmissionlineisideally transposedandhasaflatconfigurationwith10mspacingbetween adjacentconductorsandagroundresistivityof100m.Theused transmission linemodel is frequency dependent, thearc resis- tanceisincludedinthefaultmodel,andthebusbarcapacitance is included in the network model. The impedances values of theequivalentsources S1, S2,S3,and S4 inohm are: Zs1=25, Zs2=25,Zs3=20,Zs4=15,respectively.Twoloadsof(300+j190) MVA/phaseareplacedattheeachend ofthelineL2 toinvesti- gatetheeffectofheavyloadswitchingontheperformanceofthe introducedscheme.Allfaultcurrentsareconsideredtobeseenby therelayRyz.Asamplingfrequencyof200kHzisusedinthisstudy andaDWTwithd1andd4isappliedtoextracttherequiredbands offrequencyfromfault inducedHFtransientcurrentsignalina modaldomain.
Figs.5–13showtherelayresponsecurvesforthestudiedcases.
Therearefourgraphsforeachstudiedcase:thefirsttwographsrep- resenttheDWToutputsatd1andd4,respectively.Thethirdgraph showsthediscriminating energysignals;where thesolidcurve representstheoperativesignalandthedottedcurverepresents therestraintsignal.Thesolidcurveinthefourthgraphrepresents theenergyratioandthestraitdashedlinerepresentsathreshold value(unity)fordiscriminatingbetweentheinternalandexternal faults.Rfrepresentsthefaultresistanceandϕrepresentsthefault inceptionangle.
Fig.5depictsaninternalsinglephasetogroundfault‘a–g’at 50kmfrombus‘Y’atlineL2.Theenergyratioindicatesclearlythat thereisaninternalfault.Asaresult,therelayissuesatripsignal.
4 4.5 5 5.5 6
-2 0 2
d1
4 4.5 5 5.5 6
-10 0 10
d4
4 4.5 5 5.5 6
0 1200
Energy Signals
4 4.5 5 5.5 6
0 1 2
time [ms]
Ratio
Fig.5.‘a–g’faultonlineL2at50kmfrombusbar‘Y’,Rf=0.5,ϕ=90◦.
Fig.6depictsanexternalsinglephasetogroundfault‘a–g’at lineL3at70kmfrombusbar‘Z’.Itisobviousthattheenergyratio islowerthanunity;therefore,therelayindicatesanexternalfault andrestraints.
Fig.7depictsanexternalsinglephasetogroundfault‘a–g’atline L3at200mfrombusbar‘Z’.Again,theenergyratioislowerthan unity,therefore,therelayindicatesanexternalfaultandrestraints.
Fig.8depictstherelayresponsetoasinglephasetogroundfault
‘a–g’atbusbar‘Z’.Sincebusbar‘Z’isoutoftheprotectionzone, thentheenergyratioislowerthanunityandtherelayindicatesan externalfaultandrestraints.
Fig.9,depictstherelayresponsetoaninternalsinglephaseto groundfault ‘a–g’atlineL2 at200mfrombusbar‘Z’.Since the energyratioismorethatunitytherelayindicatesaninternalfault andissuesatripsignal.
Theresultsofthelast threecasesprovethat theintroduced schemecandiscriminatebetweenfaultsonand/orclosetoremote busbar(internalorexternaltotheprotectedzone),incontrastto theprotectionschemeof[8].
Fig.10depictstherelayresponsetoaninternalhighresistance fault‘b–g’(Rf=300)atamidpointoflineL2.Itisevidentthatthe energyratioismorethanunity;therefore,therelayindicatesan internalfaultandissuesatripsignal.Hence,theintroducedrelay isunaffectedbytheexistenceofhighresistanceinthefaultpath.
Fig.11depictstherelayresponsetoaninternal‘b–g’faultwith phaseinceptionangleϕ=0◦atamidpointoflineL2.Asexpected, theWToutputsarereducedinmagnitudebuttheiruniquechar- acteristicsstillexist,hencetheenergyratioismorethanunity.As aresult,therelayindicatesaninternalfaultandissuesatripsig- nal.Hence,theintroducedrelayisunaffectedbythefaultinception angle.
