• Tidak ada hasil yang ditemukan

on wavelet transform A high speed noncommunication protection scheme for power transmission linesbased Electric Power Systems Research

N/A
N/A
Protected

Academic year: 2024

Membagikan "on wavelet transform A high speed noncommunication protection scheme for power transmission linesbased Electric Power Systems Research"

Copied!
7
0
0

Teks penuh

(1)

ContentslistsavailableatSciVerseScienceDirect

Electric Power Systems Research

j o ur na l ho me p ag e : w w w . e l s e v i e r . c o m / l o c a t e / e p s r

A high speed noncommunication protection scheme for power transmission lines based on wavelet transform

Ammar A. Hajjar

ElectricalPowerDepartment,FacultyofMechanicalandElectricalEngineering,TishreenUniversity,Latakia,Syria

a r t i c l e i n f o

Articlehistory:

Received30January2012

Receivedinrevisedform5October2012 Accepted30October2012

Available online 23 December 2012

Keywords:

Wavelettransform High-speedprotection Noncommunicationscheme Transmissionlines Transientcurrents

a b s t r a c t

Thispaperpresentsahigh-speedprotectionschemeforpowertransmissionlinesbasedonwavelet transform(WT).Itisanoncommunicationprotectionschemeasitdependscompletelyonlocallymea- suredcurrents.ItutilizesWT,whichactsasamulti-levelbandpassfilter,toextracttwodistinctbands offrequencyfromthefaultinducedhighfrequency(HF)transientcurrents;thefirstbandishighwhile thesecondbandisrelativelylower.Thespectralenergiesoftheextractedsignalsarethencalculatedto formtwodiscriminatingsignalsoftherelay(operativeandrestraint).Basedontheratiobetweenthese discriminatingsignalstherelaycandistinguishwhetherafaultisinternalorexternaltotheprotected line.

Theperformanceoftheintroducedprotectionschemewasevaluatedbysimulatingseveralfaultson 400kV–50Hztransmissionsystemusinganelectromagnetictransientprogram(EMTDC).Thesimulation resultsshoweddistinctperformanceoftheschemeirrespectiveofthefaulttype,faultinceptionangle, faultpositionandfaultresistance.Moreover,itisnotaffectedbyasystemconfigurationandsystem sourceparameters.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

EHVtransmissionlines protectionschemes canbeclassified intotwomaincategories:thecommunicationandnoncommunica- tionprotectionschemes.However,eachoftheaforesaidprotection schemeshasitsownproblems.Inthisrespect,theproblemsofthe noncommunicationprotectionschemes,suchasdistanceprotec- tion,are:itcannotprotecttheentirelineanditssettingisnoteasy.

Inthiscontext,thecommunicationprotectionschemes,suchasdif- ferentialprotection,weresolvedtheaforesaidproblems,butthey needanexpensiveandcomplicatedcommunicationsystem.Fur- thermore,thereliabilityandcostofthecommunicationprotection schemesarefunctionofthereliabilityandcostoftheusedcom- municationsystems[1].Hence,ahigh-speed,lowcostandreliable noncommunicationprotectionschemefortheentiretransmission lineprotectionisrequired.

Inthisrespect,thecommunicationprotectionschemes[2,3]and noncommunicationprotectionschemes[4,5]based ontransient componentswereoffereda high-speedprotectionof theentire line.However,theysufferedfromseverallimitations,suchasnot beingabletodetectfaultswithzerophaseinceptionangles,high resistancefaultsandareaffectedbyanychangeinasystemconfig- urationandsystemsourceparameters.

E-mailaddresses:[email protected],[email protected]

