• Tidak ada hasil yang ditemukan

Single-Walled Carbon Nanotubes for Energy Devices

N/A
N/A
Protected

Academic year: 2024

Membagikan "Single-Walled Carbon Nanotubes for Energy Devices"

Copied!
24
0
0

Teks penuh

(1)

Workshop on Molecular Thermal Engineering @ Tokyo July 5, 2013

Shigeo Maruyama

Department of Mechanical Engineering, The University of Tokyo

Single-Walled Carbon Nanotubes for Energy Devices

Single-Walled Carbon Nanotubes for Energy Devices

(2)

FNTG Research Society FNTG Research Society

Fullerene

Single-Walled Carbon Nanotubes

(SWNTs)

Peapod

Multi-Walled

Carbon Nanotubes Graphene

Nano-Diamond Bundle of SWNTs Double-Walled

Carbon Nanotubes

Metallofullerene

http://fullerene-jp.org/

(3)

Research Focus

Growth Mechanism and Growth Control of SWNTs Structuring SWNTs

Growth of SWNTs Optical

Spectroscopy

Energy Device Structurin

g Devices Related with Energy

Structure Control

Defect Control

(4)

CVD growth of SWNTs and Graphene by ACCVD

Octopus Growth

Maiko

(5)

Metal Surface Reaction by FT-ICR and ab initio Calculation

Metal Cluster

FT-ICR Mass spectrometer Ethanol

MD Simulation

(6)

Vertically Aligned SWNTs on Quartz Substrate

Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo, S. Maruyama, Chem. Phys. Lett. 385 (2004) 298

0 500 1000 1500

100 200 300 400

2 1 0.9 0.8 0.7

Raman Shift (cm–1)

Intensity (arb. units)

Diameter (nm)

Dr. Yoichi Murakami

10 m

25 nm

(7)

Growth of VA-SWNTs from Ethanol and Acetonitrile

T. Thurakitseree, C. Kramberger, P.

Zhao, S. Aikawa, S. Harish, S.

Chiashi, E. Einarsson, S. Maruyama,

Carbon 50 (2012) 2635.

(8)

Multi-Step Growth

T. Thurakitseree et al., ACS Nano, 7(2013)2205.

(9)

Nanotube Junction

T. Thurakitseree et al., ACS Nano, 7(2013)2205.

(10)

Complex Structure

Themal and Electricaly Properties of Complex Structures

Nanofluid

3D and 2D composite

CGMD simulation of complex structure

(11)

SWNT Nanofluid for PCM

280 290 300 310 320 330 340 0.1

0.2 0.3 0.4 0.5

Temperature (K) Thermal Conductivity (W m1 K1 )

Liquid state Solid state

n−Octadecane (OD) OD + 0.05 wt % SWCNT OD + 0.1 wt % SWCNT OD + 0.15 wt % SWCNT OD + 0.25 wt % SWCNT

0 0.5 1 1.5 2 2.5

1.5 2 2.5 3 3.5

Nanomaterial Loading (wt %)

Contrast Ratio

Present experiments Zheng et al [9]

(b)

S. Harish, K. Ishikawa, S. Chiashi, J. Shiomi, S. Maruyama, J. Phys. Chem. C, (2013) in press.

(12)

Self-organized Honeycomb Structure

(13)

Self-Assembled Micro-Honeycomb

5 s, 80 ˚C 15 s, 80 ˚C 5 s, 70 ˚C

(14)

Graphene Growth on Cu

P. Zhao, A. Kumamoto, S. Kim, X. Chen, B.

Hou, S. Chiashi, E.

Einarsson, Y. Ikuhara, S. Maruyama, J. Phys. Chem. C, 117

(2013) 10755.

(15)

Graphene Growth on Ni

P. Zhao, B. Hou, X. Chen, S. Kim, S. Chiashi, E.

Einarsson, S. Maruyama, Nanoscale, (2013).

