• Tidak ada hasil yang ditemukan

10-4 Linear Systems Analysis in the Time Domain IV

N/A
N/A
Protected

Academic year: 2024

Membagikan "10-4 Linear Systems Analysis in the Time Domain IV"

Copied!
23
0
0

Teks penuh

(1)

Linear Systems Analysis in the Time Domain IV

- Transient Response -

(2)

 

2 2 3 3

2 3

2 3 2 2 2

x( ) x(0) ( ) , x A x ( )

1 1

I A A A (*1)

2! 3!

( ) ( )

1 2! 3!

1 1

( ) A A A A I A A

2 2

A x( ) x(0) A x(0) A x( )

At

At

At

at

At

At

At At

t e

e

e t t t

at at

e at

d e t t t t

dt

e

t d e e t

dt

 

 

    

 

    

 

 

 

         

 

  

  

 

 

Matrix exponential

(3)

 

0

2 3

2 3

2 2 3 3 2 2 3 3

2 2

2

( )

( )

( )

exp(A ) A

! A

AB BA AB BA

(A B) (A B) I (A B)

2! 3!

A A B B

I A I B

2! 3! 2! 3!

I (A B) A AB

2!

k k

k At

At

At

A B t At Bt A B t At Bt

A B t

At Bt

t t

k d

dt

if if

t t t

t t t t

t t

t t t

e

e e

e e e

e e e

e e e

  

 

  

 

 

      

  

           

  

    

 

2 2 3 3 2 3 2 3 3 3

B B A B AB B

2! 3! 2! 2! 3!

t t t t t

     

(4)

2 2 2 2

2 3

( )

2 2

2! 3!

A B t At Bt

BA AB BA ABA B A BAB A B AB

t t

e

 e e          

(A B t) At Bt

e

e e

The difference between and vanishes, if A and B commute.

Hence,

(5)

1

2

3

1

2

3

2 3

1 1

2 3

2 2

3 3

2 2 3 3

1 1 1

(*1) 0

A

0

1 1

2 3!

1 1

1 2 3!

At

t

t

t

e I At t t

t t t

e

e

e

 

 

 

  

 

  

  

 

 

   

   

        

   

   

     

   

   

     

     

 

 

a) Diagonalized Form

(6)

1 1

1

2

1 1 1

1 1

1

1

A 1

2

2 1

A 1

1

1 0 0

A 0 0 , 0 0

0 0 0 0

1

1 0 2

A 0 1 , 0

0 0 0 0

t t

t t

t

t t t

t t

t

t

e te

e e

e

e te t e

e e te

e

 

 

 

 

      

 

 

   

 

 

 

 

 

      

 

 

   

 

b) Jordan Form

(7)

 

1

 

1

1

1 -1

x A x B i) ( ) det 0 :

A :

1, , ii) :

. iii) ( I A) 0 :

A , A P P

P AP :

i i

i i i

i i i

n n

n

i

u Q I A

n n

n sol i n

n distinct eigenvalues

p p eigen vector

p p

p p p p

n distint eigenvalues

 

    

 

 

 

 

 

    

 

 

 

 

      

 

 

  

Characteristic equation.

eigenvalue of A

Diagonalizable if c) General A : diagonalize !!

(8)

1

 

1

1

T

1, .

A A

A A 0

A A 0

A

P AP

i i i

T

i i i

T

T T

i i i j i i j i

T T

j j j i j j i j

n n

n

p p

if p p p is a normalized eigenvector Orthogonality of eigenvector

if

p p p p p p

p p p p p p

p p p p

 

 

 

    

  

     

 

 

 

  

 

 

 

  

(9)

1 1 1

( ) 1

0

1 ( ) 1

0

1 ( ) 1

0

ˆ ˆ

Px x, x = Px x A x B

ˆ ˆ

P x APx B

ˆ ˆ ˆ

x P APx P B x P B

ˆ ˆ

x( ) x(0) P B ( )

Px( ) ˆ P P x(0) P P B ( )

x( ) P P x(0) P P B ( )

t

t t

t

t t

t

t t

let

u u

u u

t e e u d

t e e u d

t e e u d

 

 

 

 

 

 

 

 

    

 

 

  

 

(10)

d) General A (-> Jordan form)

repeated : multiple eigenvalue

i

  

1



2

2

1 1 1

2 2 2

2 3

1

2 1 1 1

2

2 2 2

det I A A : 3 3

( I A) 0 ( I A) 0

( I A) 2 ?

AP P 1 A ,

A

i

p p

p p

if rank then p

p such that

p p

p p

    

 

    

  

  

 

 

 

    

 

 

Find

(11)

   

 

2

1 2 3

1,2 1,2 1 2

3

1 0 1 1 0 1

A 0 1 0 ( ) det I A 0 1 0

0 0 2 0 0 2

1 2

: 1, 1, 2

: I A 0

0 0 1 1 0

1, 0 0 0 0 0 , 1

0 0 1 0 0

1 0 1 2, 0 1 0 0 0 0

i i i i i

Q

eigenvalue

eigenvector Ap p p

p choose p p

  

 

  

 

 

 

 

      

  

 

  

  

  

     

     

          

      

     

3 3

1

0 0

1

p p

   

      

   

   

   

ex1)

(12)

1 2 3

1

-1

1 0 1 1 0 1

P 0 1 0 , P 0 1 0

0 0 1 0 0 1

1 0 0 P AP 0 1 0 0 0 2

p p p

    

   

      

   

   

 

 

     

 