Togetridoftheaforesaidlimitations,theauthorsof[6,7]pre- sentedanoncommunicationprotectionschemebasedoncapturing thefaultgeneratedHFtransientvoltageswiththehelpoflinetraps andstacktuners.Theydesignedspecialbandpassfilters,with17 floatingpointcoefficients,toextracttwodistinctsignalsfromthe capturedsignalsinordertoformtheoperativeandrestraintsignals andhencetodistinguishwhetherthefaultisinternalorexternalto theprotectedline.However,installinglinetrapsandstacktuners ateachendofthelineincreasesthecostandlimitstheapplica- tionofthescheme.Tosolvetheaforesaidproblemtheauthorof [8]presentedanalternativeformofnoncommunicationprotection schemebasedonthefaultgeneratedHFtransientcurrentsthatdoes notrequirelinetrapsandstacktuners.However,thetechniquein [8]alonehasdifficultyindistinguishingbetweenafaultontheline closetoremotebusbarwithintheprotectedzoneandonthebus- barorclosetothebusbaroutsidetheprotectedzone.Inaddition, theuseoftwoneedlessmodalsignalsin[8]tocoveralltypesof faultsatlowspeedspeciallydesignedmultichannelsfilter,with8 floatingpointcoefficients,maylimititsapplication.Theauthorsof [9]usedtheso-called‘Chaari’recursivecomplexWT[10]toextract theaforesaidtwodistinctbandsoffrequency.However,therecur- siveWTrequireshistorical andfuturedataandrequiresa large numberofcomputations;e.g.,itneeds36realmultiplicationsand 35realadditionsforeach sample[10].Theauthorsof[11]used the‘db4’wavelet,whichhasabandpassfilterof8floating-point coefficients,toextract theabovementionedbands offrequency.

Theauthorsof[12]augmentedtheschemeof[8]withlinetraps 0378-7796/$seefrontmatter© 2012 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.epsr.2012.10.018

(2)

icaldata.Moreover,theyusedphaseinformationtodiscriminate thefaultedline.However,inadditiontoalargenumberofcompu- tationsrequiredbythescheme,installinglinetrapsincreasesthe schemecostandlimitsitsapplication.

Itisobviousfromtheabovesurveythatthefilteringalgorithm isthecoreofthenon-communicationprotectionscheme.Hence, suitablechoiceofthefilteringalgorithm,intermsofspeedandtime frequencylocalization,playsavitalrole.Therefore,thispaperusesa high-speedwavelet“PiecewiseLinearSplineWavelet”,whichhas abandpassfilterwith3coefficients,fordevelopingahigh-speed noncommunicationprotectionschemeforEHVtransmissionlines.

Inthisrespect,theWTwasusedtocapturetwobandsoffrequencies fromthefaultinducedHFtransientcurrents.Thespectralenergies ofthesebandswereusedforfaultedlinediscrimination.Computer simulationoftheschemeshowedthattheschemehasahigh-speed responseanddistinctperformanceirrespectiveofthefaulttype, faultinceptionangle,faultpositionandfaultresistance.

2. Theoryofwavelettransform

Waveletisawaveformofeffectivelylimiteddurationthathas anaveragevalueofzero.WTisrelativelyanewsignalprocessing toolfortransientsignalsanalysis.Itbreaksupasignalintoshifted andscaled(compressedordilated)versionsofthemotherwavelet (basisfunction).WThassomeuniquefeaturesthatmakeitmore suitablefortransientsignalsanalysisinapowersystem[9–13], suchas:

䊉It hasthepropertyof time-frequencylocalization,even, of a smalldisturbanceinasignal.

䊉WT has a strong capability of extracting the signal compo- nentsunderdifferentfrequencybandswhileretainingthetime domaininformation.

ThecontinuousWT(CWT)ofatime dependentsignalf(t), is definedasthesumoveralltimesofasignalf(t)multipliedbya scaledandshiftedversionsofamotherwavelet (t).Themother wavelet (t)canbedefinedasfollows:

b,a(t)= 1

√a

tb

a

(1) where“a”and“b”representthetimescalingandshifting,respec- tively.Thecoefficients Cf (a,b),or theCWT, aredefinedbythe followinginnerproduct:

Cf(a,b)=

+∞

−∞

f(t)· b,a(t)·dt (2) where“*”referstoacomplexconjugate.

WTofasampledsignalcanbeobtainedusingthediscreteWT (DWT)relation:

DWT(m,n)= 1

am0

k

f(k)

n−kam0 am0

(3)

where theparameters a and bin (1) are replaced byam0,kam0, respectively,n,k,a0areintegers;a0issomeselectedspacingfactor (usuallychosenequalto“2”fordyadicgrid),andmisthescaling index0,1,2,3,....