(16)

S. Aikawa, E. Einarsson, T. Thurakitseree, S. Chiashi,

E. Nishikawa, S. Maruyama, Appl. Phys. Lett.,100 (2012) 063502

Flexible all-SWNT FET

(17)

Removal of Metallic Nanotubes

or Direct Growth of Simiconductor CNTs

Horizontally Aligned SWNTs

5 m 5 m Spin-coat & Applying voltage

 Removal of Metallic CNTs

CNT FET Cloning and Ething-based Selective growth of

Semicondcutor SWNTs

W Based Solid Catalyst for

Single Chirality Growth

(18)

Counter Electrode of Dye Sensitized Solar Cell

FTO photo electrode

counter electrode

FTO Pt

I-/I3- electrolyte

TiO2/Ru-dye FTO

photo electrode

counter electrode

FTO Pt

I-/I3- electrolyte

TiO2/Ru-dye

0 0.2 0.4 0.6

0 5 10 15

Voltage[V]

Current Density [mA/cm2 ]

Pt

SWNT 1 um SWNT 43 um

0 0.2 0.4 0.6 0.8

0 4 8 12 16

Voltage [V]

Current Density [mA/cm2 ]

VACNT 20 um honeycomb 20 um

3 um 30 um

Vapor

(19)

1500 2000 2500

Raman Intensity (a. u.)

Raman shift (cm−1) D

G

2D

Graphene grown on Cu

200 400 600 800 1000

92 94 96 98

Transmittance (a. u.)

Wavelenth (nm)

(550 nm, 96.95 )

−0.5 0 0.5

−20

−10 0 10

Current Density (mA/cm2 )

Voltage (V)

PCE: 1.5 %,

FF: 0.21

(20)

Comparison of Structures

Morphology

Solar Cell Performance Film Properties

PCE (%)

FF (%)

J

sc

(mA/cm

2

)

V

oc

(mV)

R

sh

(Ω/sq.)

T

550

(%)

µ-HN 5.91 72 15.54 530 614 33.5

Collapsed HN 5.22 71 13.97 525 863 32.5

Porous HN 4.56 67 13.11 520 2397 26.6

(21)

Doped by HNO3

Acid Doping HNO3 (10%) PCE = 10.02 %

FF = 73 % (b) (a)

0 0.2 0.4 0.6

−30

−20

−10

0

Current Density (mA/cm2 )

Voltage Bias (V) Pristine 3 Hours in Air N−doped 1 Hour in Air Pristine 21 Days in Air N−doped 12 Hour in Air

PCE % FF % Jsc Voc

Pristine 3hours 5.91 72 15.54 0.53

Pristine 21 days 6.04 72 15.90 0.53

Acid dope 1 hour 10.02 73 25.01 0.55

Acid dope 12 hour 9.29 71 23.97 0.55

(22)

Transparent Conductive Film by Esko Kauppinen

1000 2000 3000

20 40 60 80 100

Transmittance (percentage)

T60 T70 T90

E

11

E

22

0 0.2 0.4 0.6

−40

−20 0

J (mA/cm2 )

Bias (V)

T 70 T 90

T70−1 T70−2 T90−1 T90−2

PCE % 9.37 9.32 10.12 10.01

FF 66 67 56 59

J 25.7 25.8 29.8 30.9

Three weeks after fabrication

Collaboration with Olivier Reynaud, Albert Nasibullin, Esko I. Kauppinen (Aalto Univ.)

500 nm T90 at high res.

(23)

Enjoy the WorkShop

13:45~14:15 Yoichi Murakami (Tokyo Institute of Technology)

Photon upconversion: A technology for utilizing sub-bandgap wasted energies 14:15~14:30 Zhao Pei (The University of Tokyo)

Growth of single-layer and double-layer graphene from ethanol 14:30~15:00 Shinya Aikawa (NIMS)

InOx-based metal oxide semiconductors for TFT applications 15:00~15:30 Shohei Chiashi (The University of Tokyo)

Interaction between Single-walled Carbon Nanotubes and Water Molecules 15:30~16:00 Break

16:00~16:30 Yasushi Shibuta (The University of Tokyo)

Understanding formation mechanism of carbon nanotubes and graphene from numerical point of view

16:30~16:45 James Cannon (The University of Tokyo)

A Molecular Dynamics simulation study into the influence of surface characteristics on liquid-solid interaction during heating

16:45~17:00 Takuma Shiga (The University of Tokyo)

Lattice heat conducion analysis of thermoelectric materials from first-principles 17:00~17:30 Junichiro Shiomi (The University of Tokyo)

Phase interface phenomena and thermal energy engineering 17:30~18:00 Yuhei Miyauchi (Kyoto University)

Photophysics of a Dot in a Line 18:00~18:15 Erik Einarsson

18:45~ Farewell party

(24)

NT05 at Goteburg in 2005

Referensi

Dokumen terkait