• Tidak ada hasil yang ditemukan

4. Molecular Dynamics of Phase-Interface

N/A
N/A
Protected

Academic year: 2025

Membagikan "4. Molecular Dynamics of Phase-Interface"

Copied!
5
0
0

Teks penuh

(1)

4.1 Liquid Vapor Interface Surface Tension Young-Laplace Equation Condensation Coefficient 4.2 Liquid-Solid-Vapor Contact

Liquid Droplet on a Solid Surface Vapor Bubble on a Solid Surface Contact Angle and Young’s Equation Thermal Boundary Resistance

between Liquid and Solid

4. Molecular Dynamics of Phase-Interface 4. Molecular Dynamics of Phase-Interface

Liquid-Vapor Interface Liquid-Vapor Interface

Liquid Droplet

Flat Interface

Surface Tension Surface Tension

[ ]

³

=

G

L

) ( )

(

T

N LG

z

z

P z P z dz

γ

Densityρ [kg/m3]

Position z[nm]

1000 0–4 –2 0 2 4

Surface Tension of Droplet Surface Tension of Droplet

2 ) ( L G

LG

R P P− γ =

¦

2

=

k

fk

r m T r k r

P ρ π

4 1 ) ) (

( B

N

¦

=

k ij

ij ij

ij r

r r r m T r k r

P d

) ( 1d 4

1 ) ) (

( B 3

N

φ π

ρ r r

G 3 e 3 L 3

e 3

4 3

4π ρ π ρ

¿¾

½

¯®

­ − +

= R L R

mN

( )

e2

e LG LG

1 2

+

¸¸¹·

¨¨©§ −

= OR

R γ δ γ

Young-Laplace Equation

Equilmolar Dividing Radius

Tolman Length δ

Condensation Coefficient Condensation Coefficient

Matsumoto et al.

Condensation coefficient α

Flux Molecule Incident

Flux Molecule on Condensati

= α

Molecular Exchange = Boiling off other molecules Tsuruta et al.

Connection to DSMC

Liquid Droplet on Solid Surface

Liquid Droplet on Solid Surface

(2)

Effect of Potential of Solid-Liquid Molecules

Effect of Potential of Solid-Liquid Molecules

E1: Weaker Interaction E4: Stronger Interaction

Effect of Temperature Effect of Temperature

1536 Molecules

100K 130K

10 20

10 20 30

height (Å)

Density Profile

50

40

30 400 radius (Å)

0

Layered Liquid Structure

0 2 4 6 8

-4 -2 0 2

0 0.05

Vibration Range K. E. = kBT [X10-21]

Density Prof.

σINT

Φ(z)

ε SURF

Distance from Surface z [Å]

Potential Energy [J] Number Density [1/Å]

Layered Liquid Structure

10 0

0.1 0.2

WFE0 WFE1 WFE2 WFE3 WFE5WFE4

σINT σAR

5

Distance from Surface [Å] Number Density [1/Å3]

Two-dimensional density distributions for droplet

0.025

0.000 h [Å]

10 20 30

r [Å]

0

10 20 30 40 0

ε*SURF E1=1.29 θ=135.4°

10 20 30

r [Å]

0

10 20 30 40 0

ε*SURF E2=1.86 θ=105.8°

10 20 30

r [Å]

0

10 20 30 40 0

ε*SURF E3=2.42 θ=87.0°

10 20 30

r [Å]

0

10 20 30 40 0

ε*SURF E4=2.99 θ=55.2°

wettable

(3)

Density and Potential Profiles

Nliq= 130 T= 92 K θ= 71o

Nliq= 360 T= 99 K θ= 85o

Nliq= 330 T= 85 K θ= 90o Nliq= 340

T= 113 K θ= 86o

Nliq= 1600 T= 92 K θ= 90o

Departure of Droplet for ε*

SURF

< 1.0

t = 0 ps t = 30 ps t = 60 ps

Smaller System ε *

SURF

=1.86

N = 200, NLiquid= 114 N = 144, NLiquid= 66

Density and Potential Profiles

1 2 3

0 1 2 3

θ

zc

10 nm-3

r[nm]

z[nm]

Vapor Bubble on Solid Surface

(4)

Snapshots of bubble formation for E3

Sliced view (central 10Å) All molecules

Two-dimensional density distributions

h [Å]

r [Å]

0 10 20 30 40 50

10 20 30 40 0

ε*SURF E2=1.86

r [Å]

0 10 20 30 40 50

10 20 30 40 0

ε*SURF E3=2.42

r [Å]

0 10 20 30 40 50

10 20 30 40 0

ε*SURFE4=2.99

r [Å]

