Appendix D: Proofs of Proposition A1 and Claim 1
Proof of Proposition A1. (i) From (43) in the proof of Lemma 2, d[wn(e+, sl)hn(e, sl)]
dsl =wn(e+, sl)∂hn(e, sl)
∂sl +dwn(e+, sl)
dsl hn(e, sl) =hn(e, sl)
∙
−wn(e+, sl)
1−sl +dwn(e+, sl) dsl
¸
=wn(e+, sl)hn(e, sl) 1−sl
⎧⎨
⎩−1+(1−α)e+ hl(e+, sl)
αeh+l
h
hlF(e+)+δlRe+
0 ef(e)dei +³h
l e++δl´
hl(e+, sl)e+f(e+) (1−α)eh+l
hRe
e+ef(e)de+[1−F(e)]ei
+hl(e+, sl)e+f(e+)
⎫⎬
⎭
=wn(e+, sl)hn(e, sl) 1−sl
1 hl(e+, sl)
⎛
⎝ −hl(e+, sl) n
(1−α)eh+l
hRe
e+ef(e)de+[1−F(e)]e i
+hl(e+, sl)e+f(e+) o
+(1−α)e+n αeh+l
h
hlF(e+)+δlRe+
0 ef(e)dei +³h
l e++δl´
hl(e+, sl)e+f(e+)o
⎞
⎠ (1−α)eh+l
hRe
e+ef(e)de+[1−F(e)]ei
+hl(e+, sl)e+f(e+)
=wn(e+, sl)hn(e, sl) 1−sl
1 hl(e+, sl)
Ã(1−α)eh+l
n αe+h
hlF(e+)+δlRe+
0 ef(e)dei
−hl(e+, sl)hRe
e+ef(e)de+[1−F(e)]eio +hl(e+, sl)e+f(e+) [(1−α)(hl+δle+)−hl(e+, sl)]
!
(1−α)eh+l
hRe
e+ef(e)de+[1−F(e)]ei
+hl(e+, sl)e+f(e+)
=wn(e+, sl)hn(e, sl) 1−sl
1 hl(e+, sl)
Ã
(1−α)hlαnh
hlF(e+)+δlRe+
0 ef(e)dei
−1−1αh
hlF(e+)+δlslRe+
0 ef(e)deio +hl(e+, sl)e+f(e+) [(1−α)(hl+δle+)−hl(e+, sl)]
!
(1−α)eh+l
hRe
e+ef(e)de+[1−F(e)]e i
+hl(e+, sl)e+f(e+)
³
because hl(e+, sl)hRe
e+ef(e)de+[1−F(e)]ei
=1−ααh δlslRe+
0 ef(e)de+hlF(e+)i
e+from (7)´
=wn(e+, sl)hn(e, sl) 1−sl
1 hl(e+, sl)
à αhl
n (1−α)
h
hlF(e+)+δl
Re+
0 ef(e)de i
− h
hlF(e+)+δlsl
Re+
0 ef(e)de io +hl(e+, sl)e+f(e+) [−αhl+(1−α−sl)δle+]
!
(1−α)eh+l
hRe
e+ef(e)de+ [1−F(e)]ei
+hl(e+, sl)e+f(e+) .
(D1) [Proof for d(wdsnhn)
l <0] Whensl≥1−α⇔1−α−sl≤0, d(wdsnhn)
l <0 because the expressions inside the big parenthesis of (D1) is negative.
When sl < 1−α, d(wdsnhn)
l < 0 if −αhl+(1−α−sl)δle+ ≤0 because −αhl+(1−α−sl)δle+ >
1 F(e+)
n (1−α)h
hlF(e+)+δlRe+
0 ef(e)dei
−h
hlF(e+)+δlslRe+
0 ef(e)deio
for the expressions inside the paren- thesis. −αhl+(1−α−sl)δle+ ≤0 holds iff sl ≥(1−α)−αδ hl
le+(sl), wheree+(sl) is, from (7) and (5), a solution for
α 1−α
h
hlF(e+)+δlslRe+
0 ef(e)de i
e+=hRe
e+ef(e)de+ [1−F(e)]e i
hl(e+, sl) (D2)
⇔δlsle+hRe
0ef(e)de+[1−F(e)]e−1−1αRe+
0 ef(e)dei
=n
α
1−αF(e+)e++Re+
0 ef(e)de−hRe
0ef(e)de+[1−F(e)]eio hl. (D3) sl−h
(1−α)−αδ hl
le+(sl)
i
increases with sl because 1−α hl
δl(e+)2 de+
dsl
>1−α hl δl(e+)2
δl(e+)2
hl >0.(from (37) in the proof of Lemma 1). (D4)
Further, at sl =s??l ≡ (1−α)−αδhl
le, sl >(1−α)−αδ hl
le+(sl). Hence, if (1−α)−αδ hl
le+(0) ≤ 0⇔e+(0)≤ (1−αhα)δl l,(1−α)(hl+δle+)−hl(e+, sl)≤0 holds for anysl and thus d(wdsnhn)
l <0 for any sl. e+(0) is the solution to 1−ααF(e+)e++Re+
0 ef(e)de=Re
0ef(e)de+[1−F(e)]efrom (D3), thus this is the case when many individuals have limited wealth.
