Phenomenology of
SUSY neutrinophilic Higgs GUT
Kunio KANETA (Osaka Univ.)
in collaboration with N. Haba (Osaka Univ.)
Y. Shimizu (Tohoku Univ.) 14 Mar. 2012 @Kobe Univ.
workshop “Beyond the Standard Model and The Origin Of Higgs”
Contents
1. Introduction
2. Gauge Coupling Unification
3. Flavor Violating processes
4. Summary
1. Introduction
1. Introduction
☆ Introduction to νHDM Question:
Why neutrino masses are tiny comparing to other fermions?
mνe/me ∼< 10−5, . . . e.g)
models provide why is tiny A lot of explanations (models):
For example,
m
ν∼ y
ν� φ � y
νmodels provide what is origin of mν ∼ yν2 �φ��φ�
M
M
let us consider another possibility
with
“neutrinophilic Higgs doublet model (νHDM)”
m
ν∼ y
ν� φ
ν�
�φν� ∼ 0.1 eV☆
☆
How can get tiny VEV?
☆ Higgs potential
V = ! m
"2| " |
2+ m
"2#| "
#|
2+ m
32( "
†"
#+ "
#†" ) + $
12 | " |
4+ $
22 | "
#|
4+ $
3| " |
2| "
#|
2+ $
4("
†"
#)("
#†") + $
52 [("
†"
#)
2+ ("
#†")
2]
| m32 | ! m!2 ,m!2"
☆Higgs potential:
NH, M.Hirotsu Eur. Phys. J. C69, 481 (2010).
fields Z2-charge
SM fields (SM Higgs: Φ) +
νR: N ー
νHiggs doublet:Φν ー
☆ Z2 sym. (which distinguishes Φν from Φ )
☆Yukawa interactions:
LYukawa = yuQ!U + ydQ!D + yeL!E + y"L!"N +M NcN
!"#$%&%$'(&
)$*+#$,$&%$'(&
wanted vacuum is
〈Φ〉~100 GeV ≫ 〈Φν〉~0.1 eV/yν (Dirac) or 0.1 MeV/yν (Majorana)
E. Ma (2001, 2006), E. Ma and M. Raidal (2001), N. H. and K. Tsumura (2010), N. H. and O. Seto (2010)
F. Wang, W. Wang and J. M. Yang (2006), S. Gabriel and S. Nandi (2007), G. Marshall, M. McCaskey, M. Sher (2010), S. M.
Davidson and H. E. Logan (2009, 2010),
NH, M.Hirotsu Eur. Phys. J. C69, 481 (2010).
with symmetryZ2
(to distinguish from )
φ
νφ
N.Haba, M.Hirotsu, Eur.Phys.J. C69, 481 (2010)
1. Introduction
φ
ν☆ Higgs potential
V = ! m
"2| " |
2+ m
"2#| "
#|
2+ m
32( "
†"
#+ "
#†" ) + $
12 | " |
4+ $
22 | "
#|
4+ $
3| " |
2| "
#|
2+ $
4("
†"
#)("
#†") + $
52 [("
†"
#)
2+ ("
#†")
2]
| m32 | ! m!2 ,m!2"
☆Higgs potential:
NH, M.Hirotsu Eur. Phys. J. C69, 481 (2010).
fields Z2-charge
SM fields (SM Higgs: Φ) +
νR: N ー
νHiggs doublet:Φν ー
☆ Z2 sym. (which distinguishes Φν from Φ )
☆Yukawa interactions:
LYukawa = yuQ!U + ydQ!D + yeL!E + y"L!"N +M NcN
!"#$%&%$'(&
)$*+#$,$&%$'(&
wanted vacuum is
〈Φ〉~100 GeV ≫ 〈Φν〉~0.1 eV/yν (Dirac) or 0.1 MeV/yν (Majorana)
E. Ma (2001, 2006), E. Ma and M. Raidal (2001), N. H. and K. Tsumura (2010), N. H. and O. Seto (2010)
F. Wang, W. Wang and J. M. Yang (2006), S. Gabriel and S. Nandi (2007), G. Marshall, M. McCaskey, M. Sher (2010), S. M.
Davidson and H. E. Logan (2009, 2010),
NH, M.Hirotsu Eur. Phys. J. C69, 481 (2010).
with symmetryZ2
(to distinguish from )
φ
νφ
soft symmetry breaking mass parameterZ2
N.Haba, M.Hirotsu, Eur.Phys.J. C69, 481 (2010)
1. Introduction
How can get tiny VEV?
