• Tidak ada hasil yang ditemukan

On the speed in transportation costs of heat distributions

N/A
N/A
Protected

Academic year: 2024

Membagikan "On the speed in transportation costs of heat distributions"

Copied!
43
0
0

Teks penuh

(1)

On the speed in transportation costs of heat distributions

Kazumasa Kuwada

(Tokyo Institute of Technology)

UK-Japan Stochastic Analysis School The University of Warwick, Sept. 1–5, 2014

(2)

1. Introduction

(3)

Speed in transportation cost

(Xt)t≥0: stochastic process on M

⇓ ⇑

t)t≥0: curve in P(M), µt := PPP◦ Xt−1

Q. Tct, µs) ≈ ? (s → t) Tc(µ, ν) := inf

(Z

M×M

c dπ

π: coupling of µ and ν

)

(Optimal transportation cost for a cost function c)

(4)

Speed in transportation cost

(Xt)t≥0: stochastic process on M

⇓ ⇑

t)t≥0: curve in P(M), µt := PPP◦ Xt−1 Q. Tct, µs) ≈ ? (s → t)

Tc(µ, ν) := inf (Z

M×M

c dπ

π: coupling of µ and ν

)

(Optimal transportation cost for a cost function c)

(5)

Background

µt = et∆µ0: heat dist. on a met. meas. sp. (M, d, v)

⇒ “∂tµt = −∇Entvt)” w.r.t. W2 = (Td2)1/2 [Jordan, Kinderlehrer & Otto ’98]

[Ambrosio, Gigli & Savar´e ’05, . . .]

“∂tEntvt) = −h∇Entv, ∂tµti = −|∂tµt|2

⇓ lims↓t

W2s, µt) s − t

2

= Z

M

|∇ρt|2

ρt dv =: I(µt) (Fisher information)

(6)

Background

µt = et∆µ0: heat dist. on a met. meas. sp. (M, d, v)

⇒ “∂tµt = −∇Entvt)” w.r.t. W2 = (Td2)1/2 [Jordan, Kinderlehrer & Otto ’98]

[Ambrosio, Gigli & Savar´e ’05, . . .]

“∂t Entvt) = −h∇Entv, ∂tµti = −|∂tµt|2

⇓ lims↓t

W2s, µt) s − t

2

= Z

M

|∇ρt|2

ρt dv =: I(µt) (Fisher information)

(7)

Background

µt = et∆µ0: heat dist. on a met. meas. sp. (M, d, v)

⇒ “∂tµt = −∇Entvt)” w.r.t. W2 = (Td2)1/2 [Jordan, Kinderlehrer & Otto ’98]

[Ambrosio, Gigli & Savar´e ’05, . . .]

“∂t Entvt) = −h∇Entv, ∂tµti = −|∂tµt|2

⇓ lims↓t

W2s, µt) s − t

2

= Z

M

|∇ρt|2

ρt dv =: I(µt) (Fisher information)

(8)

Background

“Hess Entv ≥ K” (⇔ “Ric ≥ K”) for K ∈ RRR

W2(0)t , µ(1)t ) ≤ e−KtW2(0)0 , µ(1)0 )

W2t, µt+s) ≤ e−KtW20, µs)

I(µt) ≤ e−2KtI(µ0)

(⇒ log Sobolev ineq. (when K > 0))

(9)

Background

“Hess Entv ≥ K” (⇔ “Ric ≥ K”) for K ∈ RRR

W2(0)t , µ(1)t ) ≤ e−KtW2(0)0 , µ(1)0 )

W2t, µt+s) ≤ e−KtW20, µs)

I(µt) ≤ e−2KtI(µ0)

(⇒ log Sobolev ineq. (when K > 0))

(10)

Questions

What happens for other transportation costs?

What happens when there is no gradient flow structure?