Generally,WTconsistsofsuccessivepairsoflowandhighpass filters[14,15].Foreachpairthehigh-scale,lowfrequencycompo- nentsofthesignalf(t)arecalledapproximations(CA),whilethe low-scale,highfrequencycomponentsofthesamesignalf(t)are calleddetails(CD).Aftereachfilteringstage,everyseconddata pointisthrownawaytoavoidredundantdata.Fig.1depictsthe twostagesfilteringprocessofasignalf(t).

f(t)

High pass filter

CA1

High pass filter CD1

Low pass filter

Low pass filter

CD2

CA2

Fig.1.Twostagesfilteringprocessofasignalf(t).

3. Principleofthenoncommunicationprotection

IfafaultoccursonatransmissionlineawidebandofHFtran- sientcurrentsignalswillbeinducedatthefaultpoint,thenthey willtraveltowardtheline’sbusbars,whichconstituteadisconti- nuitypoints.Accordingly,partofthesignalswillcontinuealongthe adjacentline(s)whiletherestwillreflectbackandforthbetween afaultpointandtheline’sbusbarsuntilapostfaultsteadystateis reached.

Theprincipleofanoncommunicationprotectionschemecanbe explainedusinga400kVtransmissionsystem(showninFig.2);

thelengthsoflinesaregiveninfigure.Theprotectionrelay‘Ryzis assumedtobeinstalledonline‘L2’nearbusbar‘Y’,andisresponsi- blefortheprotectionoftheentireline‘L2’.CSrepresentsthestray capacitanceof thebusbar(typically0.1␮F [6–10])thathaslow impedanceathighfrequencyandhighimpedanceatlowfrequency.

In thiscontext, abusbaris normallyconnectedtomany power equipmentssuchaspowertransformersandgeneratingunits,the characteristicsoftheseequipmentswilldeterminethebusbarto groundimpedancethatisnormallyconductiveinnature.However, atsignificanthighfrequencies,thecapacitanceandcapacitivecou- plingbecomethedominantfactorinthebusbarimpedance[6,8].

Therefore,asignificantamountofthetransientcurrent,particu- larlythehigherfrequencycomponents,willbeshuntedtoground throughthebusbarcapacitance.Thisfeatureisthekeytodevelopa noncommunicationprotectionschemeinwhichthebusbarsatboth endsofaprotectedlinecanbeusedasboundariestotheprotected zone[8].Whenanexternalfaultoccursonatransmissionsystem showninFig.2,e.g.,atpointF2online‘L3’,thetransientcurrent signalI2,whichcontainswidebandofHFcomponents,willtravel towardbusbar‘Z’.Whenthissignalreachbusbar‘Z’partofit,I1, willcontinuetotravelintoline‘L2’,andtherest,Io,willbeshunted intogroundbyabusbarcapacitance.Asaresult,therelay‘Ryz’will measureanattenuatedcurrent,I1,ratherthantheinitialcurrentI2. However,theattenuationwillbelargerathigherfrequencythan thatatlowerfrequencysincethebusbarimpedanceintoground decreaseswithincreasingfrequency.Incontrast,thereisnosuch attenuationincaseofaninternalfault,e.g.,afaultatpointF1on lineL2.Thisimportantfeaturecanbeusedtodiscriminatebetween internalandexternalfaults.

The introduced high-speed noncommunication protection schemedependsonusinghigh-speedWT,whichactsasamulti- levelbandpassfilter,tocapturetwodistinctbandsoffrequency, oneoflowfrequencylevelandtheotherofhigherfrequencylevel.

Theratioofthespectralenergiesofthehigherbandtothelower bandwillbeusedtodiscriminatebetweenexternalandinternal faults.

4. Relaydesigndescription

Ablockdiagramoftheintroducedprotectionschemeisshown inFig.3.

(3)

S2

S1

Ryz X

L1=100 km Y

Z W

S4 I1

F3

Cs

L2=120 km

Cs

S3

L3=140 km

Cs Cs

F1 F2

I0I2 I1

Fig.2. Aonelinediagramofthestudiedtransmissionsystem.