φ
νV = !m"2 | " |2 +m"2# | "# |2 +m32("†"# + "#†")+ $1
2 | " |4 + $2
2 | "# |4 +$3 | " |2| "# |2 +$4("†"# )("#†") + $5
2 [("†"# )2 + ("#†")2]
| m32 | ! m!2 ,m!2"
dV
d! = 0 " #!$ = 2m!2
%1
V
!"#
• !
☆Higgs potential:
NH, M.Hirotsu Eur. Phys. J. C69, 481 (2010).
☆ Higgs potential
N.Haba, M.Hirotsu, Eur.Phys.J. C69, 481 (2010)
1. Introduction
How can get tiny VEV?
φ
ν| m32 | ! m!2 ,m!2"
V
!"#
•
V = !m"2 | " |2 +m"2# | "# |2 +m32("†"# + "#†") + $1
2 | " |4 + $2
2 | "# |4 +$3 | " |2| "# |2 +$4("†"# )("#†") + $5
2 [("†"# )2 + ("#†")2]
!"#$
!"
• •
dV
d! = 0 " #!$ = 2m!2
%1
☆Higgs potential:
NH, M.Hirotsu Eur. Phys. J. C69, 481 (2010).
dV
d!" = 0 # $!"% ! m32$!%
m!2"
!
☆ Higgs potential
� φ
ν� � � φ �
N.Haba, M.Hirotsu, Eur.Phys.J. C69, 481 (2010)
1. Introduction
How can get tiny VEV?
φ
νlarge & tinym2φν
m
23“see-saw”
☆ SUSY SU(5) GUT embedded νHDM
by the way, there is a fascinating relation among 3 scales ...
TeV
2∼ m
ν× M
GUTEnergy 1016 GeV
TeV 0.1 eV
an accident? or indicating new physics?
1. Introduction
N.Haba, Europhys.Lett., 96 (2011) 21001
☆ SUSY SU(5) GUT embedded νHDM
by the way, there is a fascinating relation among 3 scales ...
TeV
2∼ m
ν× M
GUTEnergy 1016 GeV
TeV 0.1 eV
an accident? or indicating new physics?
as a positive stance
m
ν∼ TeV
2/M
GUT1. Introduction
N.Haba, Europhys.Lett., 96 (2011) 21001
☆ SUSY SU(5) GUT embedded νHDM
by the way, there is a fascinating relation among 3 scales ...
TeV
2∼ m
ν× M
GUTEnergy 1016 GeV
TeV 0.1 eV
an accident? or indicating new physics?
as a positive stance
m
ν∼ TeV
2/M
GUT1. Introduction
�Hν(�)� ∼ ρ(�)�Hu(d)�/M
O(1) TeV
M
GUTSUSY
dynamically realized
N.Haba, Europhys.Lett., 96 (2011) 21001
W
h= µH
uH
d+ M H
νH
ν�+ ρH
uH
ν�+ ρ
�H
νH
d☆ SUSY SU(5) GUT embedded νHDM
by the way, there is a fascinating relation among 3 scales ...
TeV
2∼ m
ν× M
GUTEnergy 1016 GeV
TeV 0.1 eV
1. Introduction
O(1) TeV
M
GUTSUSY SU(5) GUT
W
hGUT= M
0trΣ
2+ λtrΣ
3+ 5Σ¯5 − M
15¯5 + 5
νΣ¯5
ν�− M
25
ν¯5
ν�N.Haba, Europhys.Lett., 96 (2011) 21001
(similar model: R.Kitano, PLB539, 102 (2002))
W
h= µH
uH
d+ M H
νH
ν�+ ρH
uH
ν�+ ρ
�H
νH
d☆ SUSY SU(5) GUT embedded νHDM
by the way, there is a fascinating relation among 3 scales ...