(11)

Outline of the talk 1. Introduction

2. Heat distributions on backward Ricci flow

3. Idea of the proof

4. Further problems

(12)

Outline of the talk

1. Introduction

2. Heat distributions on backward Ricci flow

3. Idea of the proof

4. Further problems

(13)

Framework

(M, g(t)): cpl. Riem. mfds., t ∈ [0, T]

tg(t) = 2 Rict (backward Ricci flow)

((X(t))t≥0,(PPPx)x∈M): g(t)-Brownian motion

!!! ∆g(t): generator µt = PPPµ0 ◦X(t)−1: heat dist.

vt: g(t)-volume meas., µt = ρtvt

F ∂tvt = Rtvt (Rt: g(t)-scalar curv.) Ass. sup

t

|Rmt|g(t) < ∞ (Rmt: g(t)-curv. tensor)

(14)

t

µ

t

6= −∇ Ent

vt

t

)

Entvtt) :=

Z

M

ρtlogρtdvt = Z

M

logρtt

F ∂tµt = ∆tµt (weakly)

⇒ ∂tEntvtt) = − Z

M

|∇ρt|2

ρ2t + Rt

t

=: −F(µt) (F-functional)

⇒ No monotonicity of Entvtt)!

(15)

W

2

-contraction

Observation

When g(t) ≡ g0, ∂tg(t) = 2 Rict ⇒ Ric ≡ 0

F Td2

t(0)t , µ(1)t ) & [McCann & Topping ’10], [Arnaudon, Coulibaly & Thalmaier ’09], [K. ’12]

(16)

W

2

-contraction

Observation

When g(t) ≡ g0, ∂tg(t) = 2 Rict ⇒ Ric ≡ 0

F Td2

t(0)t , µ(1)t ) & [McCann & Topping ’10], [Arnaudon, Coulibaly & Thalmaier ’09], [K. ’12]

(17)

W

2

-contraction

Observation

When g(t) ≡ g0, ∂tg(t) = 2 Rict ⇒ Ric ≡ 0

F Td2

t(0)t , µ(1)t ) & [McCann & Topping ’10], [Arnaudon, Coulibaly & Thalmaier ’09], [K. ’12]

⇒/ Td2

tt, µt+s) & (time-inhomogeneity)

(18)

W

2

-contraction

Observation

When g(t) ≡ g0, ∂tg(t) = 2 Rict ⇒ Ric ≡ 0

F Td2

t(0)t , µ(1)t ) & [McCann & Topping ’10], [Arnaudon, Coulibaly & Thalmaier ’09], [K. ’12]

F TLt,t+s

0t, µt+s) & in t [Lott ’09], [Amaba & K.]

Lt,t0 0(x, y) := inf

γ(t)=x, γ(t0)=y

"

Z t0

t

|γ(r)|˙ 2r +Rr(γ(r)) dr

#

(L0-distance; introduced by Lott)

(19)

Monotonicity of F

Theorem 1

Suppose Entv00) < ∞ and F(µ0) < ∞

⇒ lim

s↓0

TLt,t+s

0t, µt+s)

s = F(µt) a.e. t ∈ [0, T] Corollary 2

F(µt) &

Rem: g(t) ≡ g, Ric ≥ 0 ⇒ I(µt) &

[Lott ’09] when M: cpt.

by Eulerian calculus (requires smoothness)

(20)

L-transportation cost

Lt,t0(x, y) := inf

γ(t)=x, γ(t0)=y

"

Z t0

t

√r |γ(r)|˙ 2r + Rr dr

#

(L-distance; introduced by Perelman) F For τ1 < τ2 fixed,

Ξτ12(t) := √

τ2t− √ τ1t

TLτ1t,τ2tτ1t, µτ2t)

−m(√

τ2t −√ τ1t)2

⇒ Ξτ12(t) & [Topping ’09], [K. & Philipowski ’11]

(21)

Monotonicity of W -entropy

Theorem 3

Suppose Entv00) < ∞ and F(µ0) < ∞

⇒ lim

s↓0

TLt,t+st, µt+s)

s = √

tF(µt) a.e. t ∈ (0, T]

Corollary 4

t2F(µt) − mt

2 &. In particular, W(µt) &

W(t) := tF(µt) − Ent(µt) −m

1 + log(4πt) 2

[Topping ’09] when M: cpt. by optimal transport

(22)

1. Introduction

2. Heat distributions on backward Ricci flow

3. Idea of the proof

4. Further problems

(23)

