• Tidak ada hasil yang ditemukan

Appendix D: Proofs of Proposition A1 and Claim 1

N/A
N/A
Protected

Academic year: 2023

Membagikan "Appendix D: Proofs of Proposition A1 and Claim 1"

Copied!
9
0
0

Teks penuh

(1)

Appendix D: Proofs of Proposition A1 and Claim 1

Proof of Proposition A1. (i) From (43) in the proof of Lemma 2, d[wn(e+, sl)hn(e, sl)]

dsl =wn(e+, sl)∂hn(e, sl)

∂sl +dwn(e+, sl)

dsl hn(e, sl) =hn(e, sl)

−wn(e+, sl)

1−sl +dwn(e+, sl) dsl

¸

=wn(e+, sl)hn(e, sl) 1−sl

⎧⎨

⎩−1+(1−α)e+ hl(e+, sl)

αeh+l

h

hlF(e+)+δlRe+

0 ef(e)dei +³h

l e+l´

hl(e+, sl)e+f(e+) (1−α)eh+l

hRe

e+ef(e)de+[1−F(e)]ei

+hl(e+, sl)e+f(e+)

⎫⎬

=wn(e+, sl)hn(e, sl) 1−sl

1 hl(e+, sl)

⎝ −hl(e+, sl) n

(1−α)eh+l

hRe

e+ef(e)de+[1−F(e)]e i

+hl(e+, sl)e+f(e+) o

+(1−α)e+n αeh+l

h

hlF(e+)+δlRe+

0 ef(e)dei +³h

l e+l´

hl(e+, sl)e+f(e+)o

⎠ (1−α)eh+l

hRe

e+ef(e)de+[1−F(e)]ei

+hl(e+, sl)e+f(e+)

=wn(e+, sl)hn(e, sl) 1−sl

1 hl(e+, sl)

Ã(1−α)eh+l

n αe+h

hlF(e+)+δlRe+

0 ef(e)dei

−hl(e+, sl)hRe

e+ef(e)de+[1−F(e)]eio +hl(e+, sl)e+f(e+) [(1−α)(hlle+)−hl(e+, sl)]

!

(1−α)eh+l

hRe

e+ef(e)de+[1−F(e)]ei

+hl(e+, sl)e+f(e+)

=wn(e+, sl)hn(e, sl) 1−sl

1 hl(e+, sl)

Ã

(1−α)hlαnh

hlF(e+)+δlRe+

0 ef(e)dei

11αh

hlF(e+)+δlslRe+

0 ef(e)deio +hl(e+, sl)e+f(e+) [(1−α)(hlle+)−hl(e+, sl)]

!

(1−α)eh+l

hRe

e+ef(e)de+[1−F(e)]e i

+hl(e+, sl)e+f(e+)

³

because hl(e+, sl)hRe

e+ef(e)de+[1−F(e)]ei

=1ααh δlslRe+

0 ef(e)de+hlF(e+)i

e+from (7)´

=wn(e+, sl)hn(e, sl) 1−sl

1 hl(e+, sl)

à αhl

n (1−α)

h

hlF(e+)+δl

Re+

0 ef(e)de i

− h

hlF(e+)+δlsl

Re+

0 ef(e)de io +hl(e+, sl)e+f(e+) [−αhl+(1−α−slle+]

!

(1−α)eh+l

hRe

e+ef(e)de+ [1−F(e)]ei

+hl(e+, sl)e+f(e+) .

(D1) [Proof for d(wdsnhn)

l <0] Whensl≥1−α⇔1−α−sl≤0, d(wdsnhn)

l <0 because the expressions inside the big parenthesis of (D1) is negative.

When sl < 1−α, d(wdsnhn)

l < 0 if −αhl+(1−α−slle+ ≤0 because −αhl+(1−α−slle+ >

1 F(e+)

n (1−α)h

hlF(e+)+δlRe+

0 ef(e)dei

−h

hlF(e+)+δlslRe+

0 ef(e)deio

for the expressions inside the paren- thesis. −αhl+(1−α−slle+ ≤0 holds iff sl ≥(1−α)−αδ hl

le+(sl), wheree+(sl) is, from (7) and (5), a solution for

α 1α

h

hlF(e+)+δlslRe+

0 ef(e)de i

e+=hRe

e+ef(e)de+ [1−F(e)]e i

hl(e+, sl) (D2)