TeV
2∼ m
ν× M
GUTEnergy 1016 GeV
TeV 0.1 eV
1. Introduction
O(1) TeV
M
GUTSUSY SU(5) GUT
W
hGUT= M
0trΣ
2+ λtrΣ
3+ 5Σ¯5 − M
15¯5 + 5
νΣ¯5
ν�− M
25
ν¯5
ν�N.Haba, Europhys.Lett., 96 (2011) 21001
(similar model: R.Kitano, PLB539, 102 (2002))
W
h= µH
uH
d+ M H
νH
ν�+ ρH
uH
ν�+ ρ
�H
νH
d☆ SUSY SU(5) GUT embedded νHDM
by the way, there is a fascinating relation among 3 scales ...
TeV
2∼ m
ν× M
GUTEnergy 1016 GeV
TeV 0.1 eV
1. Introduction
O(1) TeV
M
GUTSUSY SU(5) GUT
W
hGUT= M
0trΣ
2+ λtrΣ
3+ 5Σ¯5 − M
15¯5 + 5
νΣ¯5
ν�− M
25
ν¯5
ν�N.Haba, Europhys.Lett., 96 (2011) 21001
(similar model: R.Kitano, PLB539, 102 (2002))
W
h= µH
uH
d+ M H
νH
ν�+ ρH
uH
ν�+ ρ
�H
νH
d☆ SUSY SU(5) GUT embedded νHDM
by the way, there is a fascinating relation among 3 scales ...
TeV
2∼ m
ν× M
GUTEnergy 1016 GeV
TeV 0.1 eV
1. Introduction
O(1) TeV
M
GUTSUSY SU(5) GUT
W
hGUT= M
0trΣ
2+ λtrΣ
3+ 5Σ¯5 − M
15¯5 + 5
νΣ¯5
ν�− M
25
ν¯5
ν�non-renormalizable term contributions (e.g. Giudice-Masiero mech.)
N.Haba, Europhys.Lett., 96 (2011) 21001
(similar model: R.Kitano, PLB539, 102 (2002))
and can be SUSY scale
W
h= µH
uH
d+ M H
νH
ν�+ ρH
uH
ν�+ ρ
�H
νH
dρ ρ
�2. Gauge Coupling Unification
2. Gauge coupling unification
☆ minimal SU(5) GUT
・For gauge coupling unification (GCU)
( threshold correction)
・For avoiding proton decay
it is difficult to take satisfying parameters ...
GeV
GeV
m
T∼ 5 × 10
14m
T> 2 × 10
16T
T
: color triplet Higgs let us remember the mass of color-triplet Higgs☆ SUSY neutrinophilic Higgs GUT matter sector superpotential
2. Gauge coupling unification
i, j : family
W = 1
4 f
uij10
i10
jH + √
2f
dij10
i¯5
jH ¯ + f
νij1
i¯5
jΦ
ν☆ SUSY neutrinophilic Higgs GUT matter sector superpotential
2. Gauge coupling unification
i, j : family
( diagonalizes )
V
Dm
ν¯5 = { (V
D)
ijD ¯
j, (V
D)
ijL
j} 10 = { Q
i, U
i, (V
KM)
ijE ¯
j}
in MSSM fields
W = 1
4 f
uij10
i10
jH + √
2f
dij10
i¯5
jH ¯ + f
νij1
i¯5
jΦ
ν1 = { N ¯
i}
☆ SUSY neutrinophilic Higgs GUT
2. Gauge coupling unification
i, j : family
Φ
ν= { T
ν, H
ν}
matter sector superpotential
in MSSM fields
H = { T, H
u}
H¯ = {T , H¯ d}W = f
uiQ
iU
iH
u+ (V
KM∗)
ijf
djQ
iD
jH
d+ f
diE
iL
iH
d− f
νiV
DijN
iL
jH
ν+ f
uj(V
KM)
jiE
iU
jT − 1
2 f
uiQ
iQ
iT
+ (V
KM∗)
ijf
djU
iD
jT ¯ − (V
KM∗)
ijf
djQ
iL
jT ¯ + f
νiV
DijN
iD
jT
νW = 1
4 f
uij10
i10
jH + √
2f
dij10
i¯5
jH ¯ + f
νij1
i¯5
jΦ
ν2. Gauge coupling unification
☆ SUSY neutrinophilic Higgs GUT
W = fuiQiUiHu + (VKM∗ )ijfdjQiDjHd + fdiEiLiHd − fνiVDijNiLjHν + fuj(VKM)jiEiUjT − 1
2fuiQiQiT
+ (VKM∗ )ijfdjUiDjT¯ − (VKM∗ )ijfdjQiLjT¯ + fνiVDijNiDjTν
avoiding proton decay
2. Gauge coupling unification
☆ SUSY neutrinophilic Higgs GUT
(e.g.)