Fig.12depictstherelayresponsetoanexternal‘a–b’faulton lineL1at200mfrombusbar‘Y’,withphaseinceptionangleϕ=0◦. Itisclearthattheenergyratioislowerthanunity;therefore,the relayindicatesanexternalfaultandrestraints.
4 4.5 5 5.5 6 -0.1
0 0.05
d1
4 4.5 5 5.5 6
-2 0 2
d4
4 4.5 5 5.5 6
0 60
Energy Signals
4 4.5 5 5.5 6
0 1
time [ms]
Ratio
Fig.6. ‘a–g’faultonlineL3at70kmfrombusbar‘Z’,Rf=0.5,ϕ=90◦.
4 4.5 5 5.5 6
-0.2 0 0.2
d1
4 4.5 5 5.5 6
-10 0 10
d4
4 4.5 5 5.5 6
0 1000
Energy Signals
4 4.5 5 5.5 6
0 1
time [ms]
Ratio
Fig.7. ‘a–g’faultonlineL3at200mfrombusbar‘Z’,Rf=0.5,ϕ=90◦.
4 4.5 5 5.5 6
-1 0 1
d1
4 4.5 5 5.5 6
-5 0 5
d4
4 4.5 5 5.5 6
0 300
Energy Signals
4 4.5 5 5.5 6
0 1
time [ms]
Ratio
Fig.8.‘a–g’faultonbusbar‘Z’,Rf=0.5,ϕ=90◦.
4 4.5 5 5.5 6
-4 0 4
d1
4 4.5 5 5.5 6
-8 0 8
d4
4 4.5 5 5.5 6
0 0 2000
Energy Signals
4 4.5 5 5.5 6
0 1 5
time [ms]
Ratio
Fig.9.‘a–g’faultonlineL2at200mfrombusbar‘Z’,Rf=0.5,ϕ=90◦.
4 4.5 5 5.5 6 -4
0 4
d1
4 4.5 5 5.5 6
-5 0 5
d4
4 4.5 5 5.5 6
0 2500
Energy Signals
4 4.5 5 5.5 6
0 10
time [ms]
Ratio
Fig.10.‘b–g’faultatmidpointoflineL2,Rf=300,ϕ=90◦.
Fig.13depictstherelayresponsetoanexternal‘a–b–c–g’fault atamidpointoflineL1.Itisclearthattheenergyratioislowerthan unity;therefore,therelayindicatesanexternalfaultandrestraints.
Hence,onecanconcludethattherelayresponseisunaffectedby thefaulttype.
6 6.5 7 7.5 8
-0.2 0 0.2
d1
6 6.5 7 7.5 8
-0.4 0 0.4
d4
6 6.5 7 7.5 8
0 7
Energy Signals
6 6.5 7 7.5 8
0 5 10
time [ms]
Ratio
Fig.11.‘b–g’faultatmidpointoflineL2Rf=0.5,ϕ=0◦.
4.5 5 5.5 6 6.5
-0.5 0 0.5
d1
4.5 5 5.5 6 6.5
-20 0 20
d4
4.5 5 5.5 6 6.5
0 12000
Energy Signals
4.5 5 5.5 6 6.5
0 1
time [ms]
Ratio
Fig.12. ‘a–b’faultonlineL1at200mfrombusbar‘Y’,Rf=0.5,ϕ=0◦.
Theeffectofnon-faulttransientsontheprotectionschemeis tested for several cases, for example,Fig. 14, depicts the relay responsetoaheavyloadswitchingatbusbar‘Y’.Itisclearthatthe energyratioislowerthanunity;hence,therelaycandiscriminate betweenfaultsandnon-faulteventssuccessfully.
4 4.5 5 5.5 6
-0.2 0 0.3
d1
4 4.5 5 5.5 6
-5 0 5
d4
4 4.5 5 5.5 6
0 700
Energy Signals
4 4.5 5 5.5 6
0 1
time [ms]
Ratio
Fig.13.‘a–b–c–g’faultatmidpointoflineL1,Rf=0.5,ϕ=90◦.
9 10 11 12 -0.2
0 0.1
d1
9 10 11 12
-3 0 2
d4
9 10 11 12
0 100
Energy Signals
9 10 11 12
0 1
time [ms]
Ratio
Fig.14.Heavyloadswitchingatbusbar‘Y’.
