• Tidak ada hasil yang ditemukan

On Absolute Convergence of Fourier Series of Function

N/A
N/A
Protected

Academic year: 2024

Membagikan "On Absolute Convergence of Fourier Series of Function"

Copied!
4
0
0

Teks penuh

(1)

1 Sci. Rep. Fukushirna  Univ. No.30 (1980)

On  Absolute  Convergence  of  Fourier of  Class  A̲BV'p'

Masaaki  SHIBA

f R e e ? f l e d   1  S e p t e m b e r , 1 9 8 0  

Series  of  Function 

Let f(x) be  an  integrable 2π‑periodic  function [0,2π) and  its  Fourier  series  be

f(:x;)‑ a./2十Σ ̲,(a.cosM‑十bns inn:,,).

If Σ°°,(jan十b 1) < °°, then  we  say  that  the  Fourier  series  of f converges absolutely  and  we  write fi∈A. We  befine  the  modulus  of  continuity  of  f by

o ((f ;f )= sup  lf( ,,1̲ f( :,:) 1

l' ‑ ' く 3

and  the  integrated  modulus  of  continuity  of f by

°p(cf ;f ) e?j?3(S: Ifて'‑1‑h)‑ f(x) 'dx')f'

for  p≧1. It  is  well  known  that (?p((i f )d" (」ii (? f ) and ??? o ptδ:,f )= o ((i ;f )

We  known  two  famous  theorems  about  absolute  convergence  of  Fourier  series  in  the  followings (c.f. [1], [2], and [10]).

THEOREM  A. (0.SZASZ) If

Σ二=,n ‑'' (・)2(1/n ;f )< 00 ,

then f∈A.

COROLLARY  B.(S.BERNSTEI N)  l f

Σ二,n‑''20 (1/n;f )< 00, then  f ∈A.

THEOREM  C. (A.ZYGMUND) If f is  of bounded ,,ariatzon (f∈BV) and

Σ二 n ‑'''Io (1/n ;f )1''',

then  f∈A.

Further, we  know  the  bridge  theorem  between  Theorem  A  and  Theorem  C (c.f.M.

and  S. Izumi [2]). For  this, we  need  the  notion  of  r‑bounded  variation (B.V'「), which  is  defined  as  follows.

DEFINITION, f  is  cal led  to be of p̲bounded  M riation (fi∈BV'p?, when 

(2)

2

8  M.Shlba :On  Absol ute  Convergence  of Fourier  Series  of  Function  of  Class  A̲BVlp1

:ヨ M> 0; ( Σ:'1f I )l「)''≦M

f or  any  di1,i si,on e = :x。< ?1,< ̲ < x.= 2n:, ωhere  toe  pu t  I ,= 1:r :x1̲,,] and   f(I ,)= fて:t )‑ f(実1 +,) 

THOREM  D.(M.AND  S.IZUM1) 1< p < 00,1/p十1/(j= l and  1 ≦r< 2p.

If  f∈BV'「' and

Σ n ̲ ,n ‑ ''‑ ''' l t? . 2 ̲ ,,. (π / n ;f ) 1'‑ 「 f 2p< 0 0 ,

th,on  f∈A.

If  r= t anh p → 1  then  Theorem  D reduces  to  Theorem  C. If  r →00  and p →00 such  that  r/p →0, then  Theorem  D  reduces  to  Theorem  A.

In  this note,we  show  the  absolute  convergence  of  Fourier  series  of a  function  of

A‑bouded  variation  of order  p (A‑BV('))(c.f.M.Shiba[31‑ [5] and  D.Waterman [6]‑ [9]) 

Let A = 1λ.t he  a  non‑decreasing  sequence  of  positive  numbers  such  that Σλ'= 00 ,  and  let  li t  be  a  sequence  of  non‑overlapping  intervals  I = ?1x;.y?⊂[0,2π].

DEF INIT ION.  T he  function  zs  said  to be of  A ̲bounded  vari,ati on of order  p (p≧1) ,  zf 1Σ1f lyn)‑ f(? )l'/λ.1' c(y,,oerges  f or  et,cry  choice of l Inl. The  supremun of  these sums  ts  cal led  ifle  A ̲l,ari ati,on  of   order  p ot  f , denoted  by  VA'p (f ;[0 .2n:))(or  VAlp

(f)).

THEOREM. f ∈A̲BV(p, l ≦p< 2r, 1< r< 00  and s‑'十r‑'= 1

If 

Σ °°, λ.‑''2'/ n ‑ '2' l o p? l2̲p1s (π/ n ;f ) l '‑ °''< 0 0 ,

then /l∈A.

PROOF  OF  THEOREM. From  Parseval's  equality

(t /π)S:[f‑ )‑ fて? h)]dr = 4Σ°°,p sinnh, If =̲a 十b By  2‑‑ p/r 十(2‑ p/r)= p/r 十1(2‑ p)s十pl/s,

? If‑ kπ/N)‑f一 ̲ π /tv)12dr

= ? : If '1,十kπ/N)‑ f (? 十? ,,/N )Ip/「'' 一 一 Sda

≦I S:[f (a,十kπ/N)‑ f(x‑r k‑ 1π/N)]'‑ '一一 ''/ス''d:, l?:N

≦I S: 「 (?十kπ/N )‑ f li ;十k ‑ i π/N)] /λ一 '''x

1? : lf 1,,十kn,/N)‑ f iてi i‑i 二1 11 /N)] ‑ ''d? 1'f ・λN d

" 1o , .s,.。(π/Nf )l' ‑ ' ''・ A N X IS [f (,;‑1‑Io' /N )‑ f (r 十k :: 1π/N「 /λda ?''' 

