Proc. of 15th Int. Joint Conf. on Artificial Intelligence pp. 1194-1200, Nagoya, Japan, August 1997
Vision-Motion Planning of a Mobile Robot
considering Vision Uncertainty and Planning Cost
Jun Miura and Yoshiaki Shirai
Dept. of Computer-ControlledMechanicalSystems, OsakaUniversity
Suita, Osaka565, Japan
Email: [email protected]
URL: http://www-cv.mech.eng.osaka-u.ac.jp/~jun/
Abstract
This pap er prop oses a planning metho d for
a vision-guided mobile rob ot under vision un-
certaintyandlimitedcomputationalresources.
Themetho dconsidersthefollowingtwo trade-
os: (1) granularityin approximatinga prob-
abilistic distributionvs. plan quality, and (2)
searchdepthvs. plan quality. Therst trade-
o is managed by predicting the plan quality
for a granularity using a learned relationship
b etweenthem,and byadaptivelyselectingthe
b estgranularity. Thesecond trade-o is man-
agedbyformulatingthe planning pro cessas a
searchinthespaceoffeasibleplans,andbyap-
propriatelylimitingthesearchconsidering the
meritofeachstepofthesearch. Simulationre-
sultsand exp erimentsusing a real rob otshow
thefeasibilityofthemetho d.
1 Intro duction
There has been an increasing interest in autonomous
mobile rob ot which recognizes anenvironment with vi-
sion and moves without guidance of human op erators.
A key to realize such a rob ot is the ability to gener-
ate a plan of vision and motion operations so that a
robot may ecientlyreach the destination. To design
a planning algorithm for sucha rob ot, we haveto con-
siderthefollowingtwoissues: limitedcomputationalre-
sourcesanduncertaintyinvisualdata. Thesetwoissues
are closely related; planning based on uncertain data
usually requiresmore computationthan planningwith-
out uncertainty because multiple p ossible outcomes of
actionsshould beconsidered, and therefore,thelimita-
tionofcomputationalresourcestendstob ecritical.
Oneoftheusefulto olsforplanningunderuncertainty
is statistical decision theories
[Berger, 1985].
Several
worksappliedstatisticaldecisiontheorytovisionand/or
motionplanningtasks(e.g.,
[Hutchinson
andKak, 1989]
[Cameron
andDurrant-Whyte,
1990][Dean
et al., 1990]
[
Miura and Shirai, 1993 ]
). Onedrawback of these ap-
proachesisthatalargebranchingfactorofasearchtree,
whichisdeterminednotonlybythenumb erofpossible
totheuncertaintyofsensorydata,makesaplanningpro-
cesscomputationallyexp ensive.
Regarding thelimitation of computational resources,
manyworkshaverecentlyb eenfo cusingontheconcept
oflimitedrationality [
RussellandWefald,1991 ]
,inwhich
thecostofplanningisexplicitlyconsideredandthetime
for object-levelplanning is allo catedso that theoverall
utility including b oth plan eciency and planning cost
is maximized. Someof examples are: exible computa-
tion
[Horvitz,1990],
decision-theoreticmeta-levelcontrol
of (object-level) reasoning [
Russell and Wefald, 1991 ]
,
and exp ectation-driveniterative renement(EDIR)us-
inganytimealgorithms
[Bo ddy
andDean, 1989].
This pap er is concerned with a vision-motion plan-
ningofamobilerobotconsideringvisionuncertaintyand
planning cost. Fig. 1 showsan exampleproblem. Our
mobile rob ot isgoing to the destination while avoiding
obstacles. Thereisaroutewhichpassesthenarrowspace
(wecallitthegate)b etweentheb oardandthepartition;
howeverthepassability ofthegate isinitially unknown
duetotheuncertaintyofvisualdata. Thedetourpassing
throughthehallwayisknowntob epassable,althoughit
islonger. Therob otestimatesthegatewidthwithstereo
vision to determine thepassability. Theplanner deter-
mines a set ofobservationp ointswhichecientlynavi-
gates therob ottothedestination. Forthisproblem,we
proposeaplanningmethodcombinesadecision-theoretic
approachwithconsiderationofplanning cost.
table table
desks desks
hallway initial
position gate
detour destination
robot gate
detour
Figure1: Anexampleplanningproblem.
width of the robot (W ) robot distance between the objects
W robot
probability
distance passable (a)
probability
distance impassable (b)
W robot
probability
distance (c)
W robot
unknown
Figure2: Threepossiblestateofthegate.