Kantorovich duality

Observation: W2 in the case g(t) ≡ g

W2t, µt+s)2

2s = sup

ϕ∈Cb

Z

M

Qsϕ dµt+s − Z

M

ϕ dµt

Qsϕ(x) := inf

y∈M

ϕ(y) + d(y, x)2 2s

= inf

γ(t)=y γ(t+s)=x

ϕ(γ(t)) + 1 2

Z t+s

t

|γ(r˙ )|2dr

(Hopf-Lax semigroup) F ∂sQsϕ+ 1

2|∇Qsϕ|2 = 0 (Hamilton-Jacobi eq.)

(24)

Kantorovich duality

Observation: W2 in the case g(t) ≡ g

W2t, µt+s)2

2s = sup

ϕ∈Cb

Z

M

Qsϕ dµt+s − Z

M

ϕ dµt

Qsϕ(x) := inf

y∈M

ϕ(y) + d(y, x)2 2s

= inf

γ(t)=y γ(t+s)=x

ϕ(γ(t)) + 1 2

Z t+s

t

|γ(r˙ )|2dr

(Hopf-Lax semigroup)

F ∂sQsϕ+ 1

2|∇Qsϕ|2 = 0 (Hamilton-Jacobi eq.)

(25)

Kantorovich duality

Observation: W2 in the case g(t) ≡ g

W2t, µt+s)2

2s = sup

ϕ∈Cb

Z

M

Qsϕ dµt+s − Z

M

ϕ dµt

Qsϕ(x) := inf

y∈M

ϕ(y) + d(y, x)2 2s

= inf

γ(t)=y γ(t+s)=x

ϕ(γ(t)) + 1 2

Z t+s

t

|γ(r˙ )|2dr

(Hopf-Lax semigroup) F ∂sQsϕ + 1

2|∇Qsϕ|2 = 0 (Hamilton-Jacobi eq.)

(26)

Upper bound

W2t, µt+s)2

2s = sup

ϕ∈Cb

Z

M

Qsϕ dµt+s − Z

M

ϕ dµt

[· · ·] = Z s

0

r Z

M

Qrϕ dµt+r

dr

r(···) = Z

−h∇Qrϕ, ∇ρt+r

ρt+r i − 1

2|∇Qrϕ|2

t+r

≤ 1

2I(µt+r)

lims↓t

W2t, µt+s)2

s2 ≤ lim

s↓t

1 s

Z t+s

t

I(µr)dr = I(µt)

(27)

Upper bound

W2t, µt+s)2

2s = sup

ϕ∈Cb

Z

M

Qsϕ dµt+s − Z

M

ϕ dµt

[· · ·] = Z s

0

r Z

M

Qrϕ dµt+r

dr

r(···) = Z

−h∇Qrϕ, ∇ρt+r

ρt+r i − 1

2|∇Qrϕ|2

t+r

≤ 1

2I(µt+r)

lims↓t

W2t, µt+s)2

s2 ≤ lim

s↓t

1 s

Z t+s

t

I(µr)dr = I(µt)

(28)

Lower bound

W2t, µt+s)2

2s = sup

ϕ∈Cb

Z

M

Qsϕ dµt+s − Z

M

ϕ dµt

lim

s↓t

1 s

Z

M

Qsϕ dµt+s − Z

M

ϕ dµt

“=”

Z

−h∇ϕ, ∇ρt

ρt i − 1

2|∇ϕ|2

t

⇓ ϕ = −logρt

lim

s↓t

W2t, µt+s)2

s2 ≥ I(µt)

(29)

Lower bound

W2t, µt+s)2

2s = sup

ϕ∈Cb

Z

M

Qsϕ dµt+s − Z

M

ϕ dµt

lim

s↓t

1 s

Z

M

Qsϕ dµt+s − Z

M

ϕ dµt

“=”

Z

−h∇ϕ, ∇ρt

ρt i − 1

2|∇ϕ|2

t

⇓ ϕ = −logρt

lim

s↓t

W2t, µt+s)2

s2 ≥ I(µt)

(30)

