• Tidak ada hasil yang ditemukan

Archimedean zeta integrals for GL(3,R) × GL (2,R)

N/A
N/A
Protected

Academic year: 2024

Membagikan "Archimedean zeta integrals for GL(3,R) × GL (2,R)"

Copied!
2
0
0

Teks penuh

(1)

Archimedean zeta integrals for GL(3, R) × GL(2, R)

Taku Ishii (Seikei University) Reduction to radial parts

G≡Gn =GL(n,R),K≡Kn=O(n): maximal compact subgroup ofG

N ≡Nn ={(xij)∈Gn|xii= 1, xij= 0 (i > j)}: maximal unipotent subgroup ofG

G=N AK: Iwasawa decomposition with A≡An={y= diag(y1y2· · ·yn, y2· · ·yn, . . . , yn)|yi>0}

ψR(t) = exp(2π√

1t) (t∈R),ψN(x) =ψR(x12+· · ·+xn1,n) (x= (xij)∈N)

(π, Hπ): irreducible admissible representation ofG

C(N\G, ψN) ={f ∈C(G,C)|f(xg) =ψN(x)f(g),∀(x, g)∈N×G}

• Iπ,ψ:={Φ|ΦHom(g,K)(Hπ,K, C(N\G, ψN)), Φ(v) is of moderate growth (v∈Hπ,K)}

• W(π, ψR) ={Φ(v)|Φ∈ Iπ,ψ, v∈Hπ,K}: Whittaker model ofπ

(π, Hπ), (π, Hπ): irreducible admissible generic representations ofGn+1,Gn

(τ, Vτ), (τ, Vτ): irreducible representations ofKn withKn-embeddingsφ:Vτ ,→ W(π, ψR),φ :Vτ ,→ W(π, ψR1) Lemma 1. ForW ∈ W(π, ψR)andW∈ W(π, ψR1) we set

Z(s, W, W) :=

Nn\Gn

W (g

1 )

W(g)|detg|s1/2dg.

Forv∈Vτ andv∈Vτ, we have

Z(s, φ(v), φ(v)) = ⟨v, v dimVτ

dimVτ

i=1

An

φ(vi) (y

1 )

φ(vi)(y)|dety|s1/2δ(y)1dy

if τ =bτ (contragredient of τ), and Z(s, φ(v), φ(v)) = 0 if τ ≇bτ. Here {vi} is a basis of Vτ and {vi} is its dual basis of Vτ =Vτˆ andδ(y) =∏n1

i=1 yi(ni i)/2. Explicit formulas forGL(2,R)-Whittaker functions

π=D(ν,l): discrete series ofG2 (ν∈C, l∈Z>0)

λ∈Z>0

(τλ(2), Vλ(2)=CvλCvλ)∈Kc2 withK2-actionτλ(2)( cosθ sinθ

sinθcosθ

)vq =e1vq,τλ(2)(11)vq =vq (q∈ {±λ})

Kc2={1,det} ∪ {τλ(2) |λ∈Z>0}

D(ν,l)|K2 =⊕

i=0τl+1+2i(2)

Proposition 2. There exsits aK2-embeddingφ:Vl+1(2)→ W(D(ν,l), ψεR) (ε∈ {±1})whose radial part is given by φ(vε(l+1))(diag(y1y2, y2)) =δε,ε·y1/21 y22ν· 1

2π√

1

s

ΓC

(

s+ν+ l 2

)

y1sds, (ε ∈ {±1}), where

s is a vertical line fromRe(s)−√

1∞toRe(s) +

1∞with the sufficiently large real part to keep the poles of the integrand on its left.

Explicit formulas forGL(3,R)-Whittaker functions

π= IndP2,1(D(ν1,l)χ(ν2)): generalized principal series ofG3 (ν1, ν2C, l∈Z>0, δ∈ {0,1})

λ= (λ1, λ2),λ1Z0,λ2∈ {0,1}

Pλ={degreeλ1 homogeneous polynomial inz1, z2, z3}

K3acts onPλ by (Tλ(k)p)(z1, z2, z3) = (detk)λ2p((z1, z2, z3)·k),k∈K3,p∈Pλ

(τλ(3), Vλ(3))∈Kc3: quotient representation of Tλ onVλ(3)=Pλ/(z21+z22+z23)Pλ(2,0)

Sλ={m= (m1, m2, m3)(Z0)3|m1+m2+m3=λ1}

• {uλm= image ofz1m1zm22zm33 under Pλ→Vλ(3)|m= (m1, m2, m3)∈Sλ}: generator of Vλ(3)

• {vλq := image of ((sgnq)z1+

1z2)|q|zλ31−|q|| −λ1≤q≤λ1}: basis ofVλ(3)

τλ(3)

( cosθ sinθ

sinθcosθ 1

)

vλq =e1vλq,τλ(3)(diag(ε1, ε2, ε3))vqλ=ελ12ελ22+qελ31+λ2+qvλε

1ε2q (εi∈ {±1})