2 Basic Planning Strategy
2.1 Plan Representation
Anactioniscomposedofamovementtothenextobser-
vationpoint andan observationat that p oint. A state
isrepresentedbythecurrentestimateofthegatewidth
andthe currentrob ot p osition. Due to theuncertainty
in observation results, the rob ot cannot determine the
gatewidthdeterministicallybutobtainsitsprobabilistic
distribution.
After anobservation, therob ot classies thestateof
the gate into one of the three states (see Fig. 2): if
the robot width is smallerthan the minimum valueof
theprobabilisticdistributionofthegatewidth,thegate
is passable; ifthe rob ot width is larger than the maxi-
mum valueof theprobabilisticdistribution, thegate is
impassable;otherwisethepassabilityisunknown.
Since the actual state after an observation dep ends
ontheobservationresultandcannotb edeterminedb e-
forehand,asubplanisgeneratedforeachpossiblestate,
whichispredictedusingtheuncertaintymo delofvision.
Fig. 3 shows an example plan for the problem shown
in Fig. 1. Sucha plan is represented by an AND/OR
tree;an ORno decorresp onds toselectionofan action;
anANDno decorresp ondstoap ossiblestate. Thequal-
ityofa planis measuredin termsofitsexecutioncost,
which isthe expectation ofthe totalexecution timefor
movementandobservation.
The leaves of an AND/OR tree are either terminal
nodeor open node. At aterminal no de, the passability
is decided without uncertainty and, thus, the nal ac-
tion(i.e., passing thegate ortaking thedetour) is also
decided. At an op en no de, since thepassability is un-
known,thenalactionhasnotb eendecidedyet. Aplan
candidateisrenedbyexpanding(makingsubplansfor)
one of its op en no des. In expansion of an open no de,
the p ossiblerange ofthe gate width is discretizedwith
some granularity, and a subplan is generated for each
passable unknown impassable
passable
impassable, unknown
Figure3: Anexampleplan. Dottedarrowsindicatep os-
siblemovementsafterobservation. Boldarrowsindicate
observationofthegate.
2.2 Computational Trade-os to b e
Considered
The planning metho d is designed to dealwith the fol-
lowingtwocomputationaltrade-os:
searchdepthvs. planquality: Thistrade-ohas
beeninvestigatedbyseveralresearchers(e.g., DTA 3
by
Russell and Wefald
[1991]).
We consider this trade-o
in generatingamulti-step plan.
granularity vs. plan quality: A nergranularity
fordiscretization improvesplanquality,butitincreases
theplanning cost. Thistrade-o haslittlebeenconsid-
ered, althoughitis imp ortantin planning underuncer-
tainty.
Thersttrade-oismanagedbyformulatingtheplan-
ning pro cess as an iterative renementpro cess
[Bo ddy
andDean,1989 ]
,andbyappropriatelylimitingtheiter-
ation. To cop e with the second trade-o, we represent
therelationshipb etweengranularityandtheexp ectation
of thereductionof aplan cost(wecall thisexp ectation
aplan improvement)asaperformanceprole [Dean
and
Boddy,1988 ][
Zilb erstein,1993 ]
,andthendeterminethe
best granularity by examining the p erformance prole
and thecost ofno de expansion. With consideration of
these trade-os, the plannertries tominimize thetotal
costofplan generationandplanexecution.
3 Formulation as Iterative Renement
3.1 Easily-Obtainable Feasible Plan
In an iterative renement framework, the planner
searches the space of feasible plans (executable plans)
for the nal plan. This formulation entails an easily-
obtainablefeasibleplanforanyop enno de. Therearetwo
such feasible plans. One of them is to take the detour
from the current p osition; this feasible plan is usually
costly. Thusweusetheotherfeasibleplan:
The robot moves from the current position to
the position just before the gate 1
. If the gate
1
At this p osition, the rob ot is assumed to b e able to
measure the gate width without uncertainty; this p osition
3
action
state
state state
passable impassable
action
state state
passable impassable
state state 1 ... i ... state n
action i
state
state state
passable unkown impassable ...
...
unkown
(a) before expansion (b) after expansion
Figure4:Expansionofanop enno deofaplancandidate.
Ellipsesdrawnwithboldlinesindicate op enno des.
ispassable,the robotpassesit;ifnot,the robot
takes the detourfromthatposition.
