Electroweak Correction for the Study of Higgs Potential in LC
LAPTH-Minamitateya Collaboration LCWS05
2005.3.19, Stanford U.
presented by K.Kato(Kogakuin U.)
Introduction
• LC : high-precision experiments
Æ Requires the same level theoretical prediction = Needs higher order
calculation
• Higgs study : Central target
Æ Interesting channels = multi-body final states
• 1-loop correction to e+e- Æ 3, 4-bodies : Great Progress since Sept. 2002
Higgs@LC:tree cross sections
2Æ3,4 processes important
Main channels
WWH vs ZZH
Higgs Potential Yukawa coupl.
number of diagrams
(GRACE:NLG model)tree 1-loop
4(1) 341(119)
RADCOR / Loops & Legs Sept. 2002
12(2) 1350(249) 12(6) 2327(758) 27(6) 5417(1597) 42(2) 4470(510)
−
→
+
e e
ν H
ν
ZHH ZH
H t t
H e
e+ −
A.Denner, J.Kublbeck, R.Mertig, M.Bohm, Z.Phys.C56(1992) 261;
B.A.Kniehl,
Z.Phys.C55(1992) 605.
with(without) e-scalar couplings 10 years
required to develop 2Æ3
tools
Automated Systems
Full 1-loop RC available
H t t e
e
+ −→
ZHH e
e
+ −→
H e
e
+ −→ ν ν
GRACE, PLB559(2003)252Denner et al., NPB660(2003)289 GRACE, PLB571(2003)163
You et al., PLB571(2003)85
Denner et al., PLB575(2003)290 GRACE, PLB576(2003)152
Zhang et al., PLB578(2004)349
H e
e e
e
+ −→
+ −γ ν ν
−
→
+
e
e
ν =νμ,νec s d u e
e+ − →
ν
ττ
+μ
−ν
μ , Denner etal., hep- ph/0502063GRACE, PLB600(2004)65
GRACE, NIM A534(2004)334
HH e
e
+ −→ ν ν
GRACE, Talk by Y.Yasui at Durham(Sep.2004)User input
Theory
model
Diagram generator file
amplitude generator
Library
CHANEL, loop Kinematics
library
kinematics
code generated code
diagram description
convergence information
Make file etc.
symbolic code
REDUCE, Form etc.
PS file
Drawer
BASES(MC integral)
SPRING (EG manager)
parameter file
Diagrams (figure)
Events Cross sections
distributions
TREE LOOP
FORTRAN code .fin .mdl .rin
Higgs Potential
H H
H
H H
H H
Something required to provide mass
Key for the structure of standard model
Window to New Physics
Double (triple) Higgs production Process
e
+e
-Æ ννHH
400 600 800 1000
0 1 [ab/GeV]
e+e−−−>hhνν− (without Z)
mh =120 GeV RS = 1000 GeV (Λ+δΛ)/Λ
0.00.5 1.01.5 2.0
Invariant mass of hh [GeV]
tree
old parameter set HHH coupling
dependence SM: δΛ=0
ννHH vs ZHH
ZHH/nunuHH
0 100 200 300 400 500 600
0 500 1000 1500 2000 2500
W
σ(ab)
GeV
= 120 MH
ν HH
ν
Tree
ZHH
ZHH e
e
+ −→
HH e
e
+ −→ ν ν
dominant mechanism (approximation) Low W
High W
W +
W −
H H
FULL calculation
e
+e
-Æ ννHH
W
+W
-Æ HH
W + W −
H
Annihilation Boson
Exchange
Contact
Interaction
H
H W , χ
W
+W
-Æ HH
• tree … 6 diagrams
Annihilation, Boson exch., Contact int.
B ÅÆ A, C … opposite sign
• 1-loop … 827 diagrams Æ 13 groups
A : vertex corr .HHH, WWH, AWW, ZWW B : vertex corr. WWH, WχH
C : Box
Check : Cuv independence
Cuv=0 Cuv=100 Cuv=10000
LG
NLG Cuv=0 Cuv=100 Cuv=0
Linear Gauge vs Non-Linear Gauge
leading m
tformulas
2 2
4
3 2 W H
t C
w
H M M
N m C s
π
− α
=
2 2 2
2
2 12
3 2
8 w
W W
t C
w
W s
s M
N m
C s +
−
= π
α
2 2 2
2 4 2
6
3 8
8 w
W W
t C
w s
s M
N m
C s +
−
= π
α A: CH+CW
B: 2CW C: C4
MW=80.4163 MZ=91.1876 MH=120 mt=180
α=1/137.0359895
-0.11779616
-0.07033663 -0.02535196
) 5 , 4 , 3 , 2 , 1 (
GeV 10
180× ( 1) =
= − n
mt n
proof of the formulas and
the performance of GRACE system real world : NOT mt >> W, MH, MZ,…
OK
WWHH(tree)
0 1 2 3 4 5 6
0 500 1000 1500 2000
W
σ(pb) tree+leading mt correction
full EW correction (w/o QED)
δ(EW) & δ(mt)
-5%
0%
5%
10%
15%
20%
0 500 1000 1500 2000
W
δ(%)
W
+W
-Æ HH
WWHH 1-loop corrections
-100%
-80%
-60%
-40%
-20%
0%
20%
40%
0 500 1000 1500 2000
W
δ(%)
δV
λ=10-12 Gev δVQED δW
δW(Gm)
e
+e
-Æ ννHH
• number of diagrams
νe ... tree= 81 loop=19638 (prod. set = 12 x 3416)
50M lines of Fortran code νmu ... tree= 27 loop=8292
(prod. set = 6 x 1754)
e
+e
-Æ ννHH
ZHH e
e
+ −→
hep-ph/030910
Phys.Lett.B 576(2003)152.