Otherwise, i.e. e+(0)> (1−αhα)δl
l,there exists uniques]l ∈(0, s??l ) satisfyings]l = (1−α)−α hl
δle+(s]l)
and−αhl+(1−α−sl)δle+≤0 forsl ≥s]l.Thus, d(wdsnhn)
l <0 forsl≥s]l.(Note that this is a sufficient but not necessary condition. d(wdsnhn)
l <0 could hold for smaller sl or for anysl,if the expressions inside the big parenthesis of (D1) is negative.)
[Proof for d(wdsnhn)
l >0] As shown above, d(wdsnhn)
l >0 is possible only whensl<1−α,in which case −αhl+ (1−α−sl)δle+ > F(e1+)
n (1−α)h
hlF(e+)+δlRe+
0 ef(e)dei
−h
hlF(e+)+δlslRe+
0 ef(e)deio holds. Thus, d(wdsnhn)
l > 0 when (1−α)h
hlF(e+)+δlRe+
0 ef(e)dei
−h
hlF(e+)+δlslRe+
0 ef(e)dei
≥ 0, which holds iffsl≤1−α−α hlF(e+(sl))
δl
Re+(sl)
0 ef(e)de
,where e+(sl) is a solution to (D3).
Atsl=s??l ≡(1−α)−αδhl
le, sl>(1−α)−α hlF(e+(sl))
δlRe+(sl)
0 ef(e)de
.Further,sl−
"
(1−α)−αhδl
l
F(e+(sl))
Re+(sl)
0 ef(e)de
#
increases with sl if Re+(0)
0 ef(e)de
F(e+(0)) ≥ 1+αα e+(0).
This can be proved as follows. The derivative of the expression with respect to sl equals 1−αhl
δl
F(e+)e+−Re+ 0 ef(e)de (Re+
0 ef(e)de)2
f(e+)de+ dsl
= 1−αhl δl
F(e+)e+−Re+
0 ef(e)de hRe+
0 ef(e)dei2 f(e+) δle+n
(1−α)hRe
e+ef(e)de+[1−F(e)]ei
−αRe+
0 ef(e)deo (1−α)eh+l
hRe
e+ef(e)de+[1−F(e)]ei
+hl(e+, sl)e+f(e+)
(from (37))
=
⎛
⎜⎝
½
1 e+
hRe+
0 ef(e)dei2
−αh
F(e+)e+−Re+
0 ef(e)dei
f(e+)e+
¾
(1−α)hlhRe
e+ef(e)de+[1−F(e)]ei +hRe+
0 ef(e)de i2
hl(e+, sl)e+f(e+)+α2hl h
F(e+)e+−Re+
0 ef(e)de i
f(e+)e+hRe+
0 ef(e)de i
⎞
⎟⎠
hRe+
0 ef(e)de i2n
(1−α)eh+l
hRe
e+ef(e)de+[1−F(e)]e i
+hl(e+, sl)e+f(e+) o
=
⎛
⎜⎝
½
1 e+
hRe+
0 ef(e)dei2
−αh
F(e+)e+−Re+
0 ef(e)dei
f(e+)e+
¾ αhlh
hlF(e+)+δlslRe+
0 ef(e)dei
e+ hl(e+,sl)
+hRe+
0 ef(e)dei2
hl(e+, sl)e+f(e+)+α2hlh
F(e+)e+−Re+
0 ef(e)dei
f(e+)e+hRe+
0 ef(e)dei
⎞
⎟⎠
hRe+
0 ef(e)dei2n
(1−α)eh+l
hRe
e+ef(e)de+[1−F(e)]ei
+hl(e+, sl)e+f(e+)o (from (D2))
=
⎛
⎜⎜
⎝
½
1 e+
hRe+ 0 ef(e)de
i2
−α h
1−hl(e+, sl)δ 1
lsle+
ih
F(e+)e+−Re+
0 ef(e)de i
f(e+)e+
¾ αhl
³ δlsl
Re+
0 ef(e)de
´ e+ hl(e+,sl)
+
½
1 e+
hRe+
0 ef(e)dei2
−αh
F(e+)e+−Re+
0 ef(e)dei f(e+)e+
¾
αhl[hlF(e+)]h e+
l(e+,sl)+hRe+
0 ef(e)dei2