Lower bound

W2t, µt+s)2

2s = sup

ϕ∈Cb

Z

M

Qsϕ dµt+s − Z

M

ϕ dµt

lim

s↓t

1 s

Z

M

Qsϕ dµt+s − Z

M

ϕ dµt

“=”

Z

−h∇ϕ, ∇ρt

ρt i − 1

2|∇ϕ|2

t

⇓ ϕ = −logρt

lim

s↓t

W2t, µt+s)2

s2 ≥ I(µt)

(31)

Outline of the proof of Thm1

Kantorovich duality / Hopf-Lax semigr. for Lt,t+s0 Difficulty: Dependency on t of geometry

No a priori integrability of ∇ρt & ∆tρt

⇒ Approximation

† Use of heat kernel & Gaussian (upper) bound

† Show Entvss) −Entvtt) ≥ Z t

s

F(µr)dr (⇒ F(µr) < ∞ a.e. r)

† Show lim

s↓t

Entvss) − Entvtt)

s − t ≤ F(µt)

(32)

Outline of the proof of Thm1

Kantorovich duality / Hopf-Lax semigr. for Lt,t+s0 Difficulty: Dependency on t of geometry

No a priori integrability of ∇ρt & ∆tρt

⇒ Approximation

† Use of heat kernel & Gaussian (upper) bound

† Show Entvss) −Entvtt) ≥ Z t

s

F(µr)dr (⇒ F(µr) < ∞ a.e. r)

† Show lim

s↓t

Entvss) − Entvtt)

s − t ≤ F(µt)

(33)

Outline of the proof of Thm1

Kantorovich duality / Hopf-Lax semigr. for Lt,t+s0 Difficulty: Dependency on t of geometry

No a priori integrability of ∇ρt & ∆tρt

⇒ Approximation

† Use of heat kernel & Gaussian (upper) bound

† Show Entvss) −Entvtt) ≥ Z t

s

F(µr)dr (⇒ F(µr) < ∞ a.e. r)

† Show lim

s↓t

Entvss) − Entvtt)

s − t ≤ F(µt)

(34)

Outline of the proof of Thm1

Kantorovich duality / Hopf-Lax semigr. for Lt,t+s0 Difficulty: Dependency on t of geometry

No a priori integrability of ∇ρt & ∆tρt

⇒ Approximation

† Use of heat kernel & Gaussian (upper) bound

† Show Entvss) −Entvtt) ≥ Z t

s

F(µr)dr (⇒ F(µr) < ∞ a.e. r)

† Show lim

s↓t

Entvss) − Entvtt)

s − t ≤ F(µt)

(35)

Outline of the proof of Thm1

Kantorovich duality / Hopf-Lax semigr. for Lt,t+s0 Difficulty: Dependency on t of geometry

No a priori integrability of ∇ρt & ∆tρt

⇒ Approximation

† Use of heat kernel & Gaussian (upper) bound

† Show Entvss) −Entvtt) ≥ Z t

s

F(µr)dr (⇒ F(µr) < ∞ a.e. r)

† Show lim

s↓t

Entvss) − Entvtt)

s − t ≤ F(µt)

(36)

Outline of the proof of Thm1

Kantorovich duality / Hopf-Lax semigr. for Lt,t+s0 Difficulty: Dependency on t of geometry

No a priori integrability of ∇ρt & ∆tρt

⇒ Approximation

† Use of heat kernel & Gaussian (upper) bound

† Show Entvss) −Entvtt) ≥ Z t

s

F(µr)dr

(⇒ F(µr) < ∞ a.e. r)

† Show lim

s↓t

Entvss) − Entvtt)

s − t ≤ F(µt)

(37)

Outline of the proof of Thm1

Kantorovich duality / Hopf-Lax semigr. for Lt,t+s0 Difficulty: Dependency on t of geometry

No a priori integrability of ∇ρt & ∆tρt

⇒ Approximation

† Use of heat kernel & Gaussian (upper) bound

† Show Entvss) −Entvtt) ≥ Z t

s

F(µr)dr (⇒ F(µr) < ∞ a.e. r)