4.1. Modalcurrentsignal

To eliminate any noise induced in the line due to mutual couplingbetweenadjacentparallellinesand/ormultiplecircuits sharingthesamerightofway,theoutputsoftheCT’s(Ia,IbandIc) arecombinedinordertoformamodalcurrentsignalasfollows:

Im=Ia−2Ib+2Ic (4)

Thismodalsignalissufficienttocoveralltypesoffaultsthat encounteredinpractice;andensuresimmunitytoalldisturbances otherthanthoseassociatedwiththeprotectedline.Itisworthmen- tioningthattheintroducedschemecanbeapplieddirectlytophase

Fig.3. Aflowchartofthedevelopedprotectionscheme.

currents(Ia,Ib andIc), butinsodoingthecomputationburden willbeincreased(threephasesignalswillbeprocessedinsteadof onemodalsignal).Moreover,therelaystabilitywillbejeopardized underexternalfaultsduetoamutualcoupling.

4.2. Antialiasingfilter

Toavoidanyerrorinasubsequentdigitalsignalprocessingaris- ingduetosignalaliasing(arisingfalsefrequenciesinasignal)the modalsignalispassedthroughananalog2ndorderButterworth filterwithacutofffrequencyofaroundhalfthedigitalsampling frequency.Insodoing,anyunwantedhighfrequencies(noise)can beremovedbeforesampling.

4.3. Ahigh-speedwaveletfornoncommunicationprotection Digitaldecompositionfilterconstitutethemainpartofanon- communicationprotectionrelay.Therefore,suitablechoiceofthis filter,intermsofspeedandtime-frequencylocalization,playsan importantroleinrealizingahigh-speedrelay.Inthispaper,WTthat representsamulti-levelbandpassfilter,ischosen.Asuitablechoice ofamotherwaveletplaysalsoavitalroleintermsofspeedand time-frequencylocalization.Inthisrespect,theso-called“Piece- wiseLinearSplineWavelet”ischosensinceitismoresuitablefor transientsignalsanalysisinterms ofspeed andtime-frequency localization[15].Inthiscontext,thehigh-passfilterofthiswavelet has3coefficients,soitissimplerandspeederthanotherfilters usedin[6–12].Fig.4showstheaforesaidmotherwaveletwithits transfermodulus.

Thechosenwaveletistunedtoextracttwosignalsofdifferent bandsoffrequencies(IH,IL)fromthefault inducedHFtransient currentsignalinamodaldomain.Thefirstsignal,IH,hasfrequen- ciesbandof[50–100kHz],withcenterfrequencyof75kHz,which canbeobtainedbyapplyingtheDWTwithdetail1(d1),whilethe secondsignal,IL,hasfrequenciesbandof[6.25–12.5kHz],withcen- terfrequencyof9.37kHz,whichcanbeobtainedbyapplyingthe

Fig.4.Apiecewiselinearsplinewaveletwithitstransfermodulus.

(4)

transientsignalsarealsoinduced,buttheircontentsoffrequencies arelessthanthoseinducedbyafaultaswillbeshownlaterinthe simulationresults.Athresholdvalue‘ε’ischosentobecompared withd1coefficientstodetecttheabnormalcondition,ifawavelet coefficientofd1ismorethanthisthresholdthespectralenergy routinewillbetriggeredtocomputethespectralenergies(EH,EL) ofthecapturedsignals(IH,IL),respectively,overa1.5mswindow length(300samples),toproducetheoperative,Eop,andrestraint, Ere,signalsoftherelaythataregivenasfollows:

EH(n)=Eop(n)=S

n

k=n−m

IH2(k) (5)

EL(n)=Ere(n)=

n

k=n−m

IL2(k) (6)

wherenrepresentstherecentsample,mrepresentsthenumber ofsamplesinachosenwindowandSrepresentsascalingfactor, whichischosentobe100inthisstudy.

Thediscriminatingsignals,EopandEre,arecomputedsample bysampleandconsequentlytheenergyratioiscomputedateach sampleasfollows:

Ratio(n)= Eop(n)

Ere(n) (7)

Iftheenergyratiois≥1for1ms(200sample),thentherelay discriminatesaninternalfaultandissuesatripsignal,elsetherelay discriminatesanexternalfaultandrestraint.