⇔δlsle+hRe

0ef(e)de+[1−F(e)]e−11αRe+

0 ef(e)dei

=n

α

1αF(e+)e++Re+

0 ef(e)de−hRe

0ef(e)de+[1−F(e)]eio hl. (D3) sl−h

(1−α)−αδ hl

le+(sl)

i

increases with sl because 1−α hl

δl(e+)2 de+

dsl

>1−α hl δl(e+)2

δl(e+)2

hl >0.(from (37) in the proof of Lemma 1). (D4)

(2)

Further, at sl =s??l ≡ (1−α)−αδhl

le, sl >(1−α)−αδ hl

le+(sl). Hence, if (1−α)−αδ hl

le+(0) ≤ 0⇔e+(0)≤ (1αhα)δl l,(1−α)(hlle+)−hl(e+, sl)≤0 holds for anysl and thus d(wdsnhn)

l <0 for any sl. e+(0) is the solution to 1ααF(e+)e++Re+

0 ef(e)de=Re

0ef(e)de+[1−F(e)]efrom (D3), thus this is the case when many individuals have limited wealth.

Otherwise, i.e. e+(0)> (1αhα)δl

l,there exists uniques]l ∈(0, s??l ) satisfyings]l = (1−α)−α hl

δle+(s]l)

and−αhl+(1−α−slle+≤0 forsl ≥s]l.Thus, d(wdsnhn)

l <0 forsl≥s]l.(Note that this is a sufficient but not necessary condition. d(wdsnhn)

l <0 could hold for smaller sl or for anysl,if the expressions inside the big parenthesis of (D1) is negative.)

[Proof for d(wdsnhn)

l >0] As shown above, d(wdsnhn)

l >0 is possible only whensl<1−α,in which case −αhl+ (1−α−slle+ > F(e1+)

n (1−α)h

hlF(e+)+δlRe+

0 ef(e)dei

−h

hlF(e+)+δlslRe+

0 ef(e)deio holds. Thus, d(wdsnhn)

l > 0 when (1−α)h

hlF(e+)+δlRe+

0 ef(e)dei

−h

hlF(e+)+δlslRe+

0 ef(e)dei

≥ 0, which holds iffsl≤1−α−α hlF(e+(sl))

δl

Re+(sl)

0 ef(e)de

,where e+(sl) is a solution to (D3).

Atsl=s??l ≡(1−α)−αδhl

le, sl>(1−α)−α hlF(e+(sl))

δlRe+(sl)

0 ef(e)de

.Further,sl

"

(1−α)−αhδl

l

F(e+(sl))

Re+(sl)

0 ef(e)de

#

increases with sl if Re+(0)

0 ef(e)de

F(e+(0))1+αα e+(0).

This can be proved as follows. The derivative of the expression with respect to sl equals 1−αhl

δl

F(e+)e+Re+ 0 ef(e)de (Re+

0 ef(e)de)2

f(e+)de+ dsl

= 1−αhl δl

F(e+)e+−Re+

0 ef(e)de hRe+

0 ef(e)dei2 f(e+) δle+n

(1−α)hRe

e+ef(e)de+[1−F(e)]ei

−αRe+

0 ef(e)deo (1−α)eh+l

hRe

e+ef(e)de+[1−F(e)]ei

+hl(e+, sl)e+f(e+)

(from (37))

=

⎜⎝

½

1 e+

hRe+

0 ef(e)dei2

−αh

F(e+)e+−Re+

0 ef(e)dei

f(e+)e+

¾

(1−α)hlhRe

e+ef(e)de+[1−F(e)]ei +hRe+

0 ef(e)de i2

hl(e+, sl)e+f(e+)+α2hl h

F(e+)e+−Re+

0 ef(e)de i

f(e+)e+hRe+

0 ef(e)de i

⎟⎠

hRe+

0 ef(e)de i2n

(1−α)eh+l

hRe

e+ef(e)de+[1−F(e)]e i

+hl(e+, sl)e+f(e+) o

=

⎜⎝

½

1 e+

hRe+

0 ef(e)dei2

−αh

F(e+)e+−Re+

0 ef(e)dei

f(e+)e+

¾ αhlh

hlF(e+)+δlslRe+

0 ef(e)dei

e+ hl(e+,sl)

