35 (2005), 143–157
Homotopy types of m-twisted CP
4’s
Dedicated to the memory of Prof. Masahiro Sugawara Kohhei Yamaguchi
(Received April 8, 2004) (Revised September 21, 2004)
Abstract. We study the homotopy type classification problem of n dimensional m- twisted complex projective spaces for the casen¼4. In particular, we determine the number of homotopy types of m-twisted CP4’s when mb1 is an odd integer.
1. Introduction
Let nb2 be an integer and let M be a simply-connected 2n dimensional finite Poincare´ complex. For an integer mb0, M is called an m-twisted CPn if there is an isomorphism HðM;ZÞGHðCPn;ZÞ with the condition x2x2¼mx4, where x2k AH2kðM;ZÞGZdenotes the corresponding generator (k¼1;2). Any m-twisted CPn is homotoy equivalent to a CW complex of the form
MFS2Umh
2e4Ue6U Ue2n2Ue2n ðhomotopy equivalenceÞ;
and it has the homotopy type of 2n dimensional closed topological manifolds ([6]). Let Mmn be the set consisting of all the homotopy equivalence classes ofm-twistedCPn’s. For example, whenn¼2,M12¼ f½CP2gandMm2 ¼q if m01. When n¼3, the following result is known:
Theorem 1.1 ([11] (cf. [4])). If mb0 is an integer, cardðMm3Þ ¼ 1 if m11 ðmod 2Þ;
3 if m10 ðmod 2Þ;
where cardðVÞ denotes the cardinal number of a set V.
In general, it is known that Mm2kþ10 q for any m;kb2 (cf. [2]), and we have infinitely many non-trivial examples ofm-twistedCP2kþ1’s. On the other
2000 Mathematics Subject Classification. Primary 55P10, 55P15; Secondly 57P10.
Key Words and Phrases. Poincare´ complex, homotopy type, Whitehead product.
Partially supported by Grant-in-Aid for Scientific Research (No. 13640067 (C)(2)), The Ministry of Education, Culture, Sports, Science and Technology, Japan.
hand, it is even not known whether M2km is an empty set or not if m01 and kb2. As the first step of this question, we would like to study the setMmn for the case n¼4. Then if ða;bÞ denotes the greatest common divisor of positive integers a and b, the following result has been known.
Theorem 1.2 ([6]).
( i ) If m¼0, 3acardðMm4Þa2732.
( ii ) If m11 ðmod 2Þ, 1acardðMm4Þam ðm;3Þ.
(iii) If m10 ðmod 8Þ and m00, 3acardðMm4Þa253m ðm;3Þ.
(iv) If m10 ðmod 2Þ and mD0 ðmod 8Þ, Mm4 ¼q.
In this paper we shall investigate the set Mm4 when m11 ðmod 2Þ, and our main results are stated as follows:
Theorem 1.3 (The main Theorem). Let mb1 be an odd integer, and let M0, M1, M1 denote the m-twisted CP4’s defined in Definition 4.
( i ) If mD0 ðmod 3Þ, Mm4 ¼ f½M0g.
(ii) If m10 ðmod 3Þ, M4m¼ f½M0;½M1;½M1g, such that the first mod 3 reduced power operation P1:H4ðMe;Z=3Þ !H8ðMe;Z=3Þ is an iso- morphism if e¼G1 and is trivial if e¼0.
Corollary 1.4. If mb1 is an odd integer,
cardðMm4Þ ¼ ðm;3Þ ¼ 1 if mD0 ðmod 3Þ;
3 if m10 ðmod 3Þ:
Remark. Let mb3 be an odd integer with m10 ðmod 3Þ, and let Ap denote the modp Steenrod algebra. Although M1 and M1 are not homotopy equivalent, there are isomorphisms
HðM1;ZÞGHðM1;ZÞ (as graded rings)
HðM1;Z=pÞGHðM1;Z=pÞ (asAp-modules for any prime pb2).
This paper is organized as follows. In § 2, we compute some Whitehead products and in § 3, we consider the group of self-homotopy equivalences EðXmÞ of the 6-skeletonXmofm-twistedCP4’s. In § 4, we study the leftEðXmÞ-action on p7ðXmÞgiven by composite of maps, which is the key point for determining the homotopy types of m-twisted CP4’s. In particular, we determine the set M4m explicitly when ðm;6Þ ¼1. Finally, in § 5, we compute the EðXmÞ-action on p7ðXmÞ explicitly and determine the set Mm4 when ðm;6Þ ¼3.
