Announcement
@Copyright Prof. Juhyuk Moon (문주혁), CEE, SNU
• To be updated
Progress
@Copyright Prof. Juhyuk Moon (문주혁), CEE, SNU
• Chapter 1 Material properties
• Chapter 2 Axially loaded member
• Chapter 3 Torsion
• Chapter 4 Shear and Bending moment
• Chapter 5 Stress in beams
• Chapter 7 Stress and Strain
• Chapter 9 Deflection of beams
• Chapter 11 Columns
Chapter 7 Analysis of Stress and Strain
@Copyright Prof. Juhyuk Moon (문주혁), CEE, SNU
KEYWORDS:
Plane stress Mohr’s Circle
Uniaxial, Biaxial, Triaxial stress Principal stress
Flexure formula
Shear formula
Torsion formula
Introduction
@Copyright Prof. Juhyuk Moon (문주혁), CEE, SNU
(Sign convention) All we need to know..
𝜎 x 𝜎 y
=applied normal stress
=applied normal stress
𝜃 = angle rotation
=applied shear stress
𝜏 𝑥𝑦
=new normal stress
=new normal stress
=new shear stress
𝜏 𝑥
1𝑦
1𝜎 𝑥
1𝜎 𝑦
1Introduction
@Copyright Prof. Juhyuk Moon (문주혁), CEE, SNU
(Sign convention)
At certain rotation angle, there will be no shear stress
𝜎1 𝜎2 𝜃𝑝1
=Principal stress
=Principal stress
=Principal angle
𝜏12 =?
Introduction
@Copyright Prof. Juhyuk Moon (문주혁), CEE, SNU
(Sign convention)
Because x-y or x1-y1 axis is always perpendicular, 𝜎1 𝜎2 𝜃𝑝1
=Principal stress
=Principal stress
=Principal angle
𝜎2 𝜎1 𝜃𝑝2
=Principal stress
=Principal stress
=Principal angle +𝟗𝟎 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛, 𝜃𝑝2= 𝜃𝑝1 + 90
Mohr’s Circle
Derivation can be tedious but final result is very useful!
Point on Circle
Point on Circle
Mohr’s Circle
Principal stress can be also found easily
Point on Circle
Point on Circle
Transformation
Wedge-shape stress element
Transformation
Force equilibrium condition
<x1 direction>
Transformation
Force equilibrium condition
<y1 direction>
Transformation equations for plane stress
<x1 direction> - normal <y1 direction> - shear
Transformation equations for plane stress
<x1 direction> - normal
<y1 direction> - normal
𝜃 = 𝜃 + 90°
Observation
<x1 direction> - normal