Each plan candidate has the temporary cost, C temp
,
whichisobtainedbytemporarilyassigningtheab ovefea-
siblesubplantoallofitsop enno des.
3.2 Selection of Open No de to Expand
Intheplanningpro cess,themostpromisingop enno deis
selectedand expanded. Beforeexpansion, anunknown
stateistreatedasoneop ennodeandhasafeasibleplan
withit(seeFig. 4(a)). Theexpansionoftheop enno de
consists of searching for the b est action for each dis-
cretizedstateandassigningthefeasiblesubplantonewly
generatedop enno des(seeFig. 4(b)).
The op en no de to b e expanded is determined as fol-
lows. Supp ose we can predict the maximum plan im-
provement(i.e.,costreduction)1Cofaplancandidate,
whichwillb eobtainedbyexpandingitsb estop enno de 2
.
Then, themerit ofexpandingtheno deis givenbysub-
tractingtheexpansioncostC exp
fromthepredictedplan
improvement1C.
LetC temp
i
,1C
i ,andC
exp
i
denotethetemporarycost,
thepredictedplanimprovement,andtheexpansioncost
of a plan candidate PC
i
, resp ectively. Then, wedene
thenewcostC new
i as:
C new
i
=C temp
i
0(1C
i 0C
exp
i
): (1)
LetC
FP 3
b ethecostoftheincumbent(theb estfeasi-
bleplanamongthosewhichhaveb eenobtainedso far).
Duringtheplanning,theplancandidatesarekeptwhose
new costs are less than C
FP 3.
Among thecandidates,
the plan candidatePC
i
3 which is to b e expanded next
isdeterminedas:
PC
i 3;
i 3
=argmin
i C
new
i
: (2)
The planneriteratively selects PC
i
3 and expands its
bestop en no de. Thisplanning pro cess hastheanytime
[Dean
and Bo ddy, 1988]
prop erty. The iteration stops
whenC new
i 3
is largerthanC
FP 3.
2
Themetho dtopredicttheplanimprovementwillb ede-
Theab ovealgorithmwillexpandanodeaslongasC new
i 3
is less than C
FP 3
even iftheir dierence is very small.
Expansioninsuchacase,however,mayb euselessifthe
meta-planningcostishigh.
Thus, we slightly mo dify the termination condition.
That is, if thedierenceislessthan themeta-planning
cost, the iteration pro cess stops and the b est feasible
plan is returned as the nal plan. The cost of meta-
planning is,atpresent,consideredtob econstant.
3.4 Deciding Only the NextAction
When the objective of the planner is not to generate
a whole plan but to select the b est next action (in a
dynamicenvironment,forexample),thealgorithmisal-
tered asfollows.
Let C
FP 3
A
b e thecost ofthebest feasibleplan which
starts with action A. If the smallest value of C new
i of
plancandidateswhichstartwithactionsotherthanAis
larger thanC
FP 3
A
,the planning pro cessterminates and
returnsAastheb estnextaction. Thisstrategyissimilar
to thatofDTA 3
[Russell
andWefald, 1991].
4 Determining the Best Granularity
Wehavementionedthat thegranularityin discretizing
the ranges of random variables (the gate width in our
case)directlyaectsboththeplanimprovementandthe
expansion cost. The selection of the best granularity
is, therefore,crucial to managing thetrade-o b etween
planning costandplaneciency.
This pap erprop oses torepresenttherelationshipb e-
tweenthe granularityand the predictedplan improve-
mentasap erformanceprole,andtocalculatetheb est
granularityandthemeritofexpansionsimultaneously.
Currently we equally divide the range of a variable;
thus,thegranularityissp eciedwiththenumberofdivi-
sions. LetPI(n)denotethepredictedplanimprovement
forgranularityn.
Theb estgranularityn 3
isgivenby
n 3
=argmax
n
fPI(n)0C exp
(n)g; (3)
where C exp
(n)is thecostof expansionwithgranularity
n,whichisdened asfollows:
C exp
(n)=N
cand 3C
exam
3n; (4)
where N
cand
isthenumberof actioncandidates;C exam
isthecostrequiredforexaminingoneactioncandidate.
Fig. 5 illustrates the determination of the b est granu-
larity. Once the b est granularityn 3
is determined, the
meritofexpansion iscalculatedasPI(n 3
)0C exp
(n 3
).