2. Whitehead products
For an integer mb1, let Lm and P4ðmÞdenote the CW complexes defined by Lm ¼S2Umh
2e4 and P4ðmÞ ¼S3Umi
3e4, respectively. If q: ~LLm!Lm
denotes the 2-connective covering of Lm, it is known that there is a homotopy equivalence LL~mFP4ðmÞ4S5 ([13]). If we identify LL~m¼P5ðmÞ4S5, then the map q is also identified with the map
q¼ ðfm;bmÞ:P4ðmÞ4S5!Lm ðup to homotopyÞ:
ð1Þ
It follows from [[6], Lemma 3.3] that there is a homotopy commutative di- agram
S3 mi!3 S3 i0! P4ðmÞ q!
0 m S4
h2
??
?y fm
??
?y
S3 mh!2 S2 i! Lm qm!S4; ð2Þ
where two horizontal sequences are cofiber sequences.
Let oAp6ðS3ÞGZ=12 and a1ð3Þ ¼4oAp6ðS3Þð3ÞGZ=3 denote the generators. If m10 ðmod 3Þ, we denote by aae11ð3ÞAp7ðP4ðmÞÞ the coexten- sion of a1ð3Þ which satisfies the condition qm0 aae11ð3Þ ¼Ea1ð3Þ.
Lemma 2.1 ([6], [11]). If mb1 is an odd integer, there are isomorphisms p5ðLmÞ ¼Zbm; p5ðP4ðmÞÞ ¼0;
p6ðLmÞ ¼Z=ðm;3Þ iðh2oÞlZ=mfmslZ=2bmh5; p6ðP4ðmÞÞ ¼Z=ðm;3Þ i0olZ=ms;
p7ðLmÞ ¼Z=ðm;3Þ fmomlZ=2bmh25lZ=m ½bm;iðh2Þ; p7ðP4ðmÞÞ ¼Z=ðm;3Þ om;
8>
>>
>>
<
>>
>>
>:
where we can take om¼aae11ð3ÞAfi0;mi3;a1ð3Þg if m10 ðmod 3Þ.
Proof. The assertions follow from [6] except the last equality. If m10 ðmod 3Þ, by the proof of [[6], Proposition 2.9], the induced homo- morphism
Z=3om¼p7ðP4ðmÞÞi!
0
1 p7ðP4ðmÞ;S3Þ aGmp7ðD4;S3ÞGZ=12
is injective, whereamAp4ðP4ðmÞ;S3ÞGZdenotes the characteristic map of the top celle4 in P4ðmÞ. BecauseD0ðEoÞ ¼mði3oÞin the sequence (5) of [6], we have qm0 om¼Ea1ð3Þ and the condition om¼aae11ð3ÞAfi0;mi3;a1ð3Þg is also
satisfied. r
Definition 1. For an integer mb1, let Xm be the space defined by Xm¼LmUmb
me6. There is a cofiber sequence, S5 mb!m Lm!j Xm !S6. Lemma 2.2 ([6]). If mb1 is an odd integer, there are isomorphisms
p6ðXmÞ ¼Z=ðm;3Þ jðiðh2oÞÞlZ=m jðfmsÞ;
p7ðXmÞ ¼ZjmlZ=ðm;3Þ jðfmomÞlZ=m jð½bm;iðh2ÞÞ;
and the following equality holds:
j1ðjmÞ ¼ ½bm;irþbmh50: ð3Þ
Here bmAp6ðXm;LmÞGZ denotes the characteristic map of the top cell e6 in Xm, ½;r a relative Whitehead product, hk0 Apkþ2ðDkþ1;SkÞGZ=2 the gen- erator ðkb3Þ, j1:ðXm;Þ ! ðXm;LmÞ is the inclusion and j1:p7ðXmÞ ! p7ðXm;LmÞ ¼Z ½bm;irlZ=2bmh50 the induced homomorphism.
Lemma 2.3. If m11 ðmod 2Þ, ½bm;iðh2Þ ¼ ½½bm;i;iAp7ðLmÞ.
Proof. It follows from the Jacobi identity ([[10], Corollary 7.14]) that
½½bm;i;i þ ½½i;i;bm þ ½½i;bm;i ¼0:
Because½i;bm ¼ ½bm;i, we have 2½½bm;i;i þ ½½i;i;bm ¼0. Then using ½i;i ¼ i ½i2;i2 ¼ið2h2Þ ¼2iðh2Þ, we have
2½½bm;i;i þ2½iðh2Þ;bm ¼2½½bm;i;i 2½bm;iðh2Þ ¼0:
Since the order of ½bm;iðh2Þ is just m (by [[6], Corollary 3.5]) and m11 ðmod 2Þ, ½½bm;i;i ½bm;iðh2Þ ¼0. r
Lemma 2.4. If m11 ðmod 2Þ, fms¼ ½bm;i þbmh5Ap6ðLmÞ.
