10
Chapter2. Yield Conditions
• Mohr-Column Criteria
τ σ + tanϕ– c=0
→ generalization of Tresca yield criteria →
1 2 2 3 3 1
1 1 1
, ,
2 2 2
k = MAX ⎛ ⎜ ⎝ σ σ − σ − σ σ − σ ⎞ ⎟ ⎠
tan
c c
τ = − σ φ = − μσ
Where c = cohesion
μ
= coefficient of frictionσ
= tensile strengthtan φ
= angle of frictionIn concrete failure criteria is controlled by sliding failure σ
τ
τ
maxσ
1σ
2τ
σ
φ
σ ε r
c
0
11 Deep beam
Shallow beam
• Failure mode of isotropic material
(
1,
2,
3) 0 f σ σ σ =
(
1,
2,
3) 0 f J J J =
where
σ
1 = the first invariant of the stress tensorσ
ijJ
1= the second invariant of the deviatric stress tensors
ij Stress invariant( σ
ij− σδ
ij) n
j= 0
To find the principal stress 2
r
ε
Sliding failure
Separation failure
Cut-off tensile strength Modified coulomb criteria
Ⅰ
Ⅱ
Separation failure
Sliding failure
Diagonal tension failure mode
균열면에 직각 (separation failure)
3
I
1σ − σ
1 x
I = σ
(
I
2= σ
3 x yz zx
I σ τ τ
=
If the co
1 1
2 1
3 1
I I I
σ σ σ σ σ
=
=
=
Deviatio
ij
s
ijσ =
Where1
m
3 σ =
ij ij
s = σ s
ij− s δ
3
s − J s
11
0
J =
2
1 J = 2 s
3
1 J = 3 s
2
I
2σ + σ −
y z
σ σ
+ + =
x y y z
σ σ + σ σ
x xy zx
z y yx
x zy z
τ τ σ τ
τ σ
oordinate are
2 3
2 2 3
2 3
σ σ σ σ σ σ σ
+ +
+ +
on form
m ij
σ δ +
( σ
x+ σ
y+ σ
m ij
σ δ
−
ij
0 δ =
3
2 3
s − J s − J
(
1
ij ij
6
s s = ⎢⎣ ⎡ σ
x
ij jk ki yx
zx
s
s s s s
s
=
3
0
I =
σ
ii=
)
z x
σ σ τ
+ −
e chosen to
3 1
σ σ +
) 1
z
3
ijσ = σ =
= 0
) (
2x y
σ − σ +
x xy xz
yx y yz
x zy z
s s
s s
s s
2 2
xy yz
τ − τ − τ
coincide wit
1
1 3 I
=
( σ
y− σ
z)
2+
12
2
τ
zxth the princi
( σ σ
z x)
2+ −
ipal stress ax
2 2
xy y
τ τ
⎤ + +
⎥⎦
xis
2 2
yz
+ τ
zx13
1 3
cos sin
R = c ϕ − σ σ + 2 ϕ
or 1 3R σ σ − 2
=
1 3
cos
1 3sin
2 c 2
σ σ − = ϕ − σ σ + ϕ
( )
3( )
1
1 sin 1 sin cos 0
2 σ 2 c
σ + ϕ − − ϕ − ϕ =
1 3
1 sin 2
1 sin 1 sin cos
ϕ σ σ c ϕ
ϕ ϕ
+ − =
− −
Let
2
cos
21 sin
1 sin tan 4 2 1 sin
k ϕ π ϕ ϕ
ϕ ϕ
⎛ ⎞ ⎛ ⎞ +
= ⎜ ⎝ − ⎟ ⎠ = ⎜ ⎝ + ⎟ ⎠ = −
( ) * = k σ σ
1−
3= 2 c k
: sliding failure Atσ
1= f
A :we expect separation failure• discontinuity of stress fields
1 3
2
k σ σ − = c k
: sliding1
f
tσ =
: separation How to find k & c (or ft)1) by compression test
1 3
σ
2 σ σ +
ϕ
ϕ
R
c
a b
σ
3ϕ
σA
σ
BσC
τ
A
σ
σ σB
σC
Sc
Qc
2)
• by slid
k σ
1−
σ
1= 0
(2)→(1)
f
cby tension t
ding failure
3
2c k
σ
− = 0
,− = σ
3f
= 2c k
(*)test
1
f
tσ =
- (1)
f
c - (2)τ
3 fc
σ =
σ 4
π
−σ
3
0
σ =
14
3 0
σ =
2
−
ϕ
0
τ
90−ϕ
τ
90° −ϕ
ϕ
τ
ft
fA
σ
σ
15
1
f
tσ =
,σ
3= 0
-(3) (3)→(1) and (*)1 t c
k σ = kf = f
∴ ct
k f
= f
• by separation failure
A t
f = f
For sliding failure
1
c A
f f
k <
For separation failure
1
c A
f f
k >
3) by pure shear test
ft
45 0 2
° +ϕ
16
1 3
f
vσ = − = σ
- (5) (5)→(1)( )
1 3
1
1 ck σ σ − = k + σ = f
( 1 )
1
c
v c v
k f f f f
+ = → = k
+
• For sliding failure if
v A
f < f 1
c A
f f
k <
+
• For separation failure if
1
c A
f f
< k +
In plane stress (member stress)
σ
τ
fv
fA
fv
Separation
sliding
3 0
σ =
III
0
σ =
17 1)
σ
ΙΙΙ< σ
ΙΙ< σ
Ισ σ
1=
Ι,σ
3= 0
• For sliding failure
1 c
k σ = f
- ①• For separation failure
f
Aσ
Ι=
- ②2)
σ
ΙΙ< < 0 σ
Ισ σ
1=
Ι,σ
3= σ
ΙΙ• For sliding failure
k σ σ
Ι−
ΙΙ= f
c - ③• For separation failure
f
Aσ
Ι<
- ④ 2)σ
ΙΙ< < 0 σ
Ισ
Iσ
IIσ
IIIτ
σ
IIIσ
IIσ
I18
1
0
σ =
,σ
3= σ
ΙΙ• For sliding failure
f
cσ
ΙΙΙ− =
- ⑤• For separation failure Non exist
①,③,⑤ = sliding failure only
σ
Iσ
IIσ
IIII
f
cσ sym
I
f
c① σ
③
⑤
( , 0) 1
k
19 If
f
A= 0
(즉, concrete의 tensile strength =0)2.1.3 the rupture criteria for concrete
