Workshop on Molecular Thermal Engineering @ Tokyo July 5, 2013
Shigeo Maruyama
Department of Mechanical Engineering, The University of Tokyo
Single-Walled Carbon Nanotubes for Energy Devices
Single-Walled Carbon Nanotubes for Energy Devices
FNTG Research Society FNTG Research Society
Fullerene
Single-Walled Carbon Nanotubes
(SWNTs)
Peapod
Multi-Walled
Carbon Nanotubes Graphene
Nano-Diamond Bundle of SWNTs Double-Walled
Carbon Nanotubes
Metallofullerene
http://fullerene-jp.org/
Research Focus
Growth Mechanism and Growth Control of SWNTs Structuring SWNTs
Growth of SWNTs Optical
Spectroscopy
Energy Device Structurin
g Devices Related with Energy
Structure Control
Defect Control
CVD growth of SWNTs and Graphene by ACCVD
Octopus Growth
Maiko
Metal Surface Reaction by FT-ICR and ab initio Calculation
Metal Cluster
FT-ICR Mass spectrometer Ethanol
+
MD Simulation
Vertically Aligned SWNTs on Quartz Substrate
Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo, S. Maruyama, Chem. Phys. Lett. 385 (2004) 298
0 500 1000 1500
100 200 300 400
2 1 0.9 0.8 0.7
Raman Shift (cm–1)
Intensity (arb. units)
Diameter (nm)
Dr. Yoichi Murakami
10 m
25 nm
Growth of VA-SWNTs from Ethanol and Acetonitrile
T. Thurakitseree, C. Kramberger, P.
Zhao, S. Aikawa, S. Harish, S.
Chiashi, E. Einarsson, S. Maruyama,
Carbon 50 (2012) 2635.
Multi-Step Growth
T. Thurakitseree et al., ACS Nano, 7(2013)2205.
Nanotube Junction
T. Thurakitseree et al., ACS Nano, 7(2013)2205.
Complex Structure
Themal and Electricaly Properties of Complex Structures
Nanofluid
3D and 2D composite
CGMD simulation of complex structure
SWNT Nanofluid for PCM
280 290 300 310 320 330 340 0.1
0.2 0.3 0.4 0.5
Temperature (K) Thermal Conductivity (W m−1 K−1 )
Liquid state Solid state
n−Octadecane (OD) OD + 0.05 wt % SWCNT OD + 0.1 wt % SWCNT OD + 0.15 wt % SWCNT OD + 0.25 wt % SWCNT
0 0.5 1 1.5 2 2.5
1.5 2 2.5 3 3.5
Nanomaterial Loading (wt %)
Contrast Ratio
Present experiments Zheng et al [9]
(b)
S. Harish, K. Ishikawa, S. Chiashi, J. Shiomi, S. Maruyama, J. Phys. Chem. C, (2013) in press.
Self-organized Honeycomb Structure
Self-Assembled Micro-Honeycomb
5 s, 80 ˚C 15 s, 80 ˚C 5 s, 70 ˚C
Graphene Growth on Cu
P. Zhao, A. Kumamoto, S. Kim, X. Chen, B.
Hou, S. Chiashi, E.
Einarsson, Y. Ikuhara, S. Maruyama, J. Phys. Chem. C, 117
(2013) 10755.
Graphene Growth on Ni
P. Zhao, B. Hou, X. Chen, S. Kim, S. Chiashi, E.
Einarsson, S. Maruyama, Nanoscale, (2013).