+hRe+

0 ef(e)dei2

hl(e+, sl)e+f(e+)+α2hlh

F(e+)e+−Re+

0 ef(e)dei

f(e+)e+hRe+

0 ef(e)dei

⎟⎠

hRe+

0 ef(e)dei2n

(1−α)eh+l

hRe

e+ef(e)de+[1−F(e)]ei

+hl(e+, sl)e+f(e+)o (from (D2))

=

⎜⎜

½

1 e+

hRe+ 0 ef(e)de

i2

−α h

1−hl(e+, sl)δ 1

lsle+

ih

F(e+)e+−Re+

0 ef(e)de i

f(e+)e+

¾ αhl

³ δlsl

Re+

0 ef(e)de

´ e+ hl(e+,sl)

+

½

1 e+

hRe+

0 ef(e)dei2

−αh

F(e+)e+−Re+

0 ef(e)dei f(e+)e+

¾

αhl[hlF(e+)]h e+

l(e+,sl)+hRe+

0 ef(e)dei2

hl(e+, sl)e+f(e+)

⎟⎟

⎠ hRe+

0 ef(e)dei2n

(1−α)eh+l

hRe

e+ef(e)de+[1−F(e)]ei

+hl(e+, sl)e+f(e+)o

(3)

=

hRe+

0 ef(e)dei2h δlslRe+

0 ef(e)de+hlF(e+)i αhl +

n

[hl(e+, sl)−αhl]hRe+

0 ef(e)de i

+αhlF(e+)e+ on

[hl(e+, sl)+αhl]hRe+

0 ef(e)de i

−αhlF(e+)e+ o

f(e+)e+

⎠ hl(e+, sl)hRe+

0 ef(e)de i2n

(1−α)eh+l

hRe

e+ef(e)de+[1−F(e)]e i

+hl(e+, sl)e+f(e+)

o .

(D5) The expression is positive if

£hl(e+, sl)+αhl¤hRe+

0 ef(e)de i

−αhlF(e+)e+≥0

⇔n 2hRe+

0 ef(e)dei

−(1−α)hRe

0ef(e)de+[1−F(e)]eio

hl(e+, sl)≥0, (D6) where the second equality is from (D2), which can be expressed as αhlh

F(e+)e+−Re+

0 ef(e)dei + hl(e+, sl)Re+

0 ef(e)de= (1−α)hRe

0ef(e)de+[1−F(e)]ei

hl(e+, sl).The inequality holds for anysliff 2hRe+(0)

0 ef(e)dei

−(1−α)hRe

0ef(e)de+[1−F(e)]ei

≥0

⇔ Re+(0)

0 ef(e)de

F(e+(0))1+αα e+(0) (from (D3)). (D7) Hence, if (1−α)−α hlF(e+(0))

δlRe+(0) 0 ef(e)de

>0⇔ Re+(0)

0 ef(e)de

F(e+(0)) > (1αhα)δl

l and

Re+(0)

0 ef(e)de

F(e+(0))1+αα e+(0), there exists uniques[l ∈(0, s]l) satisfyings[l = (1−α)−α hlF(e

+(s[l)) δlRe+(s[l)

0 ef(e)de

and d(wdsnhn)

l >0 forsl≤s[l. (ii) From (43) in the proof of Lemma 2,

d[wl(e+, sl)hl(e, sl)]

dsl =wl(e+, sl)∂hl(e, sl)

∂sl +dwl(e+, sl)

dsl hl(e, sl)

=wl(e+, slle− α 1−α

wl(e+, sl) wn(e+, sl)

dwn(e+, sl)

dsl hl(e, sl)

=wl(e+, sl)

⎧⎨

⎩δle−α hl(e, sl) hl(e+, sl)

e+ 1−sl

αeh+l

h

hlF(e+)+δlRe+

0 ef(e)dei +³h

l e+l´

hl(e+, sl)e+f(e+) (1−α)eh+l

hRe

e+ef(e)de+[1−F(e)]ei

+hl(e+, sl)e+f(e+)

⎫⎬

=wl(e+, sl)

⎝δlehl(e+, sl)(1−sl)n

(1−α)eh+l

hRe

e+ef(e)de+[1−F(e)]ei

+hl(e+, sl)e+f(e+)o

−αhl(e, sl)n αhlh

hlF(e+)+δlRe+

0 ef(e)dei

+ (hlle+)hl(e+, sl)e+f(e+)o

⎠ hl(e+, sl)(1−sl)n

(1−α)eh+l

hRe

e+ef(e)de+[1−F(e)]ei

+hl(e+, sl)e+f(e+)o

=wl(e+, sl)