IfthereisatleastoneORno deb etweenthero otno de
and anop enno de, theprobabilityofreachingtheop en
nodeis lessthan one. Inthis case, wemultiply PI(n),
whichisoriginallygeneratedforthecasethatthereach-
ingprobabilityisone,bythecurrentreachingprobabil-
PI(n)−C (n) plan improvement
best granularity
exp
n*
granularity n
− C (n) exp
PI(n)
Figure 5: Determining theb estgranularity. This gure
isbasedon [
Horvitz, 1990 ]
.
Every timean openno de is generated (byexpansion
of its parent), the b est granularity for the no de is de-
termined. Weinclude thecost of determining the b est
granularityinthecostofexpandingtheparentno de.
5 Deriving Performance Prole
Derivationofap erformanceprole(PP)isoneoftheim-
portant issues in anytime algorithm-based approaches.
In some cases, PPs may b e obtained from the struc-
tural analysis of the problem; in other cases, PPs may
beobtainedfromexperimentaldata. Itis,however,usu-
ally dicult to obtain PPs for complex problems only
with one of these metho ds. We, thus, derive a PP
throughstructuralandexp erimentalanalysisoftheplan-
ningproblemin thefollowingsteps:
1. Analyzethestructure oftheplanningproblem and
extract imp ortant problem parameters which can
reasonablycharacterizethePP.
2. Construct a generalized PP using the parameters
obtainedab ove;ageneralizedPPhasco ecientsto
b eestimated.
3. CalculateactualPPsforanenoughnumberofprob-
lemparametersets,andadjusttheco ecientsofthe
generalizedPPsothatthePPtswelltotheactual
dataset.
5.1 Problem Analysis
The plan improvement is the dierence of temp orary
costsofaplancandidateb eforeandafterexpandingone
ofitsop ennodes. Letuscalculatetheplanimprovement
usinganexamplesituationshownin Fig. 6.
Supposethat therobotisinitiallyatx
0
andthenext
observationp ointisx
1
. Theop enno deunderconsider-
ationisthestatethatthegate's passabilityisunknown
aftertheobservationatx
1
. Thefeasibleplanb eforeex-
pansionistogofromx
1
directlytothezero-uncertainty
point x 3
, where therob ot can measure the gate width
withoutuncertainty. Expansion ofthis op en no de, i.e.,
selectionof a second observationp oint x i
2
for each dis-
D e a i
D x
x i
x 0
D d b i
D D b
D e i
detour to destination
(current position)
x *
gate
1 2
x d
Figure6: Anexamplesituation.
Usingthecostofmovementb etweenp ointsdenedin
Fig. 6(forexample,D i
a
isthecostofmovementfromx
1
to x i
2
), the plan improvement 1C is describ ed as (see
AppendixA):
1C= n
X
i=1 0
@ P
x i
2
;ng (D
b +D
d 0D
i
a 0D
i
e )
0P
x i
2
;ud C
v
0(P
x i
2
;ok +P
x i
2
;ud )(D
i
a +D
i
b 0D
b )
1
A
; (5)
where C
v
isthecostofoneobservation;P
x i
2
;ok (P
x i
2
;ng ,
P
x i
2
;ud
)istheprobabilitythatthegate'sstateispassable
(impassable,unknown)afterobservationatx i
2
. Wehere
supposethatx i
2
indicates thebestsecond viewp ointfor
theithdividedstate.
Thisequationrepresentsthetrade-ob etweentheef-
fectofvisualinformationtob eobtained byobservation
atx i
2
andthecostofobservationincludingthatofmove-
menttotheobservationp oint.Therstterminsidethe
parenthesesis the eect of visualinformation, which is
gained by decidingto takethedetour atx i
2
, insteadof
decisionat x 3
, incasethat thegate isimpassable. The
second term is the cost of the extra observation at x 3
in casethat thepassabilityis stillunknownat x i
2 . The
third termistheextramovementcostto visitx i
2 .
5.2 Designing Generalized Performance
Prole
Weexamineequation(5)inordertodesignageneralized
PP whichcanreasonably approximatetheequation.
The actual values whichdep end onx i
2
(e.g., P
x i
2
;ng )
cannotb eobtainedb eforep erformingthesearchforx i
2
;
it may also b e hard to reliably predict these values.
Thus, we would like to predict the plan improvement
usingonlyparameters whosevaluesareavailable.