(3)

3

Sci. Rep. Fukushima  Univ. No.30 (1980)  9

Therefore

ΣN,1? : [f1?十kn:/N)‑ f(r十k‑:1π/N「 d?1'

≦一 o ‑ ・(π/tv;f )12' °Σ '̲ S [f(x 十kπ/N )‑ fて一 k‑ If,:/N)「 /λ.dx

≦ λ,N1(・サ,... .。(π/ tv ;f ) 12「 '1VAp (f ;[0 ,2 π)) 1°

≦ C ? .N 1(? ・ +・ (π /N ;n 12「‑ '

So  we  have

Σ? 10 sin2(nπ/21V)< C? N'「10 1.̲. ̲, (π/N ;f )12‑'/ N‑''「

and  then,

Σ n p 2≦ N +'''λN 「loo,̲p.+.( π/N ;f )12‑''「.

Putting  Ip .= Σ:k? , then  we  get 9b・= n''2(Σkp 2)'f2. So,

,j ; n ' f 2S λn f ' 「 10 12 ̲ .? .p / n ; f ‑ ) 1 ' ‑ ' '' 「

and 

Σ 'p . = Σ 1,i, ‑ ,f; ̲,)/N

= Σ''‑'lj,(1/n十1/n? )十tpN/N

≦Σ '「‑'(1j,n/n )十,PN /N

≦ ? '‑ 'λn'2「1(,o 2̲。̲ (π / N ; f )1‑ °2「/n '‑ ''十 N ' ''? N'''ta ;1 1.+ .(π / N ;f )1'‑pf 「. 

By  the  hypotheses, from  N→°°,Σp < °°.

COROLLARY  l.  f ∈1na1‑BV(pi, 1< p< 2r, 1< r< °°, s‑'十r‑'= 1 and 0< α< 1. If

Σ ' n '‑ °/' 'a ' ‑ 'Io . + 2 ̲ p:,.( π / n ; f ) 1'‑ p' '「< 0 0 ,

then, f ∈A.

Putting λ,= n (0d" a:d" 1) in  Theorem, we  have  Corollary 1.

REMARKS;  If p →l and  s →°°, Theorem  and  Corollary  l  reduce  to  the  results  of  D.Waterman [6]. If p →°o, and  r →o°such  that  p/r →0, then  Theorem  and Coroll ry l reduce  to  Theorem  A. If a = 0 in  Cororally 1, we  have  the  result  of M 

and  S. Iz umi [2].

If  we  put  s →00, we  get  the  following  from  Corollary  1, 

(4)

4

10  M. Shiba :On  Absolute  Convergence  of Fourier  Series  of  Function  of Class  A̲BV lp1 

COROLLARY 2.  f ∈1n 1‑BV pi, 1≦p< 2,

Σ °°,n '‑'10 (71 /n ;f )1'‑ f < 00 ,

then  f ∈A. 

If 

The auther  wishes  to thank  Prof. S.Izumi  f or  his  careful reading of this  paper 

REFERENCES

[1] N.Bari ;Treaties on Trlgonometric  series,  II , Pergamon, 1964.

[2] M.and  S̲Izumi  0n  absolute  convergence of  Fourier  series, Arkiv  for  Math.

7(12),1967, 177‑184.

[3] M.Shiba; 0n  Zygmund's  theorem  for  A̲bounded  variation of order  p, (to appear in  Math. bileten).

[4] ̲ ; The  uniform  convergence of  Fourier  series of A̲bounded  variation, (to appear  in  Mathematic  Analysis).

[5] ̲ ;0n  the  Fourier  coeffcients of  a  functions of  A‑bounded  variation (to appear  in  Pubric. de l'institute  Math.).

[6l D.Waterman; 0n  convergence of  Fourier  series of  functions of  generalized  bounded variation, Studia  Math. 44, 1972, 107‑117; errata, imbid, 44, 1972,651.

[7] ̲ ; 0n  the  summability of  Fourier  series of  functions of A‑bounded  variation,

・  Studia  Math.55  1976  87̲95.

[8] ̲ ; On  A̲bounded  variation, Studia Math.57,  1976, 33̲45.

[9] ̲ ; Fourier  series  of  functions  of A̲bounded  variation, Proc. of  the  Amer.

Math.Soc. 77,  1979,  119̲123.

[10] A.Zygmund; Trigonometric  series  I, Cambridge, 1959.

Department  of  Math̲

Faculty  of  Education Fukushima  University,

Fukushima,960‑12,Japan. 

Referensi

Dokumen terkait

Dung and Son [4] established the rate of convergence in the central limit theorem for arrays of martingale difference random vectors in the bounded Lipschitz metric.. In this article,

5 4.4 A general advice 4.5 Elementary standard series 4.6 Types of Convergence 4.7 An elaboration on the ow diagram 4.8 Convergence tests 4.9 Series of functions 5 Power series;

The main purpose of this note is to establish some connections between the weak convergence of the L1- random variables denoted by ⇒ and the convergence of the dispersion functions in

CONCLUSION The Fourier series can analyze electrical circuits to generate rms voltage and voltage data where odd harmonics are large, then the voltage 𝑉 and RMS voltage 𝑉𝑅𝑀𝑆 are

Keywords: measurable functions; integrable functions; functions of bounded variation; Cauchy- Bunyakovsky-Schwarz inequality; Grüss’ type inequalities; ˇCebyšev functional 1.. For two

Shintani, On values at s = 1 of certain L functions of totally real algebraic number fields, in Algebraic Number Theory, Proc.. Urfels, Fonctions L p-adiques et vari´et´es ab´eliennes

Data Analysis Procedure The procedure in data analysis that is related to estimation contribution of Suroboyo bus with nonparametric regression used complete Fourier series estimator

[r]