⎧⎨

δlehl(e+, sl)(1−sl)(1−α)eh+l

hRe

e+ef(e)de+[1−F(e)]ei

−αhl(e, sl)αhlh

hlF(e+)+δlRe+

0 ef(e)dei

+hl(e+, sl)e+f(e+)[δlehl(e+, sl)(1−sl)−αhl(e, sl)(hlle+)]

⎫⎬

⎭ hl(e+, sl)(1−sl)n

(1−α)eh+l

hRe

e+ef(e)de+[1−F(e)]ei

+hl(e+, sl)e+f(e+)o

=wl(e+, sl) Ã

αhln

δle(1−sl)h

hlF(e+)+δlslRe+

0 ef(e)dei

−αhl(e, sl)h

hlF(e+)+δlRe+

0 ef(e)deio +hl(e+, sl)e+f(e+) [δle(1−sl)hl(e+, sl)−αhl(e, sl)(hlle+)]

!

hl(e+, sl)(1−sl) n

(1−α)eh+l

hRe

e+ef(e)de+[1−F(e)]e i

+hl(e+, sl)e+f(e+)

o (from (D2))

(4)

=wl(e+, sl) Ã

αhln

[(1−sl−αslle−αhl]hlF(e+)+[(1−sl−α)δlsle−αhllRe+

0 ef(e)deo +hl(e+, sl)e+f(e+){[(1−sl−αslle−αhl]hl+[(1−sl−α)δlsle−αhlle+}

!

hl(e+, sl)(1−sl) n

(1−α)eh+l

hRe

e+ef(e)de+[1−F(e)]e i

+hl(e+, sl)e+f(e+)

o . (D8)

[Proof for d(wdslhl)

l >0] If the expression inside the big parenthesis of (D8) is positive, (1−sl− αslle−αhl>0 and thus [(1−sl−αslle−αhl]Reh+lF(e+)

0 ef(e)de

+[(1−sl−α)δlsle−αhll>[(1−sl−αslle−αhl]eh+l+ [(1−sl−α)δlsle−αhllhold. Hence, d(wdslhl)

l >0 if [(1−sl−αslle−αhl]eh+l+[(1−sl−α)δlsle−αhll≥ 0⇔L(sl)≡−ee+(sl)s2l+h

(1−α)e+(sl)−(1+α)hδl

l

i esl+h

−α³h

l

δl+e+(sl)´ +eih

l

δl≥0⇔sl∈h

max(0, s4l,l(e)), s4l,h(e)i , wheres4l,h(e) (s4l,l(e)) is the solution to

sl= h

(1−α)e+(sl)−(1+α)hδl

l

i

e+ (−) rh

(1−α)e+(sl)−(1+α)hδl

l

i2

e2+4ee+(sl) h

−α

³h

l

δl+e+(sl)

´ +e

ih

l δl

2ee+(sl)

= h

(1−α)e+(sl)−(1+α)hδl

l

i

+ (−)rh

(1−α)e+(sl)−(1+α)hδl

l

i2

+4e+(sl)h

−α³h

l

δl+e+(sl

e1+1ih

l δl

2e+(sl)

= h

(1−α)−(1+α)δ hl

le+(sl)

i + (−)

vu uth

(1−α)−(1+α)δ hl

le+(sl)

i2

+4

"

−α+eα

hl δl e+(sl)

#

hl δle

2 . (D9)

Real solutions to (D9) could exist only if the expression inside the square root is non-negative (from the second equation),

e≥Λ(e+(sl))≡

4α³h

l

δl+e+(slh

l δl

4hδl

l+e+1(sl)

h

(1−α)e+(sl)−(1+α)hδl

l

i2 =

α³h

l

δl+e+(sl)´ 1+4h δl

le+(sl)

h

(1−α)e+(sl)−(1+α)hδl

l

i2, (D10) which holds for any sl if

e≥Λ(e)≡

α³h

l δl+e´ 1+4hδl

le

h

(1−α)e−(1+α)hδl

l

i2, (D11)

because the derivative of (D10), which can be expressed as

4α³ 1+δ hl

le+(sl)

´h

l δl

4δ hl

le+(sl)+h

(1−α)−(1+α)δ hl

le+(sl)

i2, with respect tosl is proportional to

½ 4hl δle+(sl)+

h

(1−α)−(1+α)δ hl

le+(sl)

i2¾

hl

δl[e+(sl)]2e+0(sl)−

³ 1+δ hl

le+(sl)