We use an upp er bound of plan improvement for
constructing a generalized PP. To calculate the upp er
bound, we rst employ the concept of the assumption
of perfect sensor information [Miura
and Shirai, 1993],
which is basedon the fact that a plan generated using
certain information is alwaysmore ecient than plans
generatedusing uncertaininformation.
Assuming that the observation result at x i
2
includes
no uncertainty (i.e., P
x i
2
;ud
! 0), a mo died plan im-
0
1C 0
= n
i=1 P
x i
2
;ng (D
b +D
d 0D
i
a 0D
i
e )
0 X
n
i=1 P
x i
2
;ok (D
i
a +D
i
b 0D
b ):
(6)
Since1C 0
stillincludesvaluesdep endingonx i
2
,wethen
nd its maximum value. 1C 0
is maximized by letting
x i
2
!x
1
(i.e., D i
b
!D
b , D
i
e
!D
e
,and D i
a
!0); nally,
weobtainthefollowingupp erb ound:
1C
ub
=P
x1!x 3
;ng (D
b +D
d 0D
e
); (7)
whereP
x
1
!x 3
;ng
istheprobabilitythatthegate isim-
passable after observations at x
1 and x
3
, and is equal
to P
n
i=1 P
x i
2
;ng
under theassumption of p erfectsensor
information. Wesupp osethat theactualplan improve-
ment1C increasesas 1C
ub
increases.
Wealsoreasonablyassumethattheplanimprovement
isamonotonicallyincreasingfunctionofthegranularity
nandasymptoticallyapproachessome limitvalue.
Based on the above examination, we eventually de-
cided to use the following generalized PP (function
PI(n)) asanapproximationof equation(5):
PI(n) = K(10e 0k
1 n
); (8)
K = k
2 1 1C
ub k3
; (9)
wherek
1 ,k
2 ,andk
3
areco ecientstob eestimatedfrom
theexp erimentaldata.
5.3 Determining PP through Exp eriments
We found that the co ecients in PI(n) varies as the
initial p osition x
0
changes. Thus, we divided thework
space of the rob ot, which is the triangle comp osed of
x
0 , x
3
, and x
d
(see Fig. 6), into several regions and
generateda PPforeachdividedregion. Thesizeofone
regionisdeterminedempirically.
Ineachregion, itscenteris selectedas x
0
. Then, we
calculated actual PPs ab out a hundred problems with
various x
1
's and gate widths. We limited n to one of
f1;3;5;7;9;11g.
Inestimating theco ecients,werstttedequation
(8) to each PP and estimated K and k
1
. Fig. 7 shows
an example of actual PP and the tted curve. Then,
weexamined the relationship b etween K and 1C
ub in
equation (9). Fig. 8 shows a log-scaled plot of these
values.Byttingalinetotheplotteddata,weobtained
k
2
=0:033 and k
3
=1:319 in this case. As for k
1 , we
adopted themeanof allk
1
's b ecausewe couldnot nd
any strong correlation b etween k
1
and other problem
parameters.
6 Simulation Results
Fig. 9 showsexamplesof generatedplanfora planning
problem. Fromtheinitial observationresultofthegate
width, a complete plan, which is an AND/OR tree of
observation p oints, was planned o-line. Observation
points are limited only to grid points set on the work
spaceoftherob ot.
Inorder toshow that theplanner canadaptively de-
termine theplanning time (search depth and granular-
0.00 granularity
1 3 5 7 9 11
data fitted curve
1
10.00
8.00
6.00
4.00
2.00
plan improvement (sec.)
K = 9.945 k = 0.774
Figure7: Anexamplep erformanceproleandthetted
curve.
0.1 1 10 100
10 100
K
DCub
data points fitted curve
Figure8: Log-scaled plotofdataforequation(9).
simulations for the same problem with dierent com-
puting p owers(C exam
's, see equation(4)). Noticethat
the higherthe computing p ower is (the smaller C exam
is), the more precise and the less costly plan is gener-
ated. Thedierenceofthecostsis,however,rathersmall
comparedwiththatofthecomputingpowers.Thisisb e-
causethattheinitialfeasibleplanisalreadyago o dplan
in thiscase.
Wethen compared, in termsof the totalofplanning
cost andexecution cost,the prop osedmetho d withthe
xedmetho d, whichusesa xedgranularityanda xed
search depth. Fig. 10 showsa comparisonresult. The
proposedmethodgivestheb estp erformance.
