• Tidak ada hasil yang ditemukan

31 Residue Integration Method

N/A
N/A
Protected

Academic year: 2024

Membagikan "31 Residue Integration Method"

Copied!
6
0
0

Teks penuh

(1)

SEOUL NATIONAL UNIVERSITY

School of Mechanical & Aerospace Engineering

400.002

Eng Math II

31 Residue Integration Method

31.1 Residue Theorem Theorem 1 [Residue theorem]

Let f(z) be analytic inside a simple closed path C and on C, except for finitely many singular points z1, z2,· · · , zkinsideC. Then the integral off(z) taken counterclockwise around C equals 2πi times the sum of the residues of f(z) at z1,· · · , zk.

6C uz1

uz2 · · · uzk '

&

$

H %

Cf(z)dz= 2πiPk

j=1Resz=zjf(z)

Proof. I

C

f(z)dz+ I

C1

f(z)dz+ I

C2

f(z)dz+· · ·+ I

Ck

f(z)dz = 0 C : ccw, C1, C2,· · ·, Ck: cw

I

C

f(z)dz= I

C1

f(z)dz+ I

C2

f(z)dz+· · ·+ I

Ck

f(z)dz C, C1, C2,· · · , Ck: ccw

I

Cj

f(z)dz = 2πiResz=zjf(z), j= 1,· · ·, k Example 1. Integration by the residue theorem.

I

C

43z

z2−zdz (C : ccw) Solution.

Resz=0 43z z(z−1) =

·43z z−1

¸

z=0

=4, Resz=1 43z z(z−1) =

·43z z

¸

z=1

= 1 (a) 0 & 1 are inside C : 2πi(4 + 1) =6πi

(b) 0 is inside, 1 is outside : 2πi(4) =8πi (c) 1 is inside, 0 is outside : 2πi(1) = 2πi (d) 0 & 1 are outside : 2πi(0) = 0

(2)

Example 2. Poles and essential singularities.

C : 9x2+y2 = 9 (ccw) I

c

µ zeπz

z416 +zeπ/z

dz Solution.

±2i insideC ; ±2 outsideC Resz=2i zeπz

z416 =

·zeπz 4z3

¸

z=2i

=1

16 ; Resz=2i zeπz z416 =

·zeπz 4z3

¸

z=2i

= 1 16 z·eπ/z =z

µ 1 +π

z + π2

2!z2 + π3 3!z3 +· · ·

=z+π+π2 2 ·1

z +· · ·

∴ 2πi µ

1 16 1

16 +π2 2

=π µ

π21 4

i= 30.221i . 31.2 Integrals of Rational Function of cosθ and sinθ

I = Z 2π

0

F(cosθ,sinθ) =? F : real rational ftn Sete =z, thendz/dθ=ie =dz/iz, and

cosθ= 1

2(e+e−iθ) = 1 2(z+1

z) sinθ= 1

2i(e−e−iθ) = 1 2i(z−1

z)



 F Ãf(z)

I = I

C

f(z)dz

iz C:|z|= 1. Example 3.

Show that Z 2π

0

2cosθ = 2π Solution.

cosθ= 1

2(z+ 1/z), dθ=dz/iz I

c

dz/iz

212(z+ 1/z) = I

c

dz

2i(z22

2z+ 1) =2 i

I

c

dz (z−√

21)(z−√ 2 + 1) z1 =

2 + 1 : ( outside of C), z2=

21 (inside of C)

Resz=z2 1

(z−√

21)(z−√

2 + 1) =

· 1

z−√ 21

¸

z= 21

=1 2

∴ Z 2π

0

2cosθ = 2πi(2/i)(1/2) = 2π .

(3)

31.3 Improper Integrals of Rational Functions.

When the interval of integration is not finite:

Z

−∞

f(x)dx= lim

a→−∞

Z 0

z

f(x)dx+ lim

b→∞

Z b

0

f(x)dx If both limits exist, Z

−∞

f(x)dx= lim

R→∞

Z R

−R

f(x)dx

If f(x) is a real rational function whose denominator is different from zero for all realx and is of degree at least two units higherthan the degree of the numerator, then the both limits exist.

Consider I

C

f(z)dz around a pathC .

Choose R large enough so that C encloses all the upper-half plane (UHP) poles (finitely many), then I

C

f(z)dz = Z

S

f(z)dz+ Z R

−R

f(x)dx= 2πiX

Resf(z)

= Z R

−R

f(x)dx= 2πiX

Resf(z) Z

S

f(z)dz . (1)

Setz=Re, then onS,R=const, 0≤θ≤π. By assumption,

|f(z)|< k

|z|2 (|z|=R > R0) for somek and R0. ¯

¯¯

¯ Z

S

f(z)dz

¯¯

¯¯< k

R2πR=

R (R > R0) Take R−→ ∞ in (1). Then¯

¯R

Sf(z)dz¯

¯−→0.