Proof. It follows from [[6], Proposition 5.1] that there is a unit xmAðZ=mÞ such that ½bm;i ¼xm fmsþbmh5. Since the order of sAp6ðP4ðmÞÞ is m([8]), by changing the generator s7!x1m s, we may assume
that xm¼1 and the assertion follows. r
Corollary 2.5. If m11 ðmod 2Þ, ½fms;i ¼ ½bm;iðh2Þ.
Proof. It follows from Lemmas 2.3 and 2.4 that
½fms;i ¼ ½bm;iðh2Þ þ ½bmh5;i:
ð4Þ
Since the orders of ½bm;iðh2Þ and s are m, we see ½bmh5;i ¼0 and the
assertion follows. r
Now we remark the following general fact concerning m-twisted CP4’s.
Lemma 2.6. Let mb0 be an integer and M an m-twisted CP4. Then if mD0 ðmod 3Þ, P1 :H4ðM;Z=3Þ !G H8ðM;Z=3Þ is an isomorphism.
Proof. If y2l AH2lðM;Z=3ÞGZ=3 denotes the mod 3 generator (1ala4), ðy2Þ2¼my4, y2y4¼my6 and ðy4Þ2¼y2y6¼ y8 by [[6], (0.2)].
Hence, P1ðy2Þ ¼ ðy2Þ3 ¼ ðmy4Þ y2 ¼m2y6¼Gy6 and
mP1ðy4Þ ¼P1ðmy4Þ ¼P1ððy2Þ2Þ ¼2y2P1ðy2Þ ¼G2y2y6 ¼Hy8: Because mD0 ðmod 3Þ, this implies that P1ðy4Þ ¼Gy8. r 3. Groups of self-homotopy equivalences
For a connected space X, we denote by EðXÞ the set consisting of all based homotopy classes of based self-homotopy equivalences of X, which becomes a group whose multiplication is induced from composite of maps.
The group EðXÞ is called the group of self-homotopy equivalences of X.
Definition 2. If K is a CW complex and X ¼KUfen with dimKa n2, we define the homomorphism l: ~jjðpnðKÞÞ !EðXÞ by
lð~jjgÞ ¼‘ ð14jj~gÞ m0:X m!
0
X4Sn 14jjg~!X4X ‘!X for gApnðKÞ, where ~jj:K!X denotes an inclusion, m0:X!X4Sn the co- action map given by pinching the hemisphere of the top cell en and ‘ is a folding map.
If y:X !F X is a homotopy equivalence, it follows from the cellular approximation Theorem that the restriction yjK also defines a self-homotopy equivalence on K. So we can define the homomorphsim f:EðXÞ !EðKÞ by the restriction fðyÞ ¼yjK for yAEðXÞ.
Proposition 3.1. If mb1 is an odd integer, there is an exact sequence p6ðXmÞ !l EðXmÞ !f EðLmÞ !1;
where we take Z2¼ fG1g and EðLmÞGZ2.
Proof. Because jðp6ðLmÞÞ ¼p6ðXmÞ, the assertion easily follows from the Barcus-Barratt Theorem [[1], Theorem 6.1] and [[11], Corollary 4.8]. r 4. An action of EðXmÞ on p7ðXmÞ
For CW complexes X and Y, we write XFY if there is a homotopy equivalence X !F Y. Let MðjÞ denote the mapping cone defined by
MðjÞ ¼XmUje8 for jAp7ðXmÞ: ð5Þ
Recall the following well-known result.
Lemma 4.1 (Homotopy Theorem). Let K be a simply-connected CW complex and let X , Y denote the CW complexes defined by X ¼KUfen and Y ¼KUgen, where dimKan2, nb4 and f;gApn1ðKÞ. Then there is a homotopy equivalence XFY if and only if there is a homotopy equivalence yAEðKÞ such that y f ¼Gg.
Theorem4.2 ([6]). Let mb1 be an odd integer. Then Mis an m-twisted CP4 if and only if there is some element gAp7ðLmÞ such that MFMðjÞ ¼ XmUje8, where j¼GjmþjðgÞ.
Proof. This follows from [[6], Theorem 4.5] and the homotopy exact
sequence of the pair ðXm;LmÞ. r
So it is useful to consider the left EðXmÞ action on p7ðXmÞ given by the composite of maps, EðXmÞ p7ðXmÞCðy;jÞ 7!yjAp7ðXmÞ.