Weconducted thiscomparison foraboutfortydier-
ent problems; in about two-thirds cases, the prop osed
method outp erformed others. In other cases, the dif-
ference b etween the b est result and the result by the
proposed metho dwas lessthanone p ercentofthe b est
result. Note that in order to obtain the b est result
withthexedmetho d,wehadto adjustthegranularity
and searchdepth for eachproblem, while theprop osed
methodalwaysp erformedwellwithoutanysuchadjust-
ments.
7 Exp eriments using Real Rob ot
Thissectiondescrib espreliminaryresultsforarealplan-
ning problem shownin Fig. 1. The gate width isesti-
mated by the two vertical segments on b oth sides; its
probabilistic distribution is calculated using an uncer-
[Miura 1993].
(a)C =1.1e-4,Cost=186.9,n =7 (b)C =1.1e-3,Cost=188.6,n =3 (c)C =1.1e-2,Cost=189.0,n =0
Figure9: Simulationresults: circlesindicateobservationp oints;solidarrowsindicatethepathtothenextobservation
point; dottedarrows indicate p ossiblepathsafter observations. n 3
is thegranularityusedfordiscretizing theop en
nodeatthenextobservationp oint. Incaseof(c), theinitialfeasibleplan isused.
230.0 260.0
proposed
0 1 2 3 4
search depth planning cost + execution cost
(sec.)
fixed (n=1) fixed (n=3) fixed (n=5) fixed (n=7) fixed (n=9)
fixed (n=11)
Figure 10: Comparison of the prop osed metho d
with xed-granularity and xed-search depth metho ds.
Changeofthe totalcost accordingto thechangeof the
searchdepth isindicatedforeachgranularity.
Intheexperiment,theplanner decidesonlythe next
action (see Section 3.4). Then the rob ot movesto the
planned observation p oint and observes the gate. The
planningandactionop erationsareiterativelyp erformed
untilthepassabilityofthegateisdetermined.
Fig. 11showstheresultofatrial. Fromtheinitialim-
age(atlower-rightinthegure),therob otestimatedthe
probabilisticdistributionofthegatewidth;theprobabil-
ityofthegateb eingpassablewas0.53. Thentheplanner
determined thenext observation pointas shown in the
map. The rob ot moved to the next observation p oint
(lower-left) and obtained the new image (upper-right).
After this observation, the gate was determined to b e
passable; thustherob ot movedforwardand passedthe
gate(upp er-left).
8 Conclusions and Discussion
Wehaveprop osedaplanningmetho dforavision-motion
planningofa mobilerobotundervisionuncertaintyand
limitedcomputationalresources. Wemanagedgranular-
ity vs. plan quality and search depth vs. plan quality
trade-os by: (1) considering the relationship b etween
granularityand planimprovementwhich is represented
asap erformanceprole,and(2)formulatingthepro cess
ofgeneratingamulti-stepplanasaniterativerenement
process. The prop osed metho d is always comparable
with the b est of the metho ds which uses xed granu-
larity and xed search depth. We havealso describ ed
amethodtoderiveap erformanceprolethroughstruc-
turalandexp erimentalanalysisoftheplanningproblem.
In the p erformance prole (PP)-based planning, the
qualityofPPhasthelargestimp ortance. Iftheparame-
ters(e.g.,congurationofobstacles)ofthecurrentprob-
lem arelargelydierentfromthose ofproblemsusedin
derivationofPPs,thepredictedplanimprovementmay
not b e accurate enough. In this pap er, in order to in-
crease the accuracy,we divided into theproblem space
intoseveralregions andobtained a PP for eachregion.
Sucha strategymightb e practicalifa PP whichisap-
plicabletoa wideproblemspaceishardtond.
This pap er has treated a relatively simple vision-
motion planning problem (a single-gate problem). A
future work is to apply the prop osed metho d to large
planning problems which have many gates to observe.
To solvesuchalargeproblem,itisnecessaryto decom-
posetheproblemintoaset ofsingle-gateproblems. We
arenowdevelopinganecientdecomp osition metho d.
Acknowledgments
This workissupp ortedinpart byGrant-in-AidforSci-
entic Research from Ministry of Education, Science,
Sports, and Culture, Japanese Government and bythe
OkawaFoundationforInformationandTelecommunica-
tions,Tokyo,Japan.