∴ R

−∞f(x)dx= 2πiP

U HPResf(z) . (summation over all UHP poles)

−R R

-x 6y

S (semicircle) o

R

-

C (contour) uz1

uz2 · · ·

uzk

(4)

Example 4. An improper integral from 0 to Z

0

dx

1 +x4 = π 2

2 Solution.

f(z) = 1/(1 +z4) ⇒z2 =±i Four simple poles z1=eπi/4, z2=e3πi/4, z3 =e3πi/4, z4 =e−πi/4

z1 & z2 lie in the upper half-plane Resz=z1f(z) =

· 1 (z+z4)0

¸

z=z1

=

· 1 4z3

¸

z=z1

= 1

4e3πi/4 =1 4eπi/4 Resz=z2f(z) =

· 1 (z+z4)0

¸

z=z2

=

· 1 4z3

¸

z=z2

= 1

4e9πi/4= 1 4e−πi/4 (∵ eπi =1, e2πi= 1)

Z

−∞

dx

1 +x4 =2πi

4 (eπi/4−e−πi/4) =2πi

4 2isinπ 4 = π

2

∴ Z

0

dz 1 +x4 = 1

2 Z

−∞

dz

1 +x4 = π 2

2 . 31.4 Fourier Integrals

f: rational ftn satisfying the degree assumption as before Z

−∞

f(x)eisxdx= 2πiX

Res[f(z)eisz] (s >0)

½ R

−∞f(x) cosxdx=2πP

ImRes[f(z)eisz] R

−∞f(x) sinxdx= 2πP

ReRes[f(z)eisz] Since s >0 and S lies in the upper half-plane y≥0,

|eis(x+iy)|=|eisx| |e−sy|=e−sy 1 (s >0, y 0) AsR → ∞, the value of the integral overS 0.

Example 5.

Z

−∞

cossx

k2+x2dx= π ke−ks,

Z

−∞

sinsx

k2+x2dx= 0. (s >0, k >0) Solution. z=ik in the upper half-plane.

Resz=ik eisz k2+z2 =

·eisz 2z

¸

z=ik

= e−ks 2ik Z

−∞

eisx

k2+x2dx= 2πie−ks 2ik = π

ke−ks Z

−∞

cossx

k2+x2dx= π ke−ks,

Z

−∞

sinsx

k2+x2dx= 0

(5)

31.5 Another Kind of Improper Integral.

A≤α≤B, lim

x→α|f(x)|=∞, Z B

A

f(x)dx=?

Z B

A

f(x)dx= lim

ε→0

Z α−ε

A

f(x)dx+ lim

η→0

Z B

α+η

f(x)dx Cauchy principal value of the integral:

pr.v.

Z B

A

f(x)dx= lim

ε→0

·Z α−ε

A

f(x)dx+ Z B

α+ε

f(x)dx

¸

For example,

pr.v.

Z 1

1

dx x3 = lim

ε→0

·Z −ε

1

dx x3 +

Z 1

ε

dx x3

¸

= 0 Theorem 1 [Simple poles on the real axis]

If f(z) has a simple pole at z=aon the real axis, then

r→0lim Z

c2

f(z)dz=πiResz=af(z) Proof.

f(z) = b1

z−a+g(z), b1 = Resz=af(z) g(z) is analytic on the semicircle of integration.

C2 :z=a+re 0≤θ≤π, Z

C2

f(z)dz = Z π

0

b1

reire+ Z

C2

g(z)dz Z π

0

b1

reire= Z π

0

ib1=b1πi Z

C2

g(z)dz ≤M πr asr→0, M πr→0.

Q. principal value of the integral of a rational functionf(z) from−∞ to? AsR−→ ∞,R

Sf(z)−→0.

Asr−→0,R

C2f(z)−→ −πiResz=af(z).

−R R

-x 6y

¾»

u a -C2

S (semicircle) o

R

- -

C (contour) uz1

uz2 · · ·

uzk

(6)

∴ pr.v.

Z

−∞

f(x)dx= 2πi X

U HP

Resf(z) +πiX

real

Resf(z)

(the first sum over all the UHP poles, the second sum over all poles on the real axis) Example 6. Poles on the real axis

pr.v Z

−∞

dx

(x23x+ 2)(x2+ 1) =?

Solution. Simple polesz= 1, z= 2 (real),z=i(in the UHP) Resz=1f(z) =

· 1

(z−2)(z2+ 1)

¸

z=1

=1 2 Resz=2f(z) =

· 1

(z−1)(z2+ 1)

¸

z=2

= 1 5 Resz=if(z) =

· 1

(z23z+ 2)(z+i)

¸

z=i

= 1

6 + 2i = 3−i 20

∴ pr.v.

Z

−∞

dx

(x23x+ 2)(x2) = 2πi µ3−i

20

¶ +πi

µ

1 2+ 1

5

= π 10 .

Referensi

Dokumen terkait