Lemma 4.3. Let mb1 be an integer and jAp7ðXmÞ be an element such that j1ðjÞ ¼a ½bm;irþebmh50 for some ða;eÞAZZ=2. Then
m0ðjÞ ¼ jXjþa½j6;jX ji þe j6h6;
where Xm!jX Xm4S6 j6 S6 denote the corresponding inclusions, m0:Xm! Xm4S6 is a co-action map and m0 :p7ðXmÞ !p7ðXm4S6Þ is the induced homomorphism.
Proof. This follows from [[12], Lemma 2.2]. r Corollary 4.4. If mb1 be an odd integer, the following equalities hold:
( i ) m0ðjmÞ ¼ jXjmþ ½j6;jX ji þj6h6. ( ii ) m0ðjð½bm;iðh2ÞÞÞ ¼ jX jð½bm;iðh2ÞÞ.
(iii) If m10 ðmod 3Þ, m0ðjðiðh2oÞÞÞ ¼ jX jðiðh2oÞÞ.
Proof. The assertions follows from (3) and Lemma 4.3. r Definition 3. Let mb1 be an odd integer and let l: jðp6ðLmÞÞ ! EðXmÞ denote the homomorphism defined in Definition 2. Then define the homotopy equivalence yk AEðXmÞ by
yk¼lððkjðfmsÞÞÞ for each kAZ=m:
ð6Þ
Similarly, when m10 ðmod 3Þ, we define yl0AEðXmÞ by yl0¼lðl jðiðh2oÞÞÞ for each lAZ=3:
ð7Þ
Proposition 4.5. If mb1 is an odd integer, the following equalities hold for any ðk;lÞAZ=mZ=3:
( i ) ykjm¼jmþk jð½bm;iðh2ÞÞ, yk jð½bm;iðh2ÞÞ ¼ jð½bm;iðh2ÞÞ:
(ii) If m10 ðmod 3Þ,
yl0jm¼jm; yl0jð½bm;iðh2ÞÞ ¼ jð½bm;iðh2ÞÞ; yl0 jðfmomÞ ¼ykjðfmomÞ ¼ jðfmomÞ:
Proof. (i) It follows from Corollary 4.4 that we have yk jð½bm;iðh2Þ ¼‘ ð14ðkjðfmsÞÞÞ m0ð½bm;iðh2ÞÞ
¼‘ ð14ðkj fmsÞÞ jX jð½bm;iðh2ÞÞ
¼ jð½bm;iðh2ÞÞ: Since fmsh6¼0 (by [6]), we also obtain
ykjm¼‘ ð14ðkjðfmsÞÞÞ m0ðjmÞ
¼‘ ð14ðkjðfmsÞÞÞ ðjXjmþ ½j6;jX ji þj6h6Þ
¼jmþ ½kjðfmsÞ;ji þk jðfmsh6Þ
¼jmþkjð½fms;iÞ
¼jmþkjð½bm;iðh2ÞÞ ðby Corollary 2:5Þ:
(ii) Because the proof is similar to that of (i), we only give the proof of the first equality. This follows from
yl0jm¼‘ ð14ðl jðiðh2oÞÞÞ m0ðjmÞ
¼‘ ð14ðl jðiðh2oÞÞÞ ðjXjmþ ½j6;jX ji þ j6h6Þ
¼jmþ ½l jðiðh2oÞÞ;ji þljðiðh2oh6ÞÞ
¼jmþl jðið½h2o;i2ÞÞ ðby iðh2oh6Þ ¼0Þ
¼jm ðby ½h2o;i2 ¼0 ðby ½3ÞÞ: r Definition4. Letmb1 be an odd integer. Then we denote by M0 the m-twisted CP4 defined by
M0¼MðjmÞ ¼XmUj
me8: ð8Þ
Moreover, when m10 ðmod 3Þ, we denote by M1 and M1 the m-twisted CP4’s defined by
Me¼MðjmþejðfmomÞÞ ¼XmUj
mþejðfmomÞe8 ðfor e¼G1Þ: ð9Þ
Theorem 4.6. If m11 ðmod 2Þ and mD0 ðmod 3Þ, M4m¼ f½M0g.
Proof. We note that Mm40 q by Theorem 1.2. Now let M be anym- twisted CP4. It su‰ces to show that MFM0. Since MðjÞFMðjÞ by Lemma 4.1, it follows from Theorem 4.2 that there exists some kAZ=m such that MFMðjmþk jð½bm;iðh2ÞÞÞ. Then because
ykjm¼jmþkjð½bm;iðh2ÞÞ ðby Proposition 4:5Þ;
M0¼MðjmÞFMðjmþk jð½bm;iðh2ÞÞÞFM. r Corollary 4.7. Let mb1 be an odd integer.
( i ) If mD0 ðmod 3Þ, there is an exact sequence 0!p6ðXmÞ !l EðXmÞ !f Z2!1;
where p6ðXmÞGZ=m.