hl(e+, sl)e+f(e+)
⎞
⎟⎟
⎠ hRe+
0 ef(e)dei2n
(1−α)eh+l
hRe
e+ef(e)de+[1−F(e)]ei
+hl(e+, sl)e+f(e+)o
=
⎛
⎝
hRe+
0 ef(e)dei2h δlslRe+
0 ef(e)de+hlF(e+)i αhl +
n
[hl(e+, sl)−αhl]hRe+
0 ef(e)de i
+αhlF(e+)e+ on
[hl(e+, sl)+αhl]hRe+
0 ef(e)de i
−αhlF(e+)e+ o
f(e+)e+
⎞
⎠ hl(e+, sl)hRe+
0 ef(e)de i2n
(1−α)eh+l
hRe
e+ef(e)de+[1−F(e)]e i
+hl(e+, sl)e+f(e+)
o .
(D5) The expression is positive if
£hl(e+, sl)+αhl¤hRe+
0 ef(e)de i
−αhlF(e+)e+≥0
⇔n 2hRe+
0 ef(e)dei
−(1−α)hRe
0ef(e)de+[1−F(e)]eio
hl(e+, sl)≥0, (D6) where the second equality is from (D2), which can be expressed as αhlh
F(e+)e+−Re+
0 ef(e)dei + hl(e+, sl)Re+
0 ef(e)de= (1−α)hRe
0ef(e)de+[1−F(e)]ei
hl(e+, sl).The inequality holds for anysliff 2hRe+(0)
0 ef(e)dei
−(1−α)hRe
0ef(e)de+[1−F(e)]ei
≥0
⇔ Re+(0)
0 ef(e)de
F(e+(0)) ≥ 1+αα e+(0) (from (D3)). (D7) Hence, if (1−α)−α hlF(e+(0))
δlRe+(0) 0 ef(e)de
>0⇔ Re+(0)
0 ef(e)de
F(e+(0)) > (1−αhα)δl
l and
Re+(0)
0 ef(e)de
F(e+(0)) ≥ 1+αα e+(0), there exists uniques[l ∈(0, s]l) satisfyings[l = (1−α)−α hlF(e
+(s[l)) δlRe+(s[l)
0 ef(e)de
and d(wdsnhn)
l >0 forsl≤s[l. (ii) From (43) in the proof of Lemma 2,
d[wl(e+, sl)hl(e, sl)]
dsl =wl(e+, sl)∂hl(e, sl)
∂sl +dwl(e+, sl)
dsl hl(e, sl)
=wl(e+, sl)δle− α 1−α
wl(e+, sl) wn(e+, sl)
dwn(e+, sl)
dsl hl(e, sl)
=wl(e+, sl)
⎧⎨
⎩δle−α hl(e, sl) hl(e+, sl)
e+ 1−sl
αeh+l
h
hlF(e+)+δlRe+
0 ef(e)dei +³h
l e++δl´
hl(e+, sl)e+f(e+) (1−α)eh+l
hRe
e+ef(e)de+[1−F(e)]ei
+hl(e+, sl)e+f(e+)
⎫⎬
⎭
=wl(e+, sl)
⎛
⎝δlehl(e+, sl)(1−sl)n
(1−α)eh+l
hRe
e+ef(e)de+[1−F(e)]ei
+hl(e+, sl)e+f(e+)o
−αhl(e, sl)n αhlh
hlF(e+)+δlRe+
0 ef(e)dei
+ (hl+δle+)hl(e+, sl)e+f(e+)o
⎞
⎠ hl(e+, sl)(1−sl)n
(1−α)eh+l
hRe
e+ef(e)de+[1−F(e)]ei
+hl(e+, sl)e+f(e+)o
=wl(e+, sl)
⎧⎨
⎩
δlehl(e+, sl)(1−sl)(1−α)eh+l
hRe
e+ef(e)de+[1−F(e)]ei
−αhl(e, sl)αhlh
hlF(e+)+δlRe+
0 ef(e)dei
+hl(e+, sl)e+f(e+)[δlehl(e+, sl)(1−sl)−αhl(e, sl)(hl+δle+)]
⎫⎬
⎭ hl(e+, sl)(1−sl)n
(1−α)eh+l
hRe
e+ef(e)de+[1−F(e)]ei
+hl(e+, sl)e+f(e+)o
=wl(e+, sl) Ã
αhln
δle(1−sl)h
hlF(e+)+δlslRe+
0 ef(e)dei
−αhl(e, sl)h
hlF(e+)+δlRe+
0 ef(e)deio +hl(e+, sl)e+f(e+) [δle(1−sl)hl(e+, sl)−αhl(e, sl)(hl+δle+)]
!