5. Protectionschemeperformanceevaluation

In order toevaluatetheperformance of thedeveloped pro- tectionschemeit isprogrammedinconjunctionwithWTusing MATLABenvironment.TheEMTDCprogram[16]isusedtosimu- latedifferenttypesoffaultsatdifferentpositions,faultresistances andfaultinceptionanglesonastudied400kV–50Hzpowertrans- missionsystem,showninFig.2.Thetransmissionlineisideally transposedandhasaflatconfigurationwith10mspacingbetween adjacentconductorsandagroundresistivityof100m.Theused transmission linemodel is frequency dependent, thearc resis- tanceisincludedinthefaultmodel,andthebusbarcapacitance is included in the network model. The impedances values of theequivalentsources S1, S2,S3,and S4 inohm are: Zs1=25, Zs2=25,Zs3=20,Zs4=15,respectively.Twoloadsof(300+j190) MVA/phaseareplacedattheeachend ofthelineL2 toinvesti- gatetheeffectofheavyloadswitchingontheperformanceofthe introducedscheme.Allfaultcurrentsareconsideredtobeseenby therelayRyz.Asamplingfrequencyof200kHzisusedinthisstudy andaDWTwithd1andd4isappliedtoextracttherequiredbands offrequencyfromfault inducedHFtransientcurrentsignalina modaldomain.

Figs.5–13showtherelayresponsecurvesforthestudiedcases.

Therearefourgraphsforeachstudiedcase:thefirsttwographsrep- resenttheDWToutputsatd1andd4,respectively.Thethirdgraph showsthediscriminating energysignals;where thesolidcurve representstheoperativesignalandthedottedcurverepresents therestraintsignal.Thesolidcurveinthefourthgraphrepresents theenergyratioandthestraitdashedlinerepresentsathreshold value(unity)fordiscriminatingbetweentheinternalandexternal faults.Rfrepresentsthefaultresistanceandϕrepresentsthefault inceptionangle.

Fig.5depictsaninternalsinglephasetogroundfault‘a–g’at 50kmfrombus‘Y’atlineL2.Theenergyratioindicatesclearlythat thereisaninternalfault.Asaresult,therelayissuesatripsignal.

4 4.5 5 5.5 6

-2 0 2

d1

4 4.5 5 5.5 6

-10 0 10

d4

4 4.5 5 5.5 6

0 1200

Energy Signals

4 4.5 5 5.5 6

0 1 2

time [ms]

Ratio

Fig.5.‘a–g’faultonlineL2at50kmfrombusbar‘Y’,Rf=0.5,ϕ=90.

Fig.6depictsanexternalsinglephasetogroundfault‘a–g’at lineL3at70kmfrombusbar‘Z’.Itisobviousthattheenergyratio islowerthanunity;therefore,therelayindicatesanexternalfault andrestraints.

Fig.7depictsanexternalsinglephasetogroundfault‘a–g’atline L3at200mfrombusbar‘Z’.Again,theenergyratioislowerthan unity,therefore,therelayindicatesanexternalfaultandrestraints.

Fig.8depictstherelayresponsetoasinglephasetogroundfault

‘a–g’atbusbar‘Z’.Sincebusbar‘Z’isoutoftheprotectionzone, thentheenergyratioislowerthanunityandtherelayindicatesan externalfaultandrestraints.

Fig.9,depictstherelayresponsetoaninternalsinglephaseto groundfault ‘a–g’atlineL2 at200mfrombusbar‘Z’.Since the energyratioismorethatunitytherelayindicatesaninternalfault andissuesatripsignal.

Theresultsofthelast threecasesprovethat theintroduced schemecandiscriminatebetweenfaultsonand/orclosetoremote busbar(internalorexternaltotheprotectedzone),incontrastto theprotectionschemeof[8].

Fig.10depictstherelayresponsetoaninternalhighresistance fault‘b–g’(Rf=300)atamidpointoflineL2.Itisevidentthatthe energyratioismorethanunity;therefore,therelayindicatesan internalfaultandissuesatripsignal.Hence,theintroducedrelay isunaffectedbytheexistenceofhighresistanceinthefaultpath.

Fig.11depictstherelayresponsetoaninternal‘b–g’faultwith phaseinceptionangleϕ=0atamidpointoflineL2.Asexpected, theWToutputsarereducedinmagnitudebuttheiruniquechar- acteristicsstillexist,hencetheenergyratioismorethanunity.As aresult,therelayindicatesaninternalfaultandissuesatripsig- nal.Hence,theintroducedrelayisunaffectedbythefaultinception angle.