(ii) If m10 ðmod 3Þ, there is an exact sequence
0!Z=mlGm!l EðXmÞ !f Z2!1;
where Gm¼Z=3 or Gm¼0.
Proof. (i) It su‰ces to show that l:Z=mjðfmsÞ ¼p6ðXmÞ !EðXmÞ is injective. If we write yk ¼lðk jðfmsÞÞ (as in (6)), it follows from Proposition 4.5 that ykjm0ylj if k0lAZ=m. Hence, yk0yl if k0lA Z=m, and l is injective.
(ii) The same proof as that of (i) shows that ljZ=mjðfmsÞ:Z=m jðfmsÞ !EðXmÞ is injective. Because p6ðXmÞ ¼Z=m jðfmsÞlZ=3 jðiðh2oÞÞ, Kerl¼Z=3jðiðh2oÞÞ or Kerl¼0. Then (ii) follows
from Proposition 3.1. r
Proposition4.8. If mb3 is an odd integer with m10 ðmod 3Þand M is an m-twisted CP4, then MFM0 or MFM1 or MFM1 holds.
Proof. Becausep7ðXmÞ ¼ZjmlZ=mjð½bm;iðh2ÞÞlZ=3jðfmoÞ, by Theorem 4.2, there is a homotopy equivalence
MFMðjmþk jð½bm;iðh2ÞÞ þljðfmomÞÞ ¼Mk;l for some kAZ=m and lAZ=3. Then by Proposition 4.5,
yk ðjmþljðfmomÞÞ ¼ykjmþlyk jðfmomÞ
¼jmþkjð½bm;iðh2ÞÞ þl jðfmomÞ:
Hence, there is a homotopy equivalence Mk;lFM0;l. Then because
M0;l¼
M0 if l¼0AZ=3;
M1 if l¼1AZ=3;
M1 if l¼ 1¼2AZ=3;
8>
<
>:
the assertion follows. r
5. The case m10 ðmod 3Þ
From now on, we assume that mb3 is an odd integer with m10 ðmod 3Þ, and consider the EðXmÞ-action on p7ðXmÞ.
We remark that (by Corollary 4.7) there is a homotopy equivalence y~
yAEðXmÞ such that yyj~Lm ¼h1 represents the generator of EðLmÞGZ2. In this case, because EðXmÞ is generated by fyk;yl0;yy~:kAZ=m;lAZ=3g and the actions of yk’s or those of yl0’s are given in Proposition 4.5, it remains to consider the action ofyy~on p7ðXmÞ. For this purpose, we recall self-homotopy equivalences h1 and yy.~ First, recall h1. Because
ði2Þ ðmh2Þ ¼mðh2þ ½i2;i2 Hðh2ÞÞ ð10Þ
¼mðh2þ ð2h2Þ i3Þ ¼mh2
by [[10]; page 537, (8.12)], there is a map h1 :Lm!Lm such that the following diagram is homotopy commutative:
S3 mh!2 S2 i! Lm qm! S4
i2
??
?y h1
??
?y
S3 mh!2 S2 i! Lm qm! S4: ð11Þ
Then the following is known:
Lemma 5.1 ([11]). Let mb1 be an odd integer.
( i ) h1 AEðLmÞ and EðLmÞ ¼ fh1;idLmg ¼hh1jh21 ¼idLmiGZ2. ( ii ) The degree of h1 on S2 is 1 and the that of it on e4 is þ1.
(iii) h1bm¼ bm.
If m11 ðmod 2Þ, it follows from Proposition 3.1 that there exists a homotopy equivalence yy~AEðXmÞ such that
y~
yjLm ¼h1: ð12Þ
We note that yy~also defines a self-homotopy equivalence on ðXm;LmÞ, and we write it as the same letter yy.~
Lemma 5.2. Let mb3 be an odd integer with m10 ðmod 3Þ.
( i ) yy~bm¼ bm.
(ii) yy~jm1jm mod Im j.
Proof. (i) If x2k AH2kðXm;ZÞGZ denotes the corresponding generator (k¼1;2;3), x2x4¼mx6. Hence, the degree ofyy~on the top celle6 on Xm is 1 (by (ii) of Lemma 5.1). So it follows from the commutative diagram
Zbm¼p6ðXm;LmÞ h!
G H6ðXm;Lm;ZÞ Gj1 H6ðXm;ZÞGZ
y~ y
??
?y
??
?y
??
?yð1Þ Zbm¼p6ðXm;LmÞ h!
G H6ðXm;Lm;ZÞ Gj1 H6ðXm;ZÞGZ that we have yy~bm¼ bm.