<y1 direction> - normal
Observation
<uniaxial stress> <x1 direction> - normal
<y1 direction> - shear
Observation
<pure shear> <x1 direction> - normal
<y1 direction> - shear
Observation
<biaxial stress> <x1 direction> - normal
<y1 direction> - shear
Principal stress and Maximum shear stress
𝜃𝑝1
𝜃𝑝2=𝜃𝑝1+90
𝜃𝑠 𝜃𝑝1
𝜃𝑠
𝜎1 = 𝑚𝑎𝑥 𝜎2 = 𝑚𝑖𝑛
𝜏12 = 0 𝜏12 = 0
𝜎1 ≠0 𝜏12 = 𝑚𝑎𝑥 𝜏21 = 𝑚𝑎𝑥 𝜎2 ≠0
Principal stress
Max. shear stress 𝜏12
𝜏21 𝜏21
𝜏12
Principal stress
𝑎𝑡 𝜃𝑝 𝜎1 = 𝑚𝑎𝑥 𝜎2 = 𝑚𝑖𝑛 Principal stress
Differentiation for max or min of 𝜎𝑥1
Principal stress
Your homework
𝜎
𝑥1+ 𝜎
𝑦1= 𝜎
𝑥+ 𝜎
𝑦𝜎
1+ 𝜎
2= 𝜎
𝑥+ 𝜎
𝑦Finally…
using
Principal angle = Principal stress =
`
Principal stress
Maximum Shear Stress
Differentiation for max of
𝑎𝑡 𝜃𝑠 𝜏12 = 𝑚𝑎𝑥 𝜏21 = 𝑚𝑎𝑥 Max. shear stress
Maximum Shear Stress
𝑎𝑡 𝜃𝑠 𝜏12 = 𝑚𝑎𝑥 𝜏21 = 𝑚𝑎𝑥 Max. shear stress
Maximum shear stress =
Max shear angle =
(where )
Max. shear stress angle vs Principal stress angle
𝑎𝑡 𝜃𝑠 𝜏12 = 𝑚𝑎𝑥
𝜏21 = 𝑚𝑎𝑥
Max. shear stress 𝑎𝑡 𝜃𝑝
𝜎1 = 𝑚𝑎𝑥 𝜎2 = 𝑚𝑖𝑛 Principal stress
Max. shear stress angle vs Principal stress angle
𝑎𝑡 𝜃𝑠 𝜏12 = 𝑚𝑎𝑥
𝜏21 = 𝑚𝑎𝑥 Max. shear stress
𝑎𝑡 𝜃𝑝
𝜎1 = 𝑚𝑎𝑥 𝜎2 = 𝑚𝑖𝑛 Principal stress
Max. shear stress angle vs Principal stress angle
𝑎𝑡 𝜃𝑠 𝜏12 = 𝑚𝑎𝑥
𝜏21 = 𝑚𝑎𝑥 Max. shear stress
𝑎𝑡 𝜃𝑝
𝜎1 = 𝑚𝑎𝑥 𝜎2 = 𝑚𝑖𝑛 Principal stress
at arbitrary angle 𝜃
Mohr’s circle
𝜎
𝜏
0
Mohr’s circle
𝜎
𝜏 0
Point on Circle
𝝉
𝒙𝒚𝜎
𝒙Mohr’s circle
𝜎
𝜏 0
Point on Circle
𝝉
𝒙𝒚𝜎
𝒙𝜎
𝒚 𝜎𝑥 + 𝜎𝑦2
Mohr’s circle
𝜎
𝜏 0
Point on Circle
𝝉
𝒙𝒚𝜎
𝒙𝜎
𝒚 𝜎𝑥 + 𝜎𝑦2
𝑅
Mohr’s circle application I
𝜎
𝜏 0
𝝉
𝒙𝒚𝜎
𝒙𝜎
𝒚 𝜎𝑥 + 𝜎𝑦2
𝑅
Point on Circle
2𝜃
at arbitrary angle 𝜃
Mohr’s circle application I
𝜎
𝜏 0
𝝉
𝒙𝒚𝜎
𝒙𝜎
𝒚 𝜎𝑥 + 𝜎𝑦2
𝑅
Point on Circle
2𝜃
𝜎
𝒙𝟏𝜎
𝒚𝟏𝝉
𝒙𝟏𝒚𝟏at arbitrary angle 𝜃
Point on Circle
Mohr’s circle application II
𝜎
𝜏 0
𝝉
𝒙𝒚𝜎
𝒙𝜎
𝒚 𝜎𝑥 + 𝜎𝑦2
𝑅
2𝜃
𝑝principal angle 𝜃𝑝
𝜎
𝟏𝜎
𝟐Point on Circle
Mohr’s circle application III
𝜎
𝜏 0
𝝉
𝒙𝒚𝜎
𝒙𝜎
𝒚𝜎𝑥 + 𝜎𝑦 2
𝑅
2𝜃
𝑠max. shear angle 𝜃𝑠
𝝉
𝒎𝒂𝒙𝝉
𝒎𝒂𝒙= 2(𝜃
𝑝+45)
𝜏𝑚𝑎𝑥
θs
Mohr’s circle Example
Mohr’s circle Example