A Derivation of Plan Improvement 1C
Only the subplan for the op en no de at x
1
changes by
expansion. ThecostC ofthesubplanb eforeexpansion
initial position planned observation point
movements of robot obtained right images
Figure 11: Anexp erimentalresult: [center]the planned observation p oint and the trajectory takenby the rob ot;
[lower-right] the right image obtained at the initial p osition; [upp er-right] the right image obtained at the next
observationp oint;[lower-left]themovementfrom theinitialp ositionto thenextobservationp oint;[upp er-left]the
movementfrom thenextobservationpointintothegate.
isgivenby
C
1
= P
x
1
;ud (D
b +C
v )+P
x
1
!x 3D
g oal
+ P
x
1
!x 3
;ng (D
d +D
detour );
(10)
where D
g oal
and D
detour
is the cost of movement
from x 3
to the destination and from x
d
to the des-
tination through the detour, respectively; P
x1!x 3
;ok
(P
x
1
!x 3
;ng
) is the probability that the gate is pass-
able (impassable) at x 3
in case that the passability is
unknownatx
1
. ThecostC
2
afterexpansionisgivenby
C
2
= n
X
i=1 min
x i
2 C
i
2
; (11)
C i
2
= 0
B
B
@ P
i
x
1
;ud (D
i
a +C
v )+P
x i
2
;ok (D
i
b +D
g oal )+
P
x i
2
;ng (D
i
e +D
detour )+P
x i
2
;ud (D
i
b +C
v )+
P
x i
2
!x 3
;ok D
g oal +
P
x i
2
!x 3
;ng (D
d +D
detour )
1
C
C
A
;(12)
where P i
x1;ud
is the probability of the ith divided
state; P
x i
2
!x 3
;ok (P
x i
2
!x 3
;ng
) is similarly dened as
P
x1!x 3
;ok (P
x1!x 3
;ng
). Theb estx i
2
isselectedforeach
stateS i
.
The plan improvement is obtained as C
1 0C
2 . The
followingrelationsholdamongprobabilities:
P
x1;ud
= P
n
i=1 P
i
x1;ud
;
P
x1!x 3
;ok
= P
n
i=1 P
x i
2
;ok +
P
n
i=1 P
x i
2
!x 3
;ok
;
P
x1!x 3
;ng
= P
n
i=1 P
x i
2
;ng +
P
n
i=1 P
x i
2
!x 3
;ng
;
P i
x
1
;ud
=P
x i
2
;ok +P
x i
2
;ng +P
x i
2
;ud :
(13)
Afteraseriesofcalculationusingtheab overelations,we
References
[Berger,1985]
JamesO.Berger. StatisticalDecisionTheory
and Bayesian Analysis. Springer-Verlag, second edition,
1985.
[
Bo ddyandDean,1989 ]
M. Bo ddy and T. Dean. Solving
time-dep endent planning problems. In Proceedings of
IJCAI-89,pages979{984,1989.
[Cameron
andDurrant-Whyte, 1990]
A. Cameron
andH. Durrant-Whyte. A bayesianapproachto optimal
sensorplacement. Int.J. ofRoboticsRes.,9:70{88,1990.
[Dean
andBo ddy, 1988]
T.DeanandM.Boddy.Ananalysis
oftime-dep endentplanning. InProceedingsof AAAI-88,
pages49{54,1988.
[Dean
etal., 1990]
T.Dean, T.Basye,andS.Lejter. Plan-
ningandactivep erception.InProceedingsof1990DARPA
WorkshoponInnovativeApproachestoPlanning,Schedul-
ing,andControl,pages271{276,1990.
[Horvitz,1990]
E.J.Horvitz.ComputationandActionUnder
BoundedResources.PhDthesis,StanfordUniversity,1990.
[Hutchinson
andKak, 1989]
S.A.HutchinsonandA.C.Kak.
Planningsensingstrategiesinarob otworkcellwithmulti-
sensor capabilities. IEEE Trans. on Robotics and Au-
tomat.,RA-5(6):765{783,1989.
[Miura
andShirai, 1993]
J.MiuraandY.Shirai. Anuncer-
taintymo delofstereovisionanditsapplicationtovision-
motionplanningofrobot. InProceedingsof the13thInt.
Joint Conf. on Articial Intelligence, pages 1618{1623,
Chambery,France,August1993.
[Russell
andWefald, 1991]
S.RussellandE.Wefald.DoThe
RightThing. TheMITPress,1991.
[Zilb erstein,1993]
S. Zilb erstein. Operational Rationality
throughCompilation of Anytime Algorithm. PhDthesis,