6. Conclusion
This paper presented a high-speed noncommunication pro- tectionschemebased onWT, dedicatedfor entiretransmission linesprotection.Theschemehasthecommunicationprotection discriminative properties without the need for communication channelslinkingtheprotectionateachendofaline.Itthuselim- inatesanylossofreliability,whichmightotherwisearisebecause ofcommunicationchannelsfailure.The protectionschemeutil- izesa high-speedWTtoextracttwo signals,each withdistinct bandoffrequency,fromthefaultinducedHFcurrentsignalina modaldomain.Thespectralenergiesoftheextractedsignalsare
thenusedasthediscriminatingsignalsoftherelay(operativeand restraint).Basedontheratiobetweenthesediscriminatingsignals therelaycandistinguishbetweentheinternalandexternalfaults.
Theintroducedschemehastheabilitytodiscriminatethefaulted lineirrespectiveof thefaulttype, fault position,fault inception angle,andfaultresistance.Moreover,itdoesnotaffectedbyany changeinasystemsourceparametersandsystemsourceconfigu- ration.
References
[1] W.Elmore,ProtectiveRelayingTheoryandApplications,seconded.,Marcel Dekker,Inc.,NewYork,2005.
[2] M. Chamia, S.Liberman, Ultrahigh speedrelay for EHV/UHV transmis- sion lines,IEEETransactionsonPowerApparatusandSystems97(1978) 2104–2112.
[3]A.T.Johns,Newultrahighspeeddirectionalcomparisontechniqueforthepro- tectionofEHVtransmissionlines,IEEProceedingonGenerationTransmission andDistribution127(C)(1980)228–239.
[4]P.A.Crossley,P.G.Mclaren,Distanceprotectionbasedontravelingwaves,IEEE TransactionsonPowerApparatusandSystems102(9)(1983)2971–2983.
[5]L.Jie,S.Elangovan,B.X.Devotta,Adaptivetravelingwaveprotectionalgorithm usingtwocorrelationfunctions,IEEETransactionsonPowerDelivery4(1) (1999)126–131.
[6]A.T.Johns,R.K.Aggarwal,Z.Q.Bo,NonUnitprotectiontechniqueforEHVtrans- missionsystemsbasedonfault-generatednoisepart1,signalmeasurement, IEEProceedingonGenerationTransmissionandDistribution141(2)(1994) 133–140.
[7]A.T.Johns,R.K.Aggarwal,Z.Q.Bo,NonUnitprotectiontechniqueforEHVtrans- missionsystemsbasedonfault-generatednoise,part2,signalprocessing, IEEProceedingonGenerationTransmissionandDistribution141(2)(1994) 141–147.
[8]Z.Q.Bo,Anewnoncommunicationprotectiontechniquefortransmissionlines, IEEETransactionsonPowerDelivery13(4)(1998)1073–1078.
[9] X.N.Lin,Z.Q.Bo,B.R.Caunce,Boundaryprotectionusingcomplexwavelettrans- form,in:InternationalAPSCOMConference,HungKong,2003,pp.744–749.
[10]O.Chaari,M.Meunier,Wavelets:anewtoolforresonantgroundedpowerdis- tributionsystemsrelaying,IEEETransactionsonPowerDelivery11(3)(1996) 1301–1308.
[11] A.I.Megahed,A.E.Bayoumy,Usagewavelettransformintheprotectionof series-compensatedtransmissionlines,IEEETransactionsonPowerDelivery 21(3)(2006)1213–1221.
[12] J.D.Duan,J.Kuang,L.An,Researchofboundaryprotectionunitbasedonphase informationoftheimprovedrecursivewavelettransformforEHVtransmission lines,in:10thIETInternationalConferenceonDPSP,2010.
[13]D.C.Robertson,Waveletsandelectromagneticpowersystemtransients,IEEE TransactionsonPowerDelivery11(2)(1996)1050–1058.
[14] O.Rioul,M.Vetterli,Waveletandsignalprocessing,IEEESignalProcessing Magazine8(4)(1991)14–38.
[15]S.Gilbert,N.Truong,WaveletsandFilterBanks,Wellesley-CambridgePress, USA,1996.
[16]EMTDC2008,ManitobaHVDCResearchCenter,Canada.