† Show lim

s↓t

Entvss) − Entvtt)

s − t ≤ F(µt)

(38)

Outline of the proof of Thm1

Kantorovich duality / Hopf-Lax semigr. for Lt,t+s0 Difficulty: Dependency on t of geometry

No a priori integrability of ∇ρt & ∆tρt

⇒ Approximation

† Use of heat kernel & Gaussian (upper) bound

† Show Entvss) −Entvtt) ≥ Z t

s

F(µr)dr (⇒ F(µr) < ∞ a.e. r)

† Show lim

s↓t

Entvss) − Entvtt)

s − t ≤ F(µt)

(39)

1. Introduction

2. Heat distributions on backward Ricci flow

3. Idea of the proof

4. Further problems

(40)

For Wp (p ∈ [1,∞)) in time-homogeneous case?

† Ric ≥ K ⇒ eKtWp(0)t , µ(1)t ) &

F lim

s↓0

Wpt, µt+s) s

p

≤ Z

M

|∇ρt|p ρp−1t dv Ric ≥ K > 0, v ∈ P(M)

⇒ Wp(µ, v)p ≤ 1 Kp

Z

M

|∇ρ|p ρp−1 dv

The solution to the p-heat equation

tu = div(|∇u|p−2∇u)

seems to fit better with Wp. (work in progress)

(41)

For Wp (p ∈ [1,∞)) in time-homogeneous case?

† Ric ≥ K ⇒ eKtWp(0)t , µ(1)t ) &

F lim

s↓0

Wpt, µt+s) s

p

≤ Z

M

|∇ρt|p ρp−1t dv

Ric ≥ K > 0, v ∈ P(M)

⇒ Wp(µ, v)p ≤ 1 Kp

Z

M

|∇ρ|p ρp−1 dv

The solution to the p-heat equation

tu = div(|∇u|p−2∇u)

seems to fit better with Wp. (work in progress)

(42)

For Wp (p ∈ [1,∞)) in time-homogeneous case?

† Ric ≥ K ⇒ eKtWp(0)t , µ(1)t ) &

F lim

s↓0

Wpt, µt+s) s

p

≤ Z

M

|∇ρt|p ρp−1t dv Ric ≥ K > 0, v ∈ P(M)

⇒ Wp(µ, v)p ≤ 1 Kp

Z

M

|∇ρ|p ρp−1 dv

The solution to the p-heat equation

tu = div(|∇u|p−2∇u)

seems to fit better with Wp. (work in progress)

(43)

For Wp (p ∈ [1,∞)) in time-homogeneous case?

† Ric ≥ K ⇒ eKtWp(0)t , µ(1)t ) &

F lim

s↓0

Wpt, µt+s) s

p

≤ Z

M

|∇ρt|p ρp−1t dv Ric ≥ K > 0, v ∈ P(M)

⇒ Wp(µ, v)p ≤ 1 Kp

Z

M

|∇ρ|p ρp−1 dv The solution to the p-heat equation

tu = div(|∇u|p−2∇u)

seems to fit better with Wp. (work in progress)

Referensi

Dokumen terkait

It can be stated that if the education costs incurred are in the high category, the better the completeness of the facilities provided by the school as part of supporting the learning

The ratio of transaction costs to farm household income can be calculated using the formula: To determine the proportion of transaction costs on the overall costs incurred by farm

Figure 6 Implementation of Special Region of Yogyakarta Sustainable Transportation from the Government Source: Nvivo 12 Pluss Based on Figure 5 Sustainable Transportation,

These sectors are expected to show large impact on costs of production as a result of petroleum price increase because these industries highly consume petroleum products as an

Thus, Article 151 RTT Law more or less become: "Services for the transportation of people using Public Motorized Vehicles, not on the route as referred to in Article 140 letter b

Based on the description above, this paper aims to examine more deeply the effect of production costs and operating costs on the company's Net income at SMEs DARSA Fruit Chips in East

The people of Padang City can certainly be proud, Padang City transportation includes transportation with the most accessories so that it has its own uniqueness compared to public

Applying this modeling framework to the protein production processes, delay distributions are derived in a stochastic probability density function and deterministic setting impulse