• Tidak ada hasil yang ditemukan

The space of left-invariant metrics and submanifold geometry

N/A
N/A
Protected

Academic year: 2024

Membagikan "The space of left-invariant metrics and submanifold geometry"

Copied!
17
0
0

Teks penuh

(1)

. . . . . .

.

...

The space of left-invariant metrics and submanifold geometry

Hiroshi Tamaru

Hiroshima University, JAPAN

AMS Special Session on Ricci Curvature for Homogeneous Spaces and Related Topics,

San Antonio (Texas, USA), 12/January/2015

Hiroshi Tamaru (Hiroshima Univ.) 12/January/2015 1 / 17

(2)

. . . . . .

Abstract

.

...

Our theme is

geometry of left-invariant metrics on Lie groups.

(Einstein/(algebraic) Ricci soliton metrics) .

...

Our study is from the viewpoint of

submanifolds in noncompact symmetric spaces.

.

...

In this talk we mention that

for 3-dim. solvable case, a nice correspondence:

algebraic Ricci solitons ←→ submanifold geometry.

(3)

. . . . . .

Introduction - (1/3)

.

Contents

..

...

§1: Introduction (to left-invariant metrics)

§2: Cohomogeneity One Actions

§3: Main Result

§4: Some Remarks .

Notation

..

...

Throughout this talk, we denote by

(G,⟨,⟩) : a simply-connected Lie group with a left-invariant Riemannian metric.

(g,⟨,⟩) : the corresponding metric Lie algebra.

Hiroshi Tamaru (Hiroshima Univ.) 12/January/2015 3 / 17

(4)

. . . . . .

Introduction - (2/3)

.

Def.

..

...

(G,⟨,⟩) or (g,⟨,⟩) is

Einstein : Ric = c ·id (∃c R).

algebraic Ricci soliton

: Ric= c ·id+D (∃c R, ∃D Der(g)) Ricci soliton

: ric = c⟨,⟩+ LX⟨,⟩ (∃c R, ∃X X(G)).

.

Fact. (Lauret (2001, 2011))

..

...Einstein algebraic Ricci soliton Ricci soliton.

(5)

. . . . . .

Introduction - (3/3)

.

General Problem

..

...

Examine whether G admits a “distinguished”

left-invariant metric or not.

.

Our Approach

..

...

We study left-invariant metrics in terms of submanifold geometry in noncompact symmetric spaces.

Hiroshi Tamaru (Hiroshima Univ.) 12/January/2015 5 / 17

(6)

. . . . . .

Cohomogeneity One Actions - (1/2)

.

Def.

..

...

An isom. action H ↷ (M,g) is of cohomogeneity one : a regular orbit has codimension one.

.

Ex.

..

...

Consider SL(2,R) =KAN : the Iwasawa decomposition.

Then, K,A,N ↷ RH2 is of cohomogeneity one, and their orbits are as follows:

&%

'$

m b

type (K)

[0,+)

&%

'$

type (A) R

&%

'$

e

type (N) R

(7)

. . . . . .

Cohomogeneity One Actions - (2/2)

.

Thm. (Berndt-T., 2003, 2013)

..

...

M : irr. Riem. symmetric space of noncompact type.

HM : cohomogeneity one (with H connected).

Then, it is of type (K), (A), or (N):

(K): 1 singular orbit.

(A): ̸ ∃ singular orbit, 1 minimal orbit.

(N): ̸ ∃ singular orbit, all orbits are congruent.

&%

'$

m b

type (K)

[0,+)

&%

'$

type (A) R

&%

'$

e

type (N) R

Hiroshi Tamaru (Hiroshima Univ.) 12/January/2015 7 / 17

(8)

. . . . . .

Main Result - (1/7)

.

Framework

..

...

For each (g,⟨,⟩), we have a submanifold in a noncompact Riemannian symmetric space.

.

Symmetric spaces:

..

...

Let G be given, and put n := dimG = dimg. Then we have a noncompact Riemannian symmetric space:

Mf := {⟨,⟩ : an inner product on g}

= GL(n,R)/O(n).

. ...f

M = {⟨,⟩ : a left-invariant Riemannian metric on G}.

(9)

. . . . . .

Main Result - (2/7)

.

Submanifolds:

..

...

For each ⟨,⟩, we have a (homogeneous) submanifold:

R×Aut(g).⟨,⟩ ⊂ fM .

Note

..

...

R×Aut(g).⟨,⟩ is the isometry and scaling class of ⟨,⟩. This action preserves Einstein/(algebraic) Ricci soliton.

.

Note

..

...

In some cases, the uniqueness (up to R×Aut(g)) holds.

(e.g., Einstein/algebraic Ricci solitons on solvable g.)

Hiroshi Tamaru (Hiroshima Univ.) 12/January/2015 9 / 17

(10)

. . . . . .

Main Result - (3/7)

.

Problem

..

...

⟨,⟩ is a “distinguished” left-invariant metric on G

R×Aut(g).⟨,⟩ is a “distinguished” submanifold in fM?

.

Main Thm. (Hashinaga-T.)

..

...