S. Aikawa, E. Einarsson, T. Thurakitseree, S. Chiashi,
E. Nishikawa, S. Maruyama, Appl. Phys. Lett.,100 (2012) 063502
Flexible all-SWNT FET
Removal of Metallic Nanotubes
or Direct Growth of Simiconductor CNTs
Horizontally Aligned SWNTs
5 m 5 m Spin-coat & Applying voltage
Removal of Metallic CNTs
CNT FET Cloning and Ething-based Selective growth of
Semicondcutor SWNTs
W Based Solid Catalyst for
Single Chirality Growth
Counter Electrode of Dye Sensitized Solar Cell
FTO photo electrode
counter electrode
FTO Pt
I-/I3- electrolyte
TiO2/Ru-dye FTO
photo electrode
counter electrode
FTO Pt
I-/I3- electrolyte
TiO2/Ru-dye
0 0.2 0.4 0.6
0 5 10 15
Voltage[V]
Current Density [mA/cm2 ]
Pt
SWNT 1 um SWNT 43 um
0 0.2 0.4 0.6 0.8
0 4 8 12 16
Voltage [V]
Current Density [mA/cm2 ]
VACNT 20 um honeycomb 20 um
3 um 30 um
Vapor
1500 2000 2500
Raman Intensity (a. u.)
Raman shift (cm−1) D
G
2D
Graphene grown on Cu
200 400 600 800 1000
92 94 96 98
Transmittance (a. u.)
Wavelenth (nm)
(550 nm, 96.95 )
−0.5 0 0.5
−20
−10 0 10
Current Density (mA/cm2 )
Voltage (V)
PCE: 1.5 %,
FF: 0.21
Comparison of Structures
Morphology
Solar Cell Performance Film Properties
PCE (%)
FF (%)
J
sc(mA/cm
2)
V
oc(mV)
R
sh(Ω/sq.)
T
550(%)
µ-HN 5.91 72 15.54 530 614 33.5
Collapsed HN 5.22 71 13.97 525 863 32.5
Porous HN 4.56 67 13.11 520 2397 26.6
Doped by HNO3
Acid Doping HNO3 (10%) PCE = 10.02 %
FF = 73 % (b) (a)
0 0.2 0.4 0.6
−30
−20
−10
0
Current Density (mA/cm2 )
Voltage Bias (V) Pristine 3 Hours in Air N−doped 1 Hour in Air Pristine 21 Days in Air N−doped 12 Hour in Air
PCE % FF % Jsc Voc
Pristine 3hours 5.91 72 15.54 0.53
Pristine 21 days 6.04 72 15.90 0.53
Acid dope 1 hour 10.02 73 25.01 0.55
Acid dope 12 hour 9.29 71 23.97 0.55
Transparent Conductive Film by Esko Kauppinen
1000 2000 3000
20 40 60 80 100
Transmittance (percentage)
T60 T70 T90
E
11E
220 0.2 0.4 0.6
−40
−20 0
J (mA/cm2 )
Bias (V)
T 70 T 90
T70−1 T70−2 T90−1 T90−2
PCE % 9.37 9.32 10.12 10.01
FF 66 67 56 59
J 25.7 25.8 29.8 30.9
Three weeks after fabrication
Collaboration with Olivier Reynaud, Albert Nasibullin, Esko I. Kauppinen (Aalto Univ.)
500 nm T90 at high res.
Enjoy the WorkShop
13:45~14:15 Yoichi Murakami (Tokyo Institute of Technology)
Photon upconversion: A technology for utilizing sub-bandgap wasted energies 14:15~14:30 Zhao Pei (The University of Tokyo)
Growth of single-layer and double-layer graphene from ethanol 14:30~15:00 Shinya Aikawa (NIMS)
InOx-based metal oxide semiconductors for TFT applications 15:00~15:30 Shohei Chiashi (The University of Tokyo)
Interaction between Single-walled Carbon Nanotubes and Water Molecules 15:30~16:00 Break
16:00~16:30 Yasushi Shibuta (The University of Tokyo)
Understanding formation mechanism of carbon nanotubes and graphene from numerical point of view
16:30~16:45 James Cannon (The University of Tokyo)
A Molecular Dynamics simulation study into the influence of surface characteristics on liquid-solid interaction during heating
16:45~17:00 Takuma Shiga (The University of Tokyo)
Lattice heat conducion analysis of thermoelectric materials from first-principles 17:00~17:30 Junichiro Shiomi (The University of Tokyo)
Phase interface phenomena and thermal energy engineering 17:30~18:00 Yuhei Miyauchi (Kyoto University)
Photophysics of a Dot in a Line 18:00~18:15 Erik Einarsson
18:45~ Farewell party