(ii) Consider the induced homomorphism j1ðXmÞ !p7ðXm;LmÞ. Then because
j1ðyy~jmÞ ¼yy~ðj1ðjmÞÞ ¼yy~ð½bm;irþbmh50Þ ðby ð3ÞÞ
¼ ½yy~bm;h1irþyy~bmh50
¼ ½bm;irþ ðbmÞ Eh40 ðby ðiÞ;ð11ÞÞ
¼ ½bm;irþbmh50 ¼ j1ðjmÞ;
the assertion (ii) follows form the exact sequence of the pair ðXm;LmÞ. r Lemma 5.3. There exists a homotoy equivalence hPAEðP4ðmÞÞ such that h1 fm¼ fmhP with hPjS3¼i3.
Proof. Consider the fibration sequence,
P4ðmÞ4S5 ðfm;b!mÞLmi!KðZ;2Þ:
Since ðfm;bmÞ is a 2-connective covering of Lm, we may assume that the map i:Lm!KðZ;2Þ represents the oriented generator of ½Lm;KðZ;2ÞG H2ðLm;ZÞGZ. Now we define the involution v:Z!Z by vðnÞ ¼ n. It induces a self-homotopy equivalence vv~AEðKðZ;2ÞÞ. Here, because h1jS2¼ i2, h1:H2ðLm;ZÞ !G H2ðLm;ZÞ is given by h1ðxÞ ¼ x for xAH2ðLm;ZÞG Z. Hence, ~vvi¼ih1 (up to homotopy). So there exists a self-homotopy equivalence ~hh1AEðP4ðmÞ4S5Þ such that the diagram
P4ðmÞ4S5 ðfm;b!mÞ Lm i! KðZ;2Þ
~h h1
??
?yF h1
??
?yF vv~
??
?yF P4ðmÞ4S5 ðfm;b!mÞ Lm i! KðZ;2Þ
is homotopy commutative, where horizontal sequences are fibration sequences.
Now we define the map hP:P4ðmÞ !P4ðmÞ by hP¼pP~hh1iP, where iP:P4ðmÞ !P4ðmÞ4S5 and pP:P4ðmÞ4S5!P4ðmÞ denote the natural in- clusion and the natural projection, respectively. By chasing the diagram, we can see hp AEðP4ðmÞÞ and that fmhP¼h1 fm.
On the other hand, it follows from the diagram (2) that fmjS3¼h2. Hence, using h1jS2¼ i2 and ði2Þ h2¼h2, we can choose the map hP such
that hPjS3¼i3. r
Lemma 5.4. If m is an odd integer with m10 ðmod 3Þ, we may choose the homotopy equivalence yy~AEðXmÞ such that
y~
yjm¼jmþlm jðfmomÞ for some lmAZ=3:
ð13Þ
Proof. It follows from Lemma 5.2 that there exists a pair ðk;lmÞA Z=mZ=3 such that, yy~jm¼jmþk jð½bm;iðh2ÞÞ þlmjðfmomÞ.
If we take c¼ykyy~AEðXmÞ, by Proposition 4.5, we have cjm¼ykyy~jm
¼yk ðjmþk jð½bm;iðhÞÞ þlmjðfmomÞÞ
¼ykjmþkyk jð½bm;iðh2ÞÞ þlmyk jðfmomÞ
¼jmk jð½bm;iðh2ÞÞ þk jð½bm;iðh2ÞÞ þlmjðfmomÞ
¼jmþlmjðfmomÞ:
Then because cjLm ¼h1, we can change the generator c7!yy, and we may~ assume that yy~AEðXmÞ satisfies the equality (13). r
Lemma 5.5. Let mb3 be an integer such that m10 ðmod 3Þ.
( i ) yy~ jð½bm;iðh2ÞÞ ¼ jð½bm;iðh2ÞÞ.
(ii) yy~ jðfmomÞ ¼ jðfmomÞ.
Proof. (i) Since yy~ j¼ jh1 (by (12)), we have y~
y jð½bm;iðh2ÞÞ ¼ jðh1 ½bm;iðh2ÞÞ ¼ jð½h1bm;h1ih2Þ
¼ jð½bm;i ði2Þ h2Þ ðby Lemma 5:1 and ð11ÞÞ
¼ jð½bm;iðh2ÞÞ ðby ð10ÞÞ:
(ii) Since yy~ j¼ jh1, it su‰ces to prove that h1 fmom¼ fmom. Then it follows from Lemma 5.3 that we have h1 fmom¼ fmhPom¼
fm ði3Þ om¼ fmom. r
Lemma 5.6. Let mb3 be an integer such that m10 ðmod 3Þ.