τλ(3)|K2 = detλ2λ1

i=1τi(2), τi(2)∋v±i→vλ±i∈τλ(3): K2-injection

π|K3 =τ(l+1)(3) ⊕τ(l+2,1(3) δ)

i=2m(i)τ(l+1+i,δ(i))(3) withδ(i)≡δ+i+ 1 (mod 2) andm(i)2 (multiplicity) Theorem 3. [1]There exists aK3-embeddingφ:V(l+1)(3) → W(π, ψR) whose radial part is given by

φ(uλm)(diag(y1y2y3, y2y3, y3)) = (

1)m1m3y1y2(y2y3)2ν1+ν2· 1 (2π√

1)2

s2

s1

Γm(s1, s2)y1s1y2s2ds1ds2,

where

Γm(s1, s2) =ΓC(s1+ν1+2lR(s1+ν2+m1C(s2−ν1+2lR(s2−ν2+m3) ΓR(s1+s2+m1+m3) .

1

(2)

Computation of archimedean zeta integrals forG3×G2

π= IndP2,1(D(ν1,l)χ(ν2)),π=D(ν,l) withl≥l

Vτ=Vl(2)+1=Cvl+1Cv(l+1)

φ:Vl(2)+1,→V(l+1)(3) →W(π, ψR)

φ:Vl(2)+1→ W(π, ψR1)

Theorem 4. [2]Forv, v∈Vl(2)+1, we have Z(s, φ(v), φ(v)) =.⟨v, v(

1)2ll+1ΓC(s+ν1+ν+l+l

2 )ΓC(s+ν1+ν+l−l

2 )ΓC(s+ν2+ν+l 2).

(outline of proof) We have

Z(s)≡Z(s, φ(v), φ(v)) = ⟨v, v 2

0

0

φ(vl+1)(diag(y1y2, y2,1))φ(v(l+1))(diag(y1y2, y2))y1s3/2y22s1dy1

y1

dy2

y2

Since (z1+

1z2)l+1z3ll =∑l+1 j=0

(l+1 j

)√−1l+1jz1jz2l+1jz3ll, Mellin-inversion implies that

Z(s) =⟨v, v 2

√−12l

l+1

ΓC(2s+ν1+ν2+ 2ν+ l

2)ΓR(2s+ 2ν1+ 2ν+l−l)

l+1

j=0

(l+ 1 j

)

× 1 2π√

1

t

ΓC(s−t+ν1+2lR(s−t+ν2+j)

ΓR(3s−t+ 2ν1+ν2+ 2ν+j+l−l)·ΓC(t+ν+l 2)dt.

Substitutingt→t+j and using the formula

m

j=0

(m j

)

ΓC(a+jC(b−j) =ΓC(aC(b−mC(a+b) ΓC(a+b−m) , we know that

Z(s) =⟨v, v 2

√−12l

l+1

ΓC(2s+ν1+ν2+ 2ν+ l

2)ΓR(2s+ 2ν1+ 2ν+l−l)· ΓC(s+ν1+ν+l+l2) ΓC(s+ν1+ν+l2l 1)

× 1 2π√

1

t

ΓR(s−t+ν2C(t+ν+l2C(s−t+ν1+2l −l1) ΓR(3s−t+ 2ν1+ν2+ 2ν+l−l) dt.

From the formulas ΓC(s) = ΓR(sR(s+ 1) (duplation formula) and 1

4π√

1

t

ΓR(t+aR(t+bR(t+cR(−t+dR(−t+e) ΓR(t+a+b+c+d+e) dt

R(a+dR(b+dR(c+dR(a+eR(b+eR(c+e) ΓR(a+b+d+eR(a+c+d+eR(b+c+d+e) (Barnes’ second lemma), we can get the assertion. 2

Barnes’ frist lemma:

1 4π√

1

t

ΓR(t+aR(t+bR(−t+cR(−t+d)dtR(a+cR(a+dR(b+cR(b+d) ΓR(a+b+c+d)

Remark 1. The casel> l:

Eij gl(3,R): matrix unit

λ∈Z>0, Dλ:=C-span{Eλ= (E23−√

1E13)λ, Eλ= (E23+

1E13)λ} ⊂U(gl(3,C))

• Dλ=Vλ(2) as K2-module (adjoint action onDλ) viaE±λ↔v±λ

φ:Vl(2)+1,→Vl(2)l⊗Vl+1(2)→W(π, ψR),φ :Vl(2)+1→ W(π, ψR1) References

[1] Tadashi Miyazaki, Whittaker functions for generalized principal series representations of SL(3,R). Manuscripta Math., 128(2009), 107–135.

[2] Miki Hirano, Taku Ishii and Tadashi Miyazaki, The archimedean zeta integrals for GL(3)×GL(2). Proc. Japan Acad.,92. Ser. A (2016), 27–32.

Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino, Tokyo, 180-8633, Japan E-mail address: [email protected]

2

Referensi

Dokumen terkait