0 10 20 30 40 50

10 20 30 40 0

ε*SURFE5=3.56

0.025

0.000

wettable

Contact angle correlated with ε*SURF

Contact angle correlated with ε*SURF

1 2 3 4

–1 0 1

ε*SURFSURFAR Contact angle Hc/R1/2(=cosθ)

Bubble(100K)

Solid: Density Open: Potential Droplet

Bubble(110K)

2 / 1

cos R

HC

= θ

2 /

R1

HC

HC<R1/2 HC>R1/2

θ R1/2 HC Solid surface

Liquid

Vapor bubble

HC R1/2

Solid surface Liquid

Vapor bubble

Two-dimensional density distribution for P5

Definition of contact angle cosθ for E5 and P5

Young’s Equation (Macroscopic) Young’s Equation (Macroscopic)

σ

LG

σ

SG

σ

SL

SG SL

LG

θ + σ = σ

σ cos

LG SL SG

σ σ

= σ θ cos

θ

Solid Liquid

Gas

Thermal Boundary Resistance over Liquid-Solid Interface: 10-7∼10-6m2K/W

Therm. Sci. Eng., 1999, vol. 7, no. 1, pp. 63-68.

Thermal Boundary Resistance over Liquid-Solid Interface: 10-7∼10-6m2K/W

Therm. Sci. Eng., 1999, vol. 7, no. 1, pp. 63-68.

213.570 A

5 5.400 A 52.776 A }

} L iquid

Liq uid Vapor

3 solid layers 3 solid layers

Heating Cooling

0 0.01 0.02 0.03

100 110 120

0 100 200

0 4 8 12

Positon [Å]

Temperature [K]Density [1/Å3]

Temperature jump: 6.4 K

5.3 K 2000–5000 ps

2000 ps 3500 ps

5000 ps

Velocity [m/s]

<vz>

(5)

Thermal Resistance over Liquid-Solid Interface Thermal Resistance over

Liquid-Solid Interface

0 2500 5000

0 1000 2000 3000

0 20 40 100

120

Time [ps]

Number of MoleculesTemperature [K] Heat Flux [MW/m2]

qV NL

cond

NLevap NV TScond

TSevap

TL cond TL TV evap

Thermal Resistance over Liquid-Solid Interface Thermal Resistance over

Liquid-Solid Interface

0 0.01 0.02 0.03

100 110 120

0 100 200

0 4 8 12

Positon [Å]

Temperature [K]Density [1/Å3]

Temperature jump: 6.4 K

5.3 K 2000–5000 ps

2000 ps 3500 ps

5000 ps

Velocity [m/s]

<vz>

) / /( T z qW

L= ∂ ∂

λ

0.082 W/m⋅K

Handbook value 0.097 W/m⋅K

at the saturated temperature of 110 K Thermal Conductivity

Thermal Resistance over Liquid-Solid Interface Thermal Resistance over

Liquid-Solid Interface qWcond

qWevap qV

TJUMPevap

TJUMPco nd LR

LR qLevap qLcond

M Heat

M ass

S olid Liquid

Solid Liquid Vapor

z

Thermal Resistance over Liquid-Solid Interface Thermal Resistance over

Liquid-Solid Interface

1 2 3 4

0 10 20

–1 0 1

ε*SURFSURFAR

Contact anglecos

θ

LR[nm]

LR

cos θ E2

E3 E4

Referensi

Dokumen terkait

The aim of this research is to determine the effect of ABS (Alkybenzene Sulfonate) surfactant molarity on the surface tension of the lubricant 4 stroke

CHAPTER 4 RESULTS AND DISCUSSION 4.1 Determination of neonicotinoid insecticide residues in surface water and fruit juice samples using dispersive micro-solid phase extraction

xxiii KLS liquid-solid mass transfer coefficient, m/s L radial bed length, dconduit-ddist/2, m M Mass flow rate, kg/m2s Nax Number of CSTRs in axial direction Nrad Number of

Supplementary Information Ultrasonic study for the molecular interactions of the ternary liquid mixture of p-anisaldehyde 4-methoxy benzaldehyde with dimethylamine

共Color online兲Sequential images and calculated density profile of solid Al nucleation from the melt on top of TiB2and Al3Ti substrates at T= 910 K using the free surface condition.共a兲

The heat pipe installed with a metal foam wick Nomenclature Pc capillary pressure Pa γ surface tension of the liquid N/m θ the contact angle between the solid and the liquid ◦ r

The 6th ASME-JSME Thermal Engineering Joint Conference March 16-20, 2003 TED-AJ03-183 A MOLECULAR DYNAMICS SIMULATION OF WATER DROPLET IN CONTACT WITH A PLATINUM SURFACE Tatsuto