hl(e+, sl)(1−sl) n
(1−α)eh+l
hRe
e+ef(e)de+[1−F(e)]e i
+hl(e+, sl)e+f(e+)
o (from (D2))
=wl(e+, sl) Ã
αhln
[(1−sl−αsl)δle−αhl]hlF(e+)+[(1−sl−α)δlsle−αhl]δlRe+
0 ef(e)deo +hl(e+, sl)e+f(e+){[(1−sl−αsl)δle−αhl]hl+[(1−sl−α)δlsle−αhl]δle+}
!
hl(e+, sl)(1−sl) n
(1−α)eh+l
hRe
e+ef(e)de+[1−F(e)]e i
+hl(e+, sl)e+f(e+)
o . (D8)
[Proof for d(wdslhl)
l >0] If the expression inside the big parenthesis of (D8) is positive, (1−sl− αsl)δle−αhl>0 and thus [(1−sl−αsl)δle−αhl]Reh+lF(e+)
0 ef(e)de
+[(1−sl−α)δlsle−αhl]δl>[(1−sl−αsl)δle−αhl]eh+l+ [(1−sl−α)δlsle−αhl]δlhold. Hence, d(wdslhl)
l >0 if [(1−sl−αsl)δle−αhl]eh+l+[(1−sl−α)δlsle−αhl]δl≥ 0⇔L(sl)≡−ee+(sl)s2l+h
(1−α)e+(sl)−(1+α)hδl
l
i esl+h
−α³h
l
δl+e+(sl)´ +eih
l
δl≥0⇔sl∈h
max(0, s4l,l(e)), s4l,h(e)i , wheres4l,h(e) (s4l,l(e)) is the solution to
sl= h
(1−α)e+(sl)−(1+α)hδl
l
i
e+ (−) rh
(1−α)e+(sl)−(1+α)hδl
l
i2
e2+4ee+(sl) h
−α
³h
l
δl+e+(sl)
´ +e
ih
l δl
2ee+(sl)
= h
(1−α)e+(sl)−(1+α)hδl
l
i
+ (−)rh
(1−α)e+(sl)−(1+α)hδl
l
i2
+4e+(sl)h
−α³h
l
δl+e+(sl)´
e−1+1ih
l δl
2e+(sl)
= h
(1−α)−(1+α)δ hl
le+(sl)
i + (−)
vu uth
(1−α)−(1+α)δ hl
le+(sl)
i2
+4
"
−α+e−α
hl δl e+(sl)
#
hl δle
2 . (D9)
Real solutions to (D9) could exist only if the expression inside the square root is non-negative (from the second equation),
e≥Λ(e+(sl))≡
4α³h
l
δl+e+(sl)´h
l δl
4hδl
l+e+1(sl)
h
(1−α)e+(sl)−(1+α)hδl
l
i2 =
α³h
l
δl+e+(sl)´ 1+4h δl
le+(sl)
h
(1−α)e+(sl)−(1+α)hδl
l
i2, (D10) which holds for any sl if
e≥Λ(e)≡
α³h
l δl+e´ 1+4hδl
le
h
(1−α)e−(1+α)hδl
l
i2, (D11)
because the derivative of (D10), which can be expressed as
4α³ 1+δ hl
le+(sl)
´h
l δl
4δ hl
le+(sl)+h
(1−α)−(1+α)δ hl
le+(sl)
i2, with respect tosl is proportional to
−
½ 4hl δle+(sl)+
h
(1−α)−(1+α)δ hl
le+(sl)
i2¾
hl
δl[e+(sl)]2e+0(sl)−
³ 1+δ hl
le+(sl)
´nh
(1−α)−(1+α)δ hl
le+(sl)
i
(1+α)−2 o 2h
l
δl[e+(sl)]2e+0(sl)
=−
½
(1−α)2+h
(1+α)δ hl
le+(sl)
i2
+2(1+α2)δ hl
le+(sl)−2³ 1+δ hl
le+(sl)
´h
(1+α)2δ hl