If concrete has to be identified with a modified coulum material, we can conclude the parameter
k
has a value of about 41 sin 1 sin 4
k ϕ
ϕ
= + =
−
→tan ϕ = 0.75
∴ϕ = ° 37
c
2
f = c k
→4 f
cc =
I
f
cσ
③
II
fc
σ ② or ④
( 1, 0) −
, ( 1)
A A
c c
f f
f k f
⎛ ⎞
⎜ − ⎟
⎝ ⎠
I
f
Aσ =
σ I
σ
II20
2.1.4 The plastic strength of concrete
f
ce → effective strength of concretev
: effectiveness factorI
fc
σ ( , 0)1
k
3
fc
σ
1 k=
φ=0
φ
τ
σ
τ
σ
brittle
Effective strength of concrete : Effective factor
softening
σ
ε
c c
'
f = ν f
fceν
σ
ε
σ
21
The decreasing v-value for increasing strength seems to hold generally - Geometric effects
Stress concentration
Absolute value of dimension - Loading condition
a/d ratio
1) 1978 CEB Model Code
v
= 0.6 2) M. P Nielsen'
0.7
'( )
29000
c
ce c
f ⎛ f ⎞ f psi
= ⎜ − ⎟
⎝ ⎠
3) Ramirez
30
'( )
ce c
f = f psi
4) Schlaich & Weischede
v
=0.672.1.3 Failure criteria for concrete
Concrete two phase : cement paste, aggregates
aqq paste
K > K
aqq paste
σ > σ
Coment paste : isotropic plastic material with
ϕ = 0
σ
ε A 0
A 1
0 ' f
f c A 0 = A 1
w
2w
22
ϕ = 0
→k = 1
Hydraulic test
σ σ
1+
3= P
1 3 c
k σ σ − = f
1
f
cP
σ = +
(ideal)0 P =
f
cσ = 0 P ≠
f
ccP σ = +
Eq(2.1.7)
1 3
2c
σ σ − = 2c P σ = +
Failure condition for concrete - Two phase material - For granular material. c=0
σ
τ
f
cA B
C
C
f
cσ
τ
f
c2C
f
ccσσ
23
c
P
c2 c
σ = +
for cement pastea
kP
aσ =
2 (1 ) 2
c a c a
c
P c kP
P k c kP
σ σ = + σ = + +
= − + +
When
P
c= 0
σ
→ max2c kP
σ = +
(2c is uniaxial compressive strength of the composite material)f
ckP
σ = +
(friction angle from aggregates, cohesion from cement paste)For sufficiently high confining pressure the yield lines in cement paste tend to develop roughly under 45 degree.
① uniaxial compressive strength is not affected by the aggregates
② increase in strength above for cement paste is due to the displacement caused by the aggregate particles of the yield lines in the cement paste.
f
c: real uniaxial strengthf
cc: apparent uniaxial compressive strengthAverage stresses
c a
P = P + P
σ
σ
24
(
1 3)
1
m
2
σ = σ σ +
(
1 3)
1
m
2
τ = σ σ −
Since
σ σ
1=
m+ τ
m,σ
3= σ
m− τ
mSub into (2.1.10) and (2.1.8)
1 3 c
k σ σ − = f
,σ
1= f
A( k − 1 ) σ
m+ ( k + 1 ) τ
m= f
c,σ
m+ τ
m= f
AModified coulomb material in
σ
m-τ
m coordinate systemTest result
① thin – walled tube
② Biaxial test
Tensile stress
f
t= 0.1 f
cσ
3σ
1A B
C
O
25
Law sliding resistance along a OA, BC separation along AB - Shear failure of orthotropic panels
- Sliding resistance of a crack waloven - Effect of softening , transverse pressure - Geometry of structural element and loading
2.1.4 Structural concrete strength
ccf c
ef
tef t t
f vf
c vc
f v f
=
=
=
Softening phenomena is unable to take into account the softening in a rational manner Compressive strength of cracked concrete
Micro crack Macro crack
min 0
e t
A ⋅ = f a u Σ
- ①Where
A
e effective area for tensionConcrete tensile Steel tensile Bond
Macro
26 a=
= 2a
min - ②since 0
4
sb
A
Σ = d
- ③③ & ② → ①
0
2
2
e t t b
s e
A f f d
a u u A
A
= =
Σ
Let s
e
r A
= A 4
tu = λ f
(λ = 2
for deformed,λ = 1
for plastic)4 d
bβ = r
So
4
t b t
a f d
f r β
λ λ
= =
(2.1.54)Assume 0 y b y b
t t
d d
l c
f f
σ σ
∝ =
0
4
1 4
b s
t s
b t
c d
l f c r
a d f
r
σ λ σ
χ
λ
= = =
1.41
' sc
r f
χ = σ
(2.1.57)5) Collins & Mitchell (compression field theory)
'
0.8 170
1 c cef f
= ε
+
Reading assignment p81~91 (Mutteni’s book) Refer to Dr. Yun’s paper
By M.P. Nielson
f t
ε
σ
2σ
227
2
c
v f
(in MPa)