 

1

1 1

1 A

A 1

x A x

ˆ ˆ ˆ

x P APx x

ˆ ˆ ˆ

x( ) x(0), P x x P x( ) P x(0) x( ) P P x(0) x(0)

0 0 0

P 0 0 P 0 0

t t

t t

t t t

t t t

t e t e

t e e

e e e

e e e

  

   

  

   

   

     

(13)

   

 

2

1,2 3

1,2 1,2 1

3 3 3

1 1 2 1 1 2

A 0 1 3 ( ) det I A 0 1 3

0 0 2 0 0 2

1 2

: 1, 2

: A I A 0

0 1 2 1

1, 0 0 3 0 0

0 0 1 0

1 1 2 5

2, 0 1 3 0

0 0 0

i i i i i

Q

eigenvalue

eigenvector p p p

p p

p p

  

 

 

 

  

 

 

       

  

 

  

 

  

 

   

   

        

    

   

 

 

 

      

 

 

3 1

   

   

 

We can find only 1 eigenvector for

  1

(14)

If not able to find 3 independent vectors, find which transforms A as Jordan form.

p

2

   

   

 

 

1 1

3

1

1 2 3 1 2 3 1

3

1 2 3 1 1 1 1 2 3 3

1 1 1 1 1 1

1 1 1 2 1 2 1 2

1 0 AP = PJ P 0 0

0 0

1 0

A 0 0

0 0

A A A

A I A 0

A A I

p p p p p p

p p p p p p p

p p p p

p p p p p p

  

 

 

 

 

  

 

 

 

 

  

 

 

  

   

    

So that,

(15)

1

2 2 2

2

1

-1

0 1 2 1

A I = 0 0 3 0 , ,

0 0 1 0

0

2 1, 3 0, 0 1, 1

0

1 0 5 1 0 5

P 0 1 3 , P 0 1 3

0 0 1 0 0 1

1 0 5 1 1 2 P AP 0 1 3 0 1 3 0 0 1 0 0 2

a

p p let p b

c

b c c c b choose p

     

     

        

     

     

   

        

   

    

   

      

   

   

    

   

      

   

   

1 0 5 1 1 0 0 1 3 0 1 0 0 0 1 0 0 2

   

    

   

   

   

Jordan form

(16)

A

1 1 2

x 0 1 3 x Ax , x( ) x(0) ? 0 0 2

if t e

t

 

 

    

 

 

1

J J

2

ˆ ˆ

Px x, x = Px

1 1 0

ˆ ˆ ˆ ˆ

x( ) P APx J x 0 1 0 x 0 0 2 0

ˆ ˆ

0 0 , x( ) x(0)

0 0

t t

t t t

t

let

t

e te

e e t e

e

  

 

    

 

 

 

 

   

 

 

 

 

(17)

 

 

A J 1

2

2 2 2

2

2 2

1 0 5 0 1 0 5

P P 0 1 3 0 0 0 1 3

0 0 1 0 0 0 0 1

5 1 0 5

0 3 0 1 3

0 0 0 0 1

5 3 5

0 3 3

0 0

t t

t t t

t

t t t

t t

t

t t t t t

t t t

t

e te

e e e

e

e te e

e e

e

e te e te e

e e e

e

  

   

 

   

         

 

   

     

    

   

     

     

 

    

 

 

  

 

 

 

(18)

1

2

3

1 1

1

2

1 1 1

1 1

1

1 2

3

1 1

2

2 1

1

0 A

0

1 0 0

A 0 0 0 0 ,

0 0 0 0

1

1 0 2

A 0 1 0

0 0 0 0

t

t At

t

t t

t At

t

t t t

t t

At

t

e

e e

e

e te

e e

e

e te t e

e e te

e

 

 

 

 

      

 

 

   

 

 

 

 

      

 

 

   

 

 

 

 

 

      

 

 

   

2. Jordan Form 1. Diagonal Form

(19)

-1

1 1 1

( ) 1

1 ( ) 1

1 A

x A x B A , P AP

x = Px ˆ

ˆ ˆ ˆ

x P APx P B x P B

ˆ ˆ

x( ) x(0) P B ( )

Px( ) ˆ x( ) P P x(0) P P B ( )

P P

i i i

t t

t t

t t

u p p

let

u u

t e e u d

t t e e u d

e e

 

 

 

 

    

    

 

  

3. General A

(20)

A A( ) 0

0

1 1

0 0

A -1 1

1 1

2 3

2 3

x A x B , ( ) B ( )

X( ) A X( ) B ( ) , X( ) ( I A) ( I A) B ( ) ( I A)

1 1

( I A) I A

1 1 1 1

I A A A

1 1 1 1

t t

t

u x t e x e u d

s s x s u s s s x s u s

e s

s s s

s s s s

 

   

      

 

    

 

      

 

       

   

 L

Laplace Transformation

(21)

 

2 1

-1 1 -1 2 3

2 3 4

2 2 3 3

A 2 2 3 3

1 1 1

, , ( ) ( 1) ( )

( 1)!

1 1 1 1

( I A) I A A A

1 1

I A A A

2! 3!

1 1

I A A A

2! 3!

n

n n n

n n

t

t t t f t d F s

s n s ds

s s s s s

t t t

e t t t

   

          

 

 

           

   

     

L L L

L L

Laplace transformation table

(22)

Method 1. Diagonalization

Method 2. Laplace Transformation

Method 3. Sylvester's Interpolation Formula

(23)

Referensi

Dokumen terkait