τ(p → K+ν¯e) ∼> 1033 (years)
Q
Q Q ˜ Q L ˜
L
W ,˜ Z,˜ B˜
T ˜ m
T> 2 × 10
16 GeVW = fuiQiUiHu + (VKM∗ )ijfdjQiDjHd + fdiEiLiHd − fνiVDijNiLjHν + fuj(VKM)jiEiUjT − 1
2fuiQiQiT
+ (VKM∗ )ijfdjUiDjT¯ − (VKM∗ )ijfdjQiLjT¯ + fνiVDijNiDjTν
nothing to do with proton decay
however, contributes running.
T
να
sm
Tν∼ 5 × 10
14GeV
andcompatible with GCU and proton-stability mTν ∼ 5 × 1014 GeV for GCU
2. Gauge coupling unification
☆ SUSY neutrinophilic Higgs GUT
m
T> 2 × 10
16GeV
W = fuiQiUiHu + (VKM∗ )ijfdjQiDjHd + fdiEiLiHd − fνiVDijNiLjHν + fuj(VKM)jiEiUjT − 1
2fuiQiQiT
+ (VKM∗ )ijfdjUiDjT¯ − (VKM∗ )ijfdjQiLjT¯ + fνiVDijNiDjTν
3. Flavor Violating processes
3. Flavor Violating processes
☆ SUSY neutrinophilic Higgs GUT
W = fuiQiUiHu + (VKM∗ )ijfdjQiDjHd + fdiEiLiHd − fνiVDijNiLjHν + fuj(VKM)jiEiUjT − 1
2fuiQiQiT
+ (VKM∗ )ijfdjUiDjT¯ − (VKM∗ )ijfdjQiLjT¯ + fνiVDijNiDjTν
☆ SUSY neutrinophilic Higgs GUT
3. Flavor Violating processes
L
iL
jN
kfνkVDki fνkVDkj
N
kfνkVDki fνkVDkj
D
iD
jMP MTν
MP MTν
below the GUT scale directly related with neutrino mixing flavor off-diagonal components for slepton and down-type squark
(δm2L)ij � − fν2k
8π2(VD∗)ki(VD)kj(3m20 + a20) log (δm2D)ij � − fν2k
8π2(VD∗)ki(VD)kj(3m20 + a20) log
W = fuiQiUiHu + (VKM∗ )ijfdjQiDjHd + fdiEiLiHd − fνiVDijNiLjHν + fuj(VKM)jiEiUjT − 1
2fuiQiQiT
+ (VKM∗ )ijfdjUiDjT¯ − (VKM∗ )ijfdjQiLjT¯ + fνiVDijNiDjTν
H
νT
ν3. Flavor Violating processes
comparison with SU(5) + right-handed neutrinos (Majorana)
☆ SUSY SU(5) GUT with
N
R☆ SUSY neutrinophilic Higgs GUT
W = 1
4 f
uij10
i10
jH + √
2f
dij10
i¯5
jH ¯ + f
νij1
i¯5
jΦ
νW = 1
4 f
uij10
i10
jH + √
2f
dij10
i¯5
jH ¯ + f
νij1
i¯5
jH + M
ij1
i1
j3. Flavor Violating processes
☆ SUSY SU(5) GUT with
N
R☆ SUSY neutrinophilic Higgs GUT
comparison with SU(5) + right-handed neutrinos (Majorana)
W = fuiQiUiHu + (VKM∗ )ijfdjQiDjHd + fdiEiLiHd − fνiVDijNiLjHν + fuj(VKM)jiEiUjT − 1
2fuiQiQiT
+ (VKM∗ )ijfdjUiDjT¯ − (VKM∗ )ijfdjQiLjT¯ + fνiVDijNiDjTν
W = fuiQiUiHu + (VKM∗ )ijfdjQiDjHd + fdiEiLiHd − fνiVDijNiLjHu + fuj(VKM)jiEiUjT − 1
2fuiQiQiT + 1
2MijNiNj
+ (VKM∗ )ijfdjUiDjT¯ − (VKM∗ )ijfdjQiLjT¯ + fνiVDijNiDjT
3. Flavor Violating processes
☆ SUSY SU(5) GUT with
N
R☆ SUSY neutrinophilic Higgs GUT
MP MTν
Li Lj
Nk
fνkVDki fνkVDkj
D
i DjNk
