Electrical Variational System
❖ Electrical variational system
,
Premultiply by allowable variation of
0 or fixed conditions const. along conductors E
=
=
= −
D = ( ) =
V D dV V dV
( )
1 1
1 0
1 1
d ,
( ) d 0
E E
i i V
E E
V
E E
U W
U U
D E V q
D E E V W
= =
=
− =
( )
S
V D D V D dV V dV
D
dV d S
• − • =
D
E
2
U
E1
U
E1-42
V D • EdV = V dV
𝟎
(discrete)
i i
q
=
divergence theorem
divFdv F ndA
Electrical Variational System
❖ Non-complementary principle
- Allow variation of free charge distribution - Constant with E equal
D • D =
- Pre-multiply by 𝜑
( )
( )
2 2
2 0
0
linear relationship
V V
i i
V i
E E
E D V
D EdV dV
D E
dV
qU W
U E D d DdV D E
• =
•
=
− =
= •
=
( )
V V
V V V
D dV dV
dV dV dV
D
D D
• =
• − • =
1
Electrical Variational System
❖ Non-complimentary principle (continued)
PMTPE PMTCPE
Complementary
Non-Complementary
( )
( )
( )
( )
1 1
2 2
1 1
2 2
0 0 0 0
M M
M M
E E
E E
U W U W U W U W
− =
− =
− =
− =
1 2
E E
U = D E • − U
Mechanical , , , , u S T f E D
1-44
Electrical Variational System
❖ Combined Electrical-Mechanical
From thermodynamics
1 2
1 2 1 2
1 1
2
TOT M E
TOT M E M E
M V E
V
U U U
U U U W W W
U T SdV
U E DdV
= +
= + = + =
=
=
T( )
S D,1
stlaw of thermodynamics,
TOT TOT
dU dQ dW
dU ds T d S E d D
= +
= + +
, , ,
, ,
S D s D S s
U U U
dU ds d S d D
s S D
U U U
T E
s S D
= + +
= = = (
,)
E S D
entropy
Electrical Variational System
❖ Combined Electrical-Mechanical (continued)
: Helmholtz Free Energy
Displacement, Electrical Potential
, ,
,,
, ,
S D D
SA U s dA sd T d S E d D
A A A
s T E
s D
= − = − + +
= = =
temperature
1 1
1 2 2 2 2
2 2
,
0 ,
M E M E
G U s T S dG sd S dT E d D
G W U U W W
G U s D E dG sd T d S D d E
= − − = − − +
= → − + + − =
= − − = − + −
: Gibbs Free Energy
1 M 1 E 1 M 1 E 0
U U W W
− − + =
1-46
Electrical Variational System
❖ Consider
0
0
0
0
q CV A V x
AE E q
A
=
=
=
=
+q +q
V
x dx
2 0
2
0 0 2 2
0 2
0
1 2 1 2
1 2
1 2
V x
q const
U E dV
q Adx A
U q
x A
F U Eq
x
=
=
=
=
= − = −
Electrical Variational System
❖ Consider constant voltage
2 0
2 0
2 0 0
1 2 1 2 1 2
Vol
x
U E dVol
V dVol x
V dx A x
=
=
=
2
2 0
2
0 2
2
0 2
1 1
2 2
1 2 ( ) 1
2
V const
V const
U A V CV
x
U V
x A x
U V
F A
x x
=
=
= =
= −
= − =
What charge is required for V to be constant?
0
0 0
0
V Ex q x A
q x
dV dx dq
A A
dq q dx x
= =
= = +
= −
1-48
Electrical Variational System
❖ Total Energy
The force
0 2 2
0 2 2
2 2
0 0
2 2
( 1 )
2
1 1
2 , 2
= −
=
= −
− = =
= = − =
dU dU Vdq dU U dx
x
dU A V dx
x
q A
Vdq Udx V dx
x x
A dU A
dU V F V
x dx x
: electrical enthalpy
= −
= −
U U q
U E D
= − = = −
U U U
qF x x x
Electrical Variational System
❖ Total Energy (continued) More formally
: total energy
,
= −
= − −
= − −
= +
= =
D S
U U q
U U q q
q F x
U U
dU dS dq
S q
U U
T E
S D
*
( )
= +
= +
U U
qdU dq dx
x x
dq Fdx
: energy per volume U EdD TdS
= −
1-50
Electrical Variational System
Gibbs free energy Elastic free energy Electric free energy Helmholtz free energy
enthalpy Elastic enthalpy Electric enthalpy
1 2
1 2
: : : : : : :
ij ij m m
ij ij
m m
m m
m m
G U T S E D G U T S
G U E D A U
H U T S E D H U T S
H U E D
= − − −
= − −
= − −
= −
= − −
= −
= −
temperature
❖ Total Energy (continued)
1 2
1
ij ij m m
ij ij m m
ij ij m m
ij ij m m
ij ij m m
ij ij m m
dG d S dT D dE dG d S dT E dD dG d T dS D dE dA d T dS E dD dH d S dT D dE dH d S dT E dD dH d T dS D dE
= − − −
= − − +
= − + −
= − + +
= − −
= − +
= + −
enthalpy
Electrical Variational System
❖ Total Energy (continued)
,
E,
,
1 2
( , , )
( , ) ( , )
ijkl
mn
ij m ij m
ij m
T E
ij
ij T
m
m E
ij kl
T
m m
G G
dG T E d dT dE
T E
G
S G
T D G
E
S s T f T E
D E f T E
= + +
= −
= −
= −
= +
= +
1-52
Ref. 1.”Dynamics and Mechanics of Electrical Systems” by Crandall - Chap. 6
2. “Principle and Applications of Ferroelectrics and Related Material” by M.E.
Lines & A.M. Glass - Chap. 3
Electrical Variational System
2 ,
Expand
= +
= = −
ij
E T
ij ij
ij kl m
kl m
E E E ij
ijkl
kl ij kl
S
S S
dS dT dE
T E
S G
s T T T
1
1 1 1
2 T ,
2
Piezo free
Coefficient of T l :
h m
: er a
T T ij
ijk
k ij k
T E T E ij T E
ij
ij
S G
d
n Strain
Expa o
E T E
S G nsi
T
= = −
= = −
Linearize →
→
m m
dD D
❖ Total Energy (continued)
,
ij ij m m
ij m
ij m
E T
ij m
ij m
dG S dT D dE
G G
dG dT dE
T E
G G
S D
T E
= − −
= +
= − = −