´nh

(1−α)−(1+α)δ hl

le+(sl)

i

(1+α)−2 o 2h

l

δl[e+(sl)]2e+0(sl)

=−

½

(1−α)2+h

(1+α)δ hl

le+(sl)

i2

+2(1+α2)δ hl

le+(sl)−2³ 1+δ hl

le+(sl)

´h

(1+α)2δ hl

le+(sl)+(1+α2)i¾ h

l

δl[e+(sl)]2e+0(sl)

=−

½

(1−α)2−h

(1+α)δ hl

le+(sl)

i2

−2(1+α2)−2(1+α)2δ hl

le+(sl)

¾

hl

δl[e+(sl)]2e+0(sl)

= (1+α)2

³ 1+δ hl

le+(sl)

´2 hl

δl[e+(sl)]2e+0(sl)>0. (D12)

(5)

s4l,h(e)∈(0,1) satisfying (D9) exists and is unique whene >α³h

l

δl+e+(0)´

ande≥Λ(e) or when e+(0)>1+α1αhδl

l and e≥Λ(e), because [1] the RHS of (D9) decreases withe+(sl) and thussl,[2] the RHS at sl = 0 is greater than 0,which holds clearly for the above ranges ofe from (D9), and [3]

the RHS atsl= 1 is smaller than 1.

[1] can be proved as follows. The derivative of the numerator of the RHS of (D9) with respect toe+ equals

(1+α)hl δl[e+(sl)]2+(−)

(h

(1−α)−(1+α)hδle+(sl)l i2

+4 Ã

−α+eα

hl δl e+(sl)

!

hl δle

)12(h

(1−α)−(1+α)hδle+(sl)l

i (1+α)h

l

δl[e+(sl)]2 −2 eα

hl δl [e+(sl)]2

hl δle

)

= (h

(1−α)−(1+α)hδle+(sl)li2

+4 Ã

−α+eα

hl δl e+(sl)

!

hl δle

)12

hl δl[e+(sl)]2

⎜⎜

⎜⎜

⎝ (h

(1−α)−(1+α)hδle+(sl)l i2

+4 Ã

−α+eα

hl δl e+(sl)

!

hl δle

)1

2

(1+α) +(−)

(h

(1−α)−(1+α)hδle+(sl)l i

(1+α)−2eα

hl δl e

)

⎟⎟

⎟⎟

⎠.

(D13) The second term inside the big parenthesis of the above equation is negative because

h

(1−α)−(1+α)hδle+(sl)li

(1+α)−2eα

hl δl e

≤h

(1−α)− (1+α)hδle+(sl)li

(1+α)−2+2αhδl

l

⎧⎪

⎪⎩

4α³ 1+δhl

le

´h

l δl

h

(1−α)−(1+α)δhl

le

i2

+4δhl

le

⎫⎪

⎪⎭

1

(from (D11))

<−h(1+α)2hl

δle +(1+α2)i 2³

1+δhl

le

´ +h

(1−α)−(1+α)δhl

le

i2

+4δhl

le

2³ 1+δhl

le

´

=− h

(1+α)δhl

le

i2

−2(1+α)δ 2hl

le −(1+α2)2

³ 1+δhl

le

´ +

h

(1−α)2−2(1−α2)δhl

le

i +4δhl

le

2³ 1+δhl

le

´

=−(1+α)2 2³ 1+δhl

le

´

<0. (D14)

Then, the RHS of (D9) decreases with e+ when the solution is s4l,h(e) because (h

(1−α)−(1+α)hδle+(sl)l i2

+4 Ã

−α+eα

hl δl e+(sl)

!

hl δle

)

(1+α)2<

(

− h

(1−α)−(1+α)hδle+(sl)l i

(1+α)+2eα

hl δl e

)2

⇔ Ã

−α+eα

hl δl e+(sl)

!

hl

δle(1+α)2 <eα

hl δl e

(

− h

(1−α)−(1+α)δ hl

le+(sl)

i

(1+α)+eα

hl δl e

)

⇔ −hδll(1+α)2<(e−αhδl

l)(α−δhlle)

⇔ −2hl

δl < e+ hl δl

hl

δle. (D15)

[3] is true since

Referensi

Dokumen terkait