Fig.12depictstherelayresponsetoanexternal‘a–b’faulton lineL1at200mfrombusbar‘Y’,withphaseinceptionangleϕ=0. Itisclearthattheenergyratioislowerthanunity;therefore,the relayindicatesanexternalfaultandrestraints.

(5)

4 4.5 5 5.5 6 -0.1

0 0.05

d1

4 4.5 5 5.5 6

-2 0 2

d4

4 4.5 5 5.5 6

0 60

Energy Signals

4 4.5 5 5.5 6

0 1

time [ms]

Ratio

Fig.6. ‘a–g’faultonlineL3at70kmfrombusbar‘Z’,Rf=0.5,ϕ=90.

4 4.5 5 5.5 6

-0.2 0 0.2

d1

4 4.5 5 5.5 6

-10 0 10

d4

4 4.5 5 5.5 6

0 1000

Energy Signals

4 4.5 5 5.5 6

0 1

time [ms]

Ratio

Fig.7. ‘a–g’faultonlineL3at200mfrombusbar‘Z’,Rf=0.5,ϕ=90.

4 4.5 5 5.5 6

-1 0 1

d1

4 4.5 5 5.5 6

-5 0 5

d4

4 4.5 5 5.5 6

0 300

Energy Signals

4 4.5 5 5.5 6

0 1

time [ms]

Ratio

Fig.8.‘a–g’faultonbusbar‘Z’,Rf=0.5,ϕ=90.

4 4.5 5 5.5 6

-4 0 4

d1

4 4.5 5 5.5 6

-8 0 8

d4

4 4.5 5 5.5 6

0 0 2000

Energy Signals

4 4.5 5 5.5 6

0 1 5

time [ms]

Ratio

Fig.9.‘a–g’faultonlineL2at200mfrombusbar‘Z’,Rf=0.5,ϕ=90.

(6)

4 4.5 5 5.5 6 -4

0 4

d1

4 4.5 5 5.5 6

-5 0 5

d4

4 4.5 5 5.5 6

0 2500

Energy Signals

4 4.5 5 5.5 6

0 10

time [ms]

Ratio

Fig.10.‘b–g’faultatmidpointoflineL2,Rf=300,ϕ=90.

Fig.13depictstherelayresponsetoanexternal‘a–b–c–g’fault atamidpointoflineL1.Itisclearthattheenergyratioislowerthan unity;therefore,therelayindicatesanexternalfaultandrestraints.

Hence,onecanconcludethattherelayresponseisunaffectedby thefaulttype.

6 6.5 7 7.5 8

-0.2 0 0.2

d1

6 6.5 7 7.5 8

-0.4 0 0.4

d4

6 6.5 7 7.5 8

0 7

Energy Signals

6 6.5 7 7.5 8

0 5 10

time [ms]

Ratio

Fig.11.‘b–g’faultatmidpointoflineL2Rf=0.5,ϕ=0.

4.5 5 5.5 6 6.5

-0.5 0 0.5

d1

4.5 5 5.5 6 6.5

-20 0 20

d4

4.5 5 5.5 6 6.5

0 12000

Energy Signals

4.5 5 5.5 6 6.5

0 1

time [ms]

Ratio

Fig.12. ‘a–b’faultonlineL1at200mfrombusbar‘Y’,Rf=0.5,ϕ=0.

Theeffectofnon-faulttransientsontheprotectionschemeis tested for several cases, for example,Fig. 14, depicts the relay responsetoaheavyloadswitchingatbusbar‘Y’.Itisclearthatthe energyratioislowerthanunity;hence,therelaycandiscriminate betweenfaultsandnon-faulteventssuccessfully.

4 4.5 5 5.5 6

-0.2 0 0.3

d1

4 4.5 5 5.5 6

-5 0 5

d4

4 4.5 5 5.5 6

0 700

Energy Signals

4 4.5 5 5.5 6

0 1

time [ms]

Ratio

Fig.13.‘a–b–c–g’faultatmidpointoflineL1,Rf=0.5,ϕ=90.

(7)

9 10 11 12 -0.2

0 0.1

d1

9 10 11 12

-3 0 2

d4

9 10 11 12

0 100

Energy Signals

9 10 11 12

0 1

time [ms]

Ratio

Fig.14.Heavyloadswitchingatbusbar‘Y’.

