2017/10/12 @ Einstein Toolkit, Mallorca, Spain 2
Nonlinear dynamics
in the Einstein-Gauss-Bonnet gravity
http://www.oit.ac.jp/is/~shinkai/
Hisaaki Shinkai
(Osaka Inst. Tech., Japan)
Who am I ?
1996-99 Postdoc at WashU.
Newman-Penrose scalar in 3+1 language Cactus developer at the very initial phase Formulation Problem of Einstein equations Higher-dimensional numerical relativity
Alternative Gravity Theories, Approaches
Chair of the Board, KAGRA Scientific Congress
2017/10/12 @ Einstein Toolkit, Mallorca, Spain 3
Nonlinear dynamics
in the Einstein-Gauss-Bonnet gravity
http://www.oit.ac.jp/is/~shinkai/
Hisaaki Shinkai
(Osaka Inst. Tech., Japan)
4-dim, 5-dim, 6-dim,
… how dimensionality affects to dynamics?
Gauss-Bonnet terms
… how higher-order curvature terms affects to dynamics?
2 models
Colliding scalar pulses / Fate of wormholes
Ref: HS & Torii , PRD 96(2017)044009 [arXiv:1706.02070]
Spheroidal matter collapse
4D vs 5D
5D collapses
-- proceed rapidly.
-- towards spherically.
-- AH forms in wider ranges.
I = R
abcdR
abcdat I (t end)
Spheroidal matter collapse
4D vs 5D
Dynamics in Gauss-Bonnet gravity?
E>O PEB OFI HBOP HB>AFJD PB IO C I P FJD EB E>O PS O H PF J >J EBO 9 J J 9
E>O IFJFI I I>OO C OP>PF O EB F >H -3 O H PF J FO BT B PBA P E>RB OFJD H> FP >R FA>J B CB>P B
P E>O JBRB BBJ ABI JOP >PBA FJ C HH D >RFP JBS P F FJ J IB F >H BH>PFRFP
A 7R RH B MTE 4 .+ (& ( & & + 4ISSI 4 ., (& ( & &
6 9 EWTMI E 5 RHTMKWI (&- ,
I E >PPBJPF JO FJ 3 II JFP
8 EIHE R EYE 4 -. (&&. &( &&+
E M 2 IMLEW : W &- (& (- &
E M 2 IMLEW : W 4 .+ (& ( & &&-
Introduction
B BRTMM 8 EIHE 4 - (&&+ ( &&(
C 1L 2 7YEN 2 8 II C II 5WT L : 3-+ (& + )-(
Formulation for evolution [N+1]
Introduction (2)
JFPF>H >H B . JOP PF J RF> . JC I>H > > E
2 EGN LR I M M ME HE E0 8 DR LM R 4 .) (& & & &
BP C 0M >PF JO
TIEH FW GRPS MGE IH
Formulation for evolution [dual null]
Field Equations (1)
x + x
⌃ 0
Evolution
Formulation for evolution [dual null]
Field Equations (1)
matter variables
Field Equations (2)
evolution equations (1)
Field Equations (3)
evolution equations (2)
Field Equations (4)
@
+@
I
(5)= R
ijklR
ijklGR 5d: small amplitude waves
Colliding Scalar Waves
flat background, normal scalar field
x + x +
x x
@
+@
I
(5)= R
ijklR
ijklGR 5d: large amplitude waves
Colliding Scalar Waves
��
����
��
����
��
����
��
�� �� �� �� �� �� ��
��������������������
��������������������
��������������������
GR 5d GaussBonnet 5d
I
(5)= R
ijklR
ijklI
(5)at origin
x I
(5)= R
ijklR
ijklGaussBonnet 5d (negative α)
↵
GB= +1
↵
GB= 1
↵
GB= 0
↵
GB= 1
↵
GB= +1
↵
GB= 0
Colliding Scalar Waves max (R
ijklR
ijkl)
*4dim, 5dim, 6dim,… higher dim
*Gauss-Bonnet coupling (α>0) ̶> less growth of curvature
↵
GB= 1
↵
GB= +1
↵
GB= 0
��
����
��
����
��
����
��
�� �� �� �� �� �� ��
��������������������
��������������������
��������������������
I
(5)at origin
↵
GB= 1
↵
GB= +1
↵
GB= 0
maximum of Kretschmann invariant
BH & WH are interconvertible?
EB > B RB OFIFH> PE JP>FJ I> DFJ>HH P > BA O C> BO >JA >J B ABWJBA P > FJD E FV JO 3
7JH PEB > O>H J>P B C PEB 3O AF B O SEBPEB 3O BR HRB FJ H O IFJ O ABJOFP SEF E FO DFRBJ H >HH
, 3> S> A JP A 8E O / ) (
Black Hole Wormhole
Locally defined
by
Achronal (spatial/null) outer TH
⇨ 1-way traversable
Temporal (timelike) outer THs
⇨ 2-way traversable
Einstein eqs.
Positive energy density normal matter (or
vacuum)
Negative energy density
“exotic” matter
Appear-
ance occur naturally
Unlikely to occur naturally.
but constructible??
Wormhole Evolution
BH & WH are interconvertible?