( i ) If lm00AZ=3, ½M0 ¼ ½M1 ¼ ½M1 in Mm4.
(ii) If lm¼0AZ=3, ½M00½M1, ½M10½M1 and ½M10½M0 in Mm4. Remark. So we can determine the set M4m completely if we know whether lm¼0 or not. In fact, lm¼0 holds and this will be proved in Theorem 5.8.
Proof. (i) If lm00AZ=3, lm¼G1. Then because y~
yjm¼jmGjðfmomÞ ðby ð13ÞÞ; and y~
y ðjmGjðfmomÞÞ ¼jmHjðfmomÞ; (
it follows from Lemma 4.1 that we obtain ½M0 ¼ ½M1 ¼ ½M1AM4m. (ii) If lm¼0, by using (13) and Proposition 4.5, we have
yjm0GðjmGjðfmomÞÞ;
y ððjmþjðfmomÞÞ0GðjmjðfmomÞÞ
for any yAEðXmÞ. Hence, by Lemma 4.1, ½M00½M1, ½M10½M1 and
½M10½M0 in Mm4. r
Lemma 5.7. Let mb3 be an odd integer with m10 ðmod 3Þ and let M be an m-twisted CP4.
( i ) There is a homotopy equivalence
M=S2FS44S6Uge8¼Nðn0Þ for some n0AZ=12;
where g¼i4n4þi6h6þn0i4EoAp7ðS44S6Þ and il:Sl!S44S6 ðl¼4;6Þ denotes the corresponding inclusion.
(ii) In this case, P1:Z=3GH4ðM;Z=3Þ !H8ðM;Z=3ÞGZ=3 is iso- morphism if n0D0 ðmod 3Þ and it is trivial if n010 ðmod 3Þ.
Proof. (i) Since Sq2:H4ðM;Z=2Þ !H6ðM;Z=2Þ is trivial by [[6], Proposition 4.1], there is a homotopy equivalence M=S2FS44S6Uge8¼Ng for some gAp7ðS44S6Þ ¼Zi4n4lZ=12i4EolZ=2i6h6.
Since NgFNg, without loss of generalities, we may suppose that g¼ai4n4þn0i4Eoþei6h6 ðab0AZ;n0AZ=12;eAZ=2Þ: If x2lAH2lðM;ZÞGZ denotes the corresponding generator (l¼2;4), since M is an m-twisted CP4, the equality x4x4¼Gx8 holds. Hence, by the solution of Hopf invariant one problem, we have a¼1. Moreover, it follows from [[6], Lemma 4.2] that Sq2:Z=2¼H6ðM;ZÞ !G H8ðM;Z=2Þ ¼Z=2 is an iso- morphism. Then if q:M!M=S2FNg denotes the pinch map, because Ng=S4FS6Ueh
6e8, it follows from the commutative diagram H6ðM;Z=2Þ q
G H6ðNg;Z=2Þ G H6ðS6Ueh
6e8;Z=2ÞGZ=2
Sq2
??
?yG Sq2
??
?y Sq2
??
?y H8ðM;Z=2Þ q
G H8ðNg;Z=2Þ G H8ðS6Ueh
6e8;Z=2ÞGZ=2 that we obtain e¼1. Therefore, (i) is proved.
(ii) By (i) we may assume that M=S2 ¼Nðn0Þ. It follows from the solution of mod 3 Hopf invariant one problem that
P1:Z=3GH4ðNðn0Þ;Z=3Þ !H8ðNðn0Þ;Z=3ÞGZ=3
is an isomorphism if n0D0 ðmod 3Þ, and it is trivial if n010 ðmod 3Þ. Then the assertion (ii) follows from the following commutative diagram.
H4ðM;Z=3Þ P!
1
H8ðM;Z=3Þ
q
x?
??G q
x?
??G
Z=3GH4ðNðn0Þ;Z=3Þ P1! H8ðNðn0Þ;Z=3ÞGZ=3: r
Theorem 5.8. Let mb3 be an odd integer with m10 ðmod 3Þ.
( i ) ½M00½M1, ½M00½M1 and ½M10½M1 in Mm4. ( ii ) Mm4 ¼ f½M0;½M1;½M1g.
(iii) If we choose the free generator jmAp7ðXmÞ suitably, P1:Z=3GH4ðMe;Z=3Þ !H8ðMe;Z=3ÞGZ=3 is an isomorphism if e¼G1 and it is trivial if e¼0.
Proof. (i) It follows from Lemma 5.7 that there is a homotopy equivalence
M0=S2FS44S6Uge8¼Nðn0Þ for some n0AZ=12;
where g¼i4n4þn0i4Eoþi6h6Ap7ðS44S6Þ.