“s-channel”
e
+e
-Æ ννHH
nunuHH
0 5 10 15 20 25
0 500 1000 1500 2000 2500
W
δ(%)
) EW
δ (
) G ( μ δ
nunuHH(tree)
0 100 200 300 400 500 600
0 500 1000 1500 2000 2500
W
σ(ab)
Full
calculation MH=120GeV
e
+e
-Æ ννHH
0 1 2
0 1
GeV
=120 MH
W=0.5TeV W=2.5TeV W=2.0TeV W=1.5TeV W=1.0TeV
M(HH) (TeV) Tree
Invariant mass of HH
• Higgs Potential channel eeÆννHH cross section and its EW correction is calculated.
σ=O(100 ab)and greater than eeÆZHH in high-E LC region ( ≧1TeV). δ(Gmu) is
~10% for >700GeV. Large diviation from eeÆZHH dominated by s-channel.
• WWÆHH is studied to check the t-channel structure of eeÆννHH and has shown
validity and limitation of the leading mt formulas.
Summary
s s
e
+e
-Æ ννHH
H e
e
+ −→ ν ν
)
W (s δ
hep-ph/0212261
Phys.Lett.B 559(2003) 252.
s,t channels show different behavior
genuine weak correction in G-scheme is -2~-4%
total )
(α O
G
δ
Wδ
W)
W(t
δ
16 1.5%
5
2 2
2
HWW = − = −
W W
t
M s
M π δ α
H t t e
e
+ −→
hep-ph/0307029Phys.Lett.B 571(2003) 163.
system components
• Diagram generation for input process
• Amplitude/Matrix element generation
• Kinematics and Integration (efficiency)
• Event generation (efficiency & weight)
• Peripheral tools: rule generator,
diagram selection, QED radiation, PDF, loop integral library, multi-process, color flow and interface for hadronization, etc.
5-point functions
∑ ∫
=
4 3 2 1 0
5 G d D D D D D
I
σ ν
μ σ
μν l l Ll
L l
j j
j r X
D
X D
+
⋅ +
=
+
=
l l
l
2 2
0 2
0
F D
E
N =
∑
+= 4
) (
α α l α
rank M
BOX rank M-1
0 0
2 = D − X
l
∑
=+
= 4
0
)]
( [
1
α aα bαj lrj Dα
scalar 5-pnt
BOX
ν μ
μν
j ij i
j i
ij r r g r A r
A = ⋅ = −1
] [
)
( 12 1 0 0
1
j j
ij i
j ij
i A r r A D D X X
r = − + −
= μ − ν μ −
μ l
l
N
δ (QED), δ (EW)
) 1
0
( δ
QEDδ
Wσ
σ = + +
δ
Whard QED soft
QED V
QED
QED
δ δ δ
δ = + +
f
LL( ) ∫ ( )
∫
+ ⊗ + − ⊗= LL hard LL
v QED
QED dσ 0δ dσ~0 f dσ1 dσ~0 f
δ γ
=radiator
phase space subtraction
non-QED virtural corrections
Non-linear gauge fixing terms
( )
2( )
22 1 2
1
1 Z A
Z W
GF F F F F
L = − ξ − ξ − ξ
− +
⎟⎟⎠
⎜⎜ ⎞
⎝
⎛ + ±
+
⎟⎟⎠
⎜⎜ ⎞
⎝
⎛∂
=
±
±
±
±
±
χ χ κ χ
δ χ
ξ
β
α μ μ μ
μ
3
~ 2
~ 2
~ ~
W W
W W
W W
s i e s H
M e
W s Z
i ec A
ie
F m m
⎟⎟⎠
⎜⎜ ⎞
⎝
⎛ +
+
∂
= 3 ~ 3
2 ε χ
χ
μ ξ
μ H
c s M e
Z F
W W W
Z Z
μ μ
A F A = ∂
Samples of NLG Feynman rules
)]
)(
~ / 1
(
) )(
~ / 1
(
) (
[
1 2
3 3
2 1
μρ ν
νρ μ
νρ μ μρ
ν ρ μν
ξ α
ξ α
g p g
p
g p g
p p p
g e
A W
W
W W
− +
+
− +
+
−
−
−
α μν
χ
g ieM
A W
W (1− ~)
−
− m
αgμν
e
W A
c
c A
~
− 2
−
−
− ±
m
W W
A
ie s
H c
c
ξ δ χ
~ 2
2 1 m
m − − ± −
ghost-ghost- vector-vector / ghost-ghost-scalar-scalar modified
• Numerator structure is the same as Feynman gauge Æ Loop integral library
• Vertices modified
• general valuesÆ #diagrams
Non-linear gauge
κ ε
δ β
α ~ , ~ , ~
~ ,
~ ,
) 1 for
(
ξ =
g
μνχ α~ = 1 ⇒ no AW
Check gauge invariance
ÆIndependence on gauge parameters
“old” usage
Æreduce #diagram