6. Conclusion

This paper presented a high-speed noncommunication pro- tectionschemebased onWT, dedicatedfor entiretransmission linesprotection.Theschemehasthecommunicationprotection discriminative properties without the need for communication channelslinkingtheprotectionateachendofaline.Itthuselim- inatesanylossofreliability,whichmightotherwisearisebecause ofcommunicationchannelsfailure.The protectionschemeutil- izesa high-speedWTtoextracttwo signals,each withdistinct bandoffrequency,fromthefaultinducedHFcurrentsignalina modaldomain.Thespectralenergiesoftheextractedsignalsare

thenusedasthediscriminatingsignalsoftherelay(operativeand restraint).Basedontheratiobetweenthesediscriminatingsignals therelaycandistinguishbetweentheinternalandexternalfaults.

Theintroducedschemehastheabilitytodiscriminatethefaulted lineirrespectiveof thefaulttype, fault position,fault inception angle,andfaultresistance.Moreover,itdoesnotaffectedbyany changeinasystemsourceparametersandsystemsourceconfigu- ration.

References

[1] W.Elmore,ProtectiveRelayingTheoryandApplications,seconded.,Marcel Dekker,Inc.,NewYork,2005.

[2] M. Chamia, S.Liberman, Ultrahigh speedrelay for EHV/UHV transmis- sion lines,IEEETransactionsonPowerApparatusandSystems97(1978) 2104–2112.

[3]A.T.Johns,Newultrahighspeeddirectionalcomparisontechniqueforthepro- tectionofEHVtransmissionlines,IEEProceedingonGenerationTransmission andDistribution127(C)(1980)228–239.

[4]P.A.Crossley,P.G.Mclaren,Distanceprotectionbasedontravelingwaves,IEEE TransactionsonPowerApparatusandSystems102(9)(1983)2971–2983.

[5]L.Jie,S.Elangovan,B.X.Devotta,Adaptivetravelingwaveprotectionalgorithm usingtwocorrelationfunctions,IEEETransactionsonPowerDelivery4(1) (1999)126–131.

[6]A.T.Johns,R.K.Aggarwal,Z.Q.Bo,NonUnitprotectiontechniqueforEHVtrans- missionsystemsbasedonfault-generatednoisepart1,signalmeasurement, IEEProceedingonGenerationTransmissionandDistribution141(2)(1994) 133–140.

[7]A.T.Johns,R.K.Aggarwal,Z.Q.Bo,NonUnitprotectiontechniqueforEHVtrans- missionsystemsbasedonfault-generatednoise,part2,signalprocessing, IEEProceedingonGenerationTransmissionandDistribution141(2)(1994) 141–147.

[8]Z.Q.Bo,Anewnoncommunicationprotectiontechniquefortransmissionlines, IEEETransactionsonPowerDelivery13(4)(1998)1073–1078.

[9] X.N.Lin,Z.Q.Bo,B.R.Caunce,Boundaryprotectionusingcomplexwavelettrans- form,in:InternationalAPSCOMConference,HungKong,2003,pp.744–749.

[10]O.Chaari,M.Meunier,Wavelets:anewtoolforresonantgroundedpowerdis- tributionsystemsrelaying,IEEETransactionsonPowerDelivery11(3)(1996) 1301–1308.

[11] A.I.Megahed,A.E.Bayoumy,Usagewavelettransformintheprotectionof series-compensatedtransmissionlines,IEEETransactionsonPowerDelivery 21(3)(2006)1213–1221.

[12] J.D.Duan,J.Kuang,L.An,Researchofboundaryprotectionunitbasedonphase informationoftheimprovedrecursivewavelettransformforEHVtransmission lines,in:10thIETInternationalConferenceonDPSP,2010.

[13]D.C.Robertson,Waveletsandelectromagneticpowersystemtransients,IEEE TransactionsonPowerDelivery11(2)(1996)1050–1058.

[14] O.Rioul,M.Vetterli,Waveletandsignalprocessing,IEEESignalProcessing Magazine8(4)(1991)14–38.

[15]S.Gilbert,N.Truong,WaveletsandFilterBanks,Wellesley-CambridgePress, USA,1996.

[16]EMTDC2008,ManitobaHVDCResearchCenter,Canada.

Referensi

Dokumen terkait