fνkVDki fνkVDkj
M
PM
N MP MTν( diagonalizes MVM N)
comparison with SU(5) + right-handed neutrinos (Majorana)
(δm2L)ij � − fν2k
8π2(VD∗)ki(VD)kj(3m20 + a20) log (δm2D)ij � −fν2k
8π2(VD∗)ki(VD)kj(3m20 + a20) log
M
PM
T(δm2L)ij � −fνkfνm
8π2 (VD∗)ki(VM∗ )lk(VM)lm(VD)mj(3m20 + a20) log
(δm2D)ij � −fνkfνm
8π2 (VD∗)ki(VM∗ )lk(VM)lm(VD)mj(3m20 + a20) log
(MT > MGUT)
W = fuiQiUiHu + (VKM∗ )ijfdjQiDjHd +fdiEiLiHd −fνiVDijNiLjHν +fuj(VKM)jiEiUjT − 1
2fuiQiQiT
+ (VKM∗ )ijfdjUiDjT¯ − (VKM∗ )ijfdjQiLjT¯ +fνiVDijNiDjTν
W = fuiQiUiHu + (VKM∗ )ijfdjQiDjHd +fdiEiLiHd −fνiVDijNiLjHu +fuj(VKM)jiEiUjT − 1
2fuiQiQiT + 1
2MijNiNj
+ (VKM∗ )ijfdjUiDjT¯ −(VKM∗ )ijfdjQiLjT¯ + fνiVDijNiDjT
H
uT
3. Flavor Violating processes
☆ SUSY SU(5) GUT with
N
R☆ SUSY neutrinophilic Higgs GUT
MP MTν
M
PM
NMP MTν
・In SUSY SU(5) with , if mass matrix is ,
in SUSY νH GUT is larger than that of SUSY SU(5) with
N
R( > 6 %)
・Predictability is improved in SUSY neutrinophilic Higgs GUT because neutrinos have only Dirac mass.
⇨ Let us focus on , andµ → eγ, τ → µγ
b → sγ
N
Rcomparison with SU(5) + right-handed neutrinos (Majorana)
(δm2L)ij � − fν2k
8π2(VD∗)ki(VD)kj(3m20 + a20) log
(δm2D)ij � −fν2k
8π2(VD∗)ki(VD)kj(3m20 + a20) log
(δm2L)ij � −fνkfνm
8π2 (VD∗)ki(VM∗ )lk(VM)lm(VD)mj(3m20 + a20) log
(δm2D)ij � −fνkfνm
8π2 (VD∗)ki(VM∗ )lk(VM)lm(VD)mj(3m20 + a20) log
M
PM
T(MT > MGUT)
N
RM
ij= M
iδ
ij(δm2D)ij
3. Flavor Violating processes
Br(b → sγ) − Br(µ → eγ)
☆
large θ13 region becomes restricted in
µ → eγ
m1/2 (GeV)
500 600 700
Preliminary
800Br(b → sγ) − Br(τ → µγ)
3. Flavor Violating processes
☆
(When θ13 becomes large, )Br(τ → µγ)/Br(µ → eγ) ∼ 10
m1/2 (GeV)
500 600 700
Preliminary
8003. Summary
・tiny neutrino mass can be realized by introducing
We discussed GCU and Flavor Violation in SUSY neutrinophilic Higgs GUT
(neutrino Yukawa can be of order 1) In SUSY neutrinophilic Higgs GUT,
In νHDM
・gauge coupling unification and proton decay can be compatible because can be lighter than GUT scale.
・LFV and are correlated with each other,
and can be larger than SUSY SU(5) + right-handed neutrino.
b → sγ
work in progress
other B physics
φ
νT
ν・Flavor violating processes are directly related with MNS matrix.
Br(b → sγ)
・If ~ GUT and ~ SUSY scale, ~ 0.1 eV.
M
φνm
3m
ν/y
ν= � φ
ν