le+(sl)+(1+α2)i¾ h
l
δl[e+(sl)]2e+0(sl)
=−
½
(1−α)2−h
(1+α)δ hl
le+(sl)
i2
−2(1+α2)−2(1+α)2δ hl
le+(sl)
¾
hl
δl[e+(sl)]2e+0(sl)
= (1+α)2
³ 1+δ hl
le+(sl)
´2 hl
δl[e+(sl)]2e+0(sl)>0. (D12)
s4l,h(e)∈(0,1) satisfying (D9) exists and is unique whene >α³h
l
δl+e+(0)´
ande≥Λ(e) or when e+(0)>1+α1−αhδl
l and e≥Λ(e), because [1] the RHS of (D9) decreases withe+(sl) and thussl,[2] the RHS at sl = 0 is greater than 0,which holds clearly for the above ranges ofe from (D9), and [3]
the RHS atsl= 1 is smaller than 1.
[1] can be proved as follows. The derivative of the numerator of the RHS of (D9) with respect toe+ equals
(1+α)hl δl[e+(sl)]2+(−)
(h
(1−α)−(1+α)hδle+(sl)l i2
+4 Ã
−α+e−α
hl δl e+(sl)
!
hl δle
)−12(h
(1−α)−(1+α)hδle+(sl)l
i (1+α)h
l
δl[e+(sl)]2 −2 e−α
hl δl [e+(sl)]2
hl δle
)
= (h
(1−α)−(1+α)hδle+(sl)li2
+4 Ã
−α+e−α
hl δl e+(sl)
!
hl δle
)−12
hl δl[e+(sl)]2
⎛
⎜⎜
⎜⎜
⎝ (h
(1−α)−(1+α)hδle+(sl)l i2
+4 Ã
−α+e−α
hl δl e+(sl)
!
hl δle
)1
2
(1+α) +(−)
(h
(1−α)−(1+α)hδle+(sl)l i
(1+α)−2e−α
hl δl e
)
⎞
⎟⎟
⎟⎟
⎠.
(D13) The second term inside the big parenthesis of the above equation is negative because
h
(1−α)−(1+α)hδle+(sl)li
(1+α)−2e−α
hl δl e
≤h
(1−α)− (1+α)hδle+(sl)li
(1+α)−2+2αhδl
l
⎧⎪
⎨
⎪⎩
4α³ 1+δhl
le
´h
l δl
h
(1−α)−(1+α)δhl
le
i2
+4δhl
le
⎫⎪
⎬
⎪⎭
−1
(from (D11))
<−h(1+α)2hl
δle +(1+α2)i 2³
1+δhl
le
´ +h
(1−α)−(1+α)δhl
le
i2
+4δhl
le
2³ 1+δhl
le
´
=− h
(1+α)δhl
le
i2
−2(1+α)δ 2hl
le −(1+α2)2
³ 1+δhl
le
´ +
h
(1−α)2−2(1−α2)δhl
le
i +4δhl
le
2³ 1+δhl
le
´
=−(1+α)2 2³ 1+δhl
le
´
<0. (D14)
Then, the RHS of (D9) decreases with e+ when the solution is s4l,h(e) because (h
(1−α)−(1+α)hδle+(sl)l i2
+4 Ã
−α+e−α
hl δl e+(sl)
!
hl δle
)
(1+α)2<
(
− h
(1−α)−(1+α)hδle+(sl)l i
(1+α)+2e−α
hl δl e
)2
⇔ Ã
−α+e−α
hl δl e+(sl)
!
hl
δle(1+α)2 <e−α
hl δl e
(
− h
(1−α)−(1+α)δ hl
le+(sl)
i
(1+α)+e−α
hl δl e
)
⇔ −hδll(1+α)2<(e−αhδl
l)(α−δhlle)
⇔ −2hl
δl < e+ hl δl
hl
δle. (D15)
[3] is true since