EB > B RB OFIFH> PE JP>FJ I> DFJ>HH P > BA O C> BO >JA >J B ABWJBA P > FJD E FV JO 3
7JH PEB > O>H J>P B C PEB 3O AF B O SEBPEB 3O BR HRB FJ H O IFJ O ABJOFP SEF E FO DFRBJ H >HH
, 3> S> A JP A 8E O / ) (
Black Hole Wormhole
Locally defined
by
Achronal (spatial/null) outer TH
⇨ 1-way traversable
Temporal (timelike) outer THs
⇨ 2-way traversable
Einstein eqs.
Positive energy density normal matter (or
vacuum)
Negative energy density
“exotic” matter
Appear-
ance occur naturally
Unlikely to occur naturally.
but constructible??
Wormhole Evolution
Wormhole evolution
#
+= 0 # = 0
#
+= 0
# = 0
x
+x x x
+Positive Energy Input
= add normal scalar field
= subtract ghost field
Negative Energy Input
= add ghost scalar field
Black Hole Inflationary
Expansion
4d GR ↵ GB = 0 HS-Hayward PRD 66(2002) 044005
⌃(t)
#
+= 0 # = 0
⌃(t)
#+ = 0
# = 0
N RY JEG
E > 0 E < 0 4d GR ↵ GB = 0 HS-Hayward PRD 66(2002) 044005
#+ = 0 # = 0
#+ = 0
# = 0
x+
x x x+
Positive Energy Input
= add normal scalar field
= subtract ghost field
Negative Energy Input
= add ghost scalar field
Black Hole Inflationary
Expansion
⌃(t)
#+ = 0 # = 0
⌃(t)
#+ = 0
# = 0
Wormhole evolution N RY JEG
真貝著
タイムマシンと時空の科学
4-dim.
5-dim.
6-dim.
x
+x
S
n 2#
+= 0
# = 0
Positive Energy Black Hole
In higher dim, large instability.
(linear perturbation analysis)
Wormhole evolution in n-dim
n-dim GR ↵ GB = 0 Torii-HS PRD 88 (2013) 064027
N RY JEG
4-dim.
5-dim.
6-dim.
x
+x
S
n 2#
+= 0
# = 0
Positive Energy Black Hole
In higher dim, large instability.
(linear perturbation analysis)
Wormhole evolution in n-dim
n-dim GR ↵ GB = 0 Torii-HS PRD 88 (2013) 064027
N RY JEG
Confirmed
Numerically
↵ GB = +0.001
Wormhole evolution in Gauss-Bonnet のおさらい 5d Gauss-Bonnet WH : positive energy injection
MSmass, H.Maeda-Nozawa, PRD77 (2008) 063031
(a)
0.0 0.5 1.0 1.5 2.0
0.0 1.0 2.0 3.0 4.0 5.0 6.0
Circumference radius of throat [5dim GB alpha=+0.001]
(with perturabation of positive-energy pulse)
alpha=0.001, c1=0.1, E=+0.11 alpha=0.001, c1=0.2, E=+0.46 alpha=0.001, c1=0.3, E=+1.04 alpha=0.001, c1=0.5, E=+2.85 alpha=0.001, c1=0.7, E=+5.49
circumference radius of the throat
proper time at the throat (a)
ΔE > ΔE
5> 0 --> BH collapse
ΔE < ΔE
5--> Inflationary expansion
E < +0.5
E > +0.5
↵ GB = +0.001
Wormhole evolution in Gauss-Bonnet のおさらい 6d Gauss-Bonnet WH : positive energy injection
MSmass, H.Maeda-Nozawa, PRD77 (2008) 063031
ΔE > ΔE
6> ΔE
5> 0 --> BH collapse
ΔE < ΔE
5< ΔE
6--> Inflationary expansion
0.0 0.5 1.0 1.5 2.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Circumference radius of throat [6dim GB alpha=+0.001]
(with perturabation of positive-energy pulse)
alpha=0.001, c1=0.50, E=+1.5276 alpha=0.001, c1=0.60, E=+2.1954 alpha=0.001, c1=0.65, E=+2.5790 alpha=0.001, c1=0.70, E=+2.9896
circumference radius of the throat
proper time at the throat
(b) (b)
E > +2.2
E < +2.2
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0 0.5
1.0 1.5
2.0 2.5
3.0 3.5
4.0
horizon
locations
(alpha=+0.01, with
perturbation
of positive energy)
theta_+=0 : alpha=0.01,
a=0.0
theta_-=0
: alpha=0.01, a=0.0
theta_+=0 : alpha=0.01,
a=0.5
theta_-=0 : alpha=0.01,
a=0.5
theta_+=0 : alpha=0.01,
a=0.6
theta_-=0
: alpha=0.01, a=0.6
theta_+=0 : alpha=0.01,
a=0.7
theta_-=0 : alpha=0.01,
a=0.7
theta_+=0 : alpha=0.01,
a=0.8
theta_-=0
: alpha=0.01, a=0.8
xminus xplus
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0 0.5
1.0 1.5
2.0 2.5
3.0 3.5
4.0
horizon
locations
(alpha=+0.01, with
perturbation
of positive energy)
theta_+=0 : alpha=0.01, a=0.77 theta_-=0 : alpha=0.01, a=0.77
theta_+=0 : alpha=0.01, a=0.78 theta_-=0 : alpha=0.01, a=0.78
theta_+=0 : alpha=0.01, a=0.79 theta_-=0 : alpha=0.01, a=0.79
theta_+=0 : alpha=0.01, a=0.80 theta_-=0 : alpha=0.01, a=0.80
xminus xplus