Now we recall the definition of fM1;M1;M0g; MG1¼ MðjmGjðfmomÞÞ and M0¼MðjmÞ. If we consider the induced homo- morphism
qm0 :Z=3om¼p7ðP4ðmÞÞ !p7ðS4Þ ¼Zn4lZ=12Eo;
because qm0 ðomÞ ¼4Eo¼Ea1ð3Þ (by Lemma 2.1), we may assume that there are homotopy equivalences
M1=S2FNðk0þ4Þ and M1=S2FNðk04Þ:
ð14Þ
Because k0G41k0G1 ðmod 3Þ, one of N¼ fk0;k04;k0þ4g is zero mod 3 and the other two numbers of N are both non-zero mod 3.
Hence, by Lemma 5.7, there is some e0Af0;1;1g such that P1 :Z=3G H4ðMe;Z=3Þ !H8ðMe;Z=3ÞGZ=3 is trivial if e¼e0 and an isomorphism if eAf0;1;1g and e0e0.
So ½Me00½Me1 in Mm4 if e00e1Af0;1;1g. Then by Lemma 5.6,
½M00½M1, ½M10½M1, ½M10½M0 in M4m.
(ii) The assertion (ii) follows from Proposition 4.8 and (i).
(iii) We note that p7ðXmÞ ¼ZjmlZ=3jðfmomÞlZ=m ½bm;iðh2Þ.
Then if we change the free basejm byjm7!jmþe0jðfmomÞ, the assertion
(iii) is also satisfied. r
Now we can complete the proof of Theorem 1.3.
Proof of Theorem 1.3. The assertion (i) follows from Theorem 4.6, and the assertions (ii), (iii) follow from Theorem 5.8. r
Finally we compute the action of yy~ on p7ðXmÞ explicitly.
Theorem 5.9. Let mb3 be an odd integer with m10 ðmod 3Þ. Then the left action of yy~on p7ðXmÞ is determined by the following:
y~
y jð½bm;iðh2ÞÞ ¼ jð½bm;iðh2ÞÞ;
y~
y jðfmomÞ ¼ jðfmomÞ; y~
yjm¼jm: 8>
<
>:
Proof. It follows from Theorem 5.8 and Lemma 5.6 that lm¼0.
Hence, the assertion follows from Lemma 5.5 and (13). r Acknowledgments
The author would like to take this opportunity to thank Professor Juno Mukai and Professor Mikiya Masuda for their numerous helpful suggestions and advices concerning the homotopy groups of Moore spaces and the to- pology of twisted complex projective spaces.
References
[ 1 ] W. D. Barcus and M. G. Barratt, On the homotopy classification of a fixed map, Trans.
Amer. Math., 88 (1958), 57–74.
[ 2 ] G. E. Bredon, Introduction to compact transformation groups, Academic Press, 1972.
[ 3 ] P. J. Hilton and J. H. C. Whitehead, Note on the Whitehead product, Annals of Math.,58 (1953), 429–442.
[ 4 ] M. Masuda, S1-actions on twisted CP3, J. Fac. Sci. Univ. Tokyo, 33 (1984), 1–31.
[ 5 ] M. Mimura and N. Sawashita, On the group of self-homotopy equivalences of principalS3- bundles over spheres, Hiroshima Math. J., 14 (1984), 415–424.
[ 6 ] J. Mukai and K. Yamaguchi, Homotopy classification of twisted complex projective spaces of dimension 4, (to appear) J. Math. Soc. Japan.
[ 7 ] S. Oka, N. Sawashita and M. Sugawara, On the group of self-equivalences of a mapping cone, Hiroshima Math. J., 4 (1974), 9–28.
[ 8 ] S. Sasao, On homotopy type of certain complexes, Topology 3 (1965), 97–102.
[ 9 ] H. Toda, Composition methods in homotopy groups of spheres, Annals of Math. Studies 49, Princeton Univ. Press, 1962.
[10] G. W. Whitehead, Elements of homotopy theory, Graduate Texts in Math., 61 (1978), Springer-Verlag.
[11] K. Yamaguchi, The group of self-homotopy equivalences of S2-bundles over S4, I, II, Kodai Math. J., 9 (1986), 308–326; ibid., 10 (1987), 1–8.
[12] K. Yamaguchi, Remark on cup-products, Math. J. Okayama Univ.,46(2004), 115–120.
[13] K. Yamaguchi, Connective coverings of a few cell complexes, (to appear) Math. J.
Okayama Univ.
Kohhei Yamaguchi
Department of Information Mathematics University of Electro-Communications
Chofu, Tokyo 182-8585 Japan E-mail: [email protected]