Let g be a solvable Lie algebra of dimension three.

Then, ⟨,⟩ is an algebraic Ricci soliton on g

R×Aut(g).⟨,⟩ is a minimal submanifold in fM.

.

Key

..

...

R×Aut(g) ↷Mf is of cohomogeneity at most one.

(11)

. . . . . .

Main Result - (4/7)

.

Prop.

..

...

If g = R3,h3,gRH3, then R×Aut(g) ↷Mf is transitive.

R3 : abelian, h3 : Heisenberg,

gRH3 : the Lie algebra of RH3.

Otherwise, R×Aut(g) ↷Mf is of cohomogeneity one.

.

Rem.

..

...

Main Theorem is true for g= R3,h3,gRH3, since R×Aut(g).⟨,⟩ = M, which is minimal inf M.f

∀⟨,⟩ is known to be an algebraic Ricci soliton.

Hiroshi Tamaru (Hiroshima Univ.) 12/January/2015 11 / 17

(12)

. . . . . .

Main Result - (5/7)

.

...It remains to study 3 families of Lie algebras, r3, r3,a, r3,a. .

Prop.

..

...

g := r3 = span{e1,e2,e3} with

[e1,e2] = e2 +e3, [e1,e3] = e3, [e2,e3] = 0.

Then we have

R×Aut(g) ↷ fM is of type (N).

̸ ∃⟨,⟩ : ARS on g.

.

...

&%

'$

m b

type (K)

[0,+)

&%

'$

type (A) R

&%

'$

e

type (N) R

Hiroshi Tamaru (Hiroshima Univ.) 12/January/2015 12 / 17

(13)

. . . . . .

Main Result - (6/7)

.

Prop.

..

...

g := r3,a = span{e1,e2,e3} with 1 a < 1, [e1,e2] = e2, [e1,e3] = ae3, [e2,e3] = 0.

Then we have

(R×Aut(g))0 ↷Mf is of type (A).

⟨,⟩ is ARS R×Aut(g).⟨,⟩ is a minimal orbit.

.

...

&%

'$

m b

type (K)

[0,+)

&%

'$

type (A) R

&%

'$

e

type (N) R

Hiroshi Tamaru (Hiroshima Univ.) 12/January/2015 13 / 17

(14)

. . . . . .

Main Result - (7/7)

.

Prop.

..

...

g := r3,a = span{e1,e2,e3} with a 0,

[e1,e2] = ae2 −e3, [e1,e3] = e2 +ae3, [e2,e3] = 0.

Then we have

R×Aut(g) ↷ fM is of type (K).

⟨,⟩ is ARS (in fact, Einstein)

R×Aut(g).⟨,⟩ is a singular orbit.

.

...

&%

'$

m b

type (K)

[0,+)

&%

'$

type (A) R

&%

'$

e

type (N) R

Hiroshi Tamaru (Hiroshima Univ.) 12/January/2015 14 / 17

(15)

. . . . . .

Some Remarks - (1/2)

.

Rem. 1

..

...

Main Theorem gives a nice correspondence between geometric structures (ARS) ←→ submanifold geometry.

.

Rem. 2

..

...

Main Theorem would lead to study invariants of g:

Properties of R×Aut(g) ↷ fM are invariants of g.

Properties of R×Aut(g).⟨,⟩ are invariants of ⟨,⟩. .

...

They are interesting, because it is believed that

∃⟨,⟩ : distinguished restrictions on algebraic structures on g.

Hiroshi Tamaru (Hiroshima Univ.) 12/January/2015 15 / 17

(16)

. . . . . .

Some Remarks - (2/2) : recent works

.

Thm. (Hashinaga-T.-Terada (to appear))

..

...

An expression of the orbit space R×Aut(g)\fM derives a generalization of “Milnor frames”.

.

Thm. (Taketomi-T.)

..

...

∀n 3, ∃G of dimension n :

R×Aut(g) ↷ fM is of type (N),

̸ ∃ left-invariant Ricci solitons on G. .

Thm. (Hashinaga 2014)

..

...

“ARS minimal” is true for 4-dim. nilpotent case, but not true in general for 4-dim. solvable ones.

(17)

. . . . . .

References

.

...

.

1.. Berndt, J., Tamaru, H.: JDG (2003) .

2.. Berndt, J., Tamaru, H.: Crelle (2013) .

3.. Hashinaga, T.: Hiroshima Math. J. (2014) .

4.. Hashinaga, T., Tamaru, H.: preprint .

5.. Hashinaga, T., Tamaru, H., Terada, K.: J. Math. Soc. Japan, to appear (arXiv:1501.02485)

.

6.. Kodama, H., Takahara, A., Tamaru, H.: Manuscripta Math. (2011) .

7.. Lauret, J.: Math. Ann. (2001) .

8.. Lauret, J.: Crelle (2011) .

9.. Milnor, J.: Adv. Math. (1976) .

10.. Taketomi, Y., Tamaru, H.: in preparation

.

... Thank you!

Hiroshi Tamaru (Hiroshima Univ.) 12/January/2015 17 / 17

Referensi

Dokumen terkait