• Tidak ada hasil yang ditemukan

457.201 재료역학 및 실험 Mechanics of Materials and Lab.

N/A
N/A
Protected

Academic year: 2024

Membagikan "457.201 재료역학 및 실험 Mechanics of Materials and Lab."

Copied!
36
0
0

Teks penuh

(1)

Announcement

@Copyright Prof. Juhyuk Moon (문주혁), CEE, SNU

• To be updated

(2)

Progress

@Copyright Prof. Juhyuk Moon (문주혁), CEE, SNU

• Chapter 1 Material properties

• Chapter 2 Axially loaded member

• Chapter 3 Torsion

• Chapter 4 Shear and Bending moment

• Chapter 5 Stress in beams

• Chapter 7 Stress and Strain

• Chapter 9 Deflection of beams

• Chapter 11 Columns

(3)

Chapter 7 Analysis of Stress and Strain

@Copyright Prof. Juhyuk Moon (문주혁), CEE, SNU

KEYWORDS:

Plane stress Mohr’s Circle

Uniaxial, Biaxial, Triaxial stress Principal stress

Flexure formula

Shear formula

Torsion formula

(4)

Introduction

@Copyright Prof. Juhyuk Moon (문주혁), CEE, SNU

(Sign convention) All we need to know..

𝜎 x 𝜎 y

=applied normal stress

=applied normal stress

𝜃 = angle rotation

=applied shear stress

𝜏 𝑥𝑦

=new normal stress

=new normal stress

=new shear stress

𝜏 𝑥

1

𝑦

1

𝜎 𝑥

1

𝜎 𝑦

1
(5)

Introduction

@Copyright Prof. Juhyuk Moon (문주혁), CEE, SNU

(Sign convention)

At certain rotation angle, there will be no shear stress

𝜎1 𝜎2 𝜃𝑝1

=Principal stress

=Principal stress

=Principal angle

𝜏12 =?

(6)

Introduction

@Copyright Prof. Juhyuk Moon (문주혁), CEE, SNU

(Sign convention)

Because x-y or x1-y1 axis is always perpendicular, 𝜎1 𝜎2 𝜃𝑝1

=Principal stress

=Principal stress

=Principal angle

𝜎2 𝜎1 𝜃𝑝2

=Principal stress

=Principal stress

=Principal angle +𝟗𝟎 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛, 𝜃𝑝2= 𝜃𝑝1 + 90

(7)

Mohr’s Circle

Derivation can be tedious but final result is very useful!

Point on Circle

Point on Circle

(8)

Mohr’s Circle

Principal stress can be also found easily

Point on Circle

Point on Circle

(9)

Transformation

Wedge-shape stress element

(10)

Transformation

Force equilibrium condition

<x1 direction>

(11)

Transformation

Force equilibrium condition

<y1 direction>

(12)

Transformation equations for plane stress

<x1 direction> - normal <y1 direction> - shear

(13)

Transformation equations for plane stress

<x1 direction> - normal

<y1 direction> - normal

𝜃 = 𝜃 + 90°

(14)

Observation

<x1 direction> - normal

<y1 direction> - normal

(15)

Observation

<uniaxial stress> <x1 direction> - normal

<y1 direction> - shear

(16)

Observation

<pure shear> <x1 direction> - normal

<y1 direction> - shear

(17)

Observation

<biaxial stress> <x1 direction> - normal

<y1 direction> - shear

(18)

Principal stress and Maximum shear stress

𝜃𝑝1

𝜃𝑝2=𝜃𝑝1+90

𝜃𝑠 𝜃𝑝1

𝜃𝑠

𝜎1 = 𝑚𝑎𝑥 𝜎2 = 𝑚𝑖𝑛

𝜏12 = 0 𝜏12 = 0

𝜎1 ≠0 𝜏12 = 𝑚𝑎𝑥 𝜏21 = 𝑚𝑎𝑥 𝜎2 ≠0

Principal stress

Max. shear stress 𝜏12

𝜏21 𝜏21

𝜏12

(19)

Principal stress

𝑎𝑡 𝜃𝑝 𝜎1 = 𝑚𝑎𝑥 𝜎2 = 𝑚𝑖𝑛 Principal stress

Differentiation for max or min of 𝜎𝑥1

(20)

Principal stress

Your homework

(21)

𝜎

𝑥1

+ 𝜎

𝑦1

= 𝜎

𝑥

+ 𝜎

𝑦

𝜎

1

+ 𝜎

2

= 𝜎

𝑥

+ 𝜎

𝑦

Finally…

using

Principal angle = Principal stress =

`

Principal stress

(22)

Maximum Shear Stress

Differentiation for max of

𝑎𝑡 𝜃𝑠 𝜏12 = 𝑚𝑎𝑥 𝜏21 = 𝑚𝑎𝑥 Max. shear stress

(23)

Maximum Shear Stress

𝑎𝑡 𝜃𝑠 𝜏12 = 𝑚𝑎𝑥 𝜏21 = 𝑚𝑎𝑥 Max. shear stress

Maximum shear stress =

Max shear angle =

(where )

(24)

Max. shear stress angle vs Principal stress angle

𝑎𝑡 𝜃𝑠 𝜏12 = 𝑚𝑎𝑥

𝜏21 = 𝑚𝑎𝑥

Max. shear stress 𝑎𝑡 𝜃𝑝

𝜎1 = 𝑚𝑎𝑥 𝜎2 = 𝑚𝑖𝑛 Principal stress

(25)

Max. shear stress angle vs Principal stress angle

𝑎𝑡 𝜃𝑠 𝜏12 = 𝑚𝑎𝑥

𝜏21 = 𝑚𝑎𝑥 Max. shear stress

𝑎𝑡 𝜃𝑝

𝜎1 = 𝑚𝑎𝑥 𝜎2 = 𝑚𝑖𝑛 Principal stress

(26)

Max. shear stress angle vs Principal stress angle

𝑎𝑡 𝜃𝑠 𝜏12 = 𝑚𝑎𝑥

𝜏21 = 𝑚𝑎𝑥 Max. shear stress

𝑎𝑡 𝜃𝑝

𝜎1 = 𝑚𝑎𝑥 𝜎2 = 𝑚𝑖𝑛 Principal stress

at arbitrary angle 𝜃

(27)

Mohr’s circle

𝜎

𝜏

0

(28)

Mohr’s circle

𝜎

𝜏 0

Point on Circle

𝝉

𝒙𝒚

𝜎

𝒙
(29)

Mohr’s circle

𝜎

𝜏 0

Point on Circle

𝝉

𝒙𝒚

𝜎

𝒙

𝜎

𝒚 𝜎𝑥 + 𝜎𝑦

2

(30)

Mohr’s circle

𝜎

𝜏 0

Point on Circle

𝝉

𝒙𝒚

𝜎

𝒙

𝜎

𝒚 𝜎𝑥 + 𝜎𝑦

2

𝑅

(31)

Mohr’s circle application I

𝜎

𝜏 0

𝝉

𝒙𝒚

𝜎

𝒙

𝜎

𝒚 𝜎𝑥 + 𝜎𝑦

2

𝑅

Point on Circle

2𝜃

at arbitrary angle 𝜃

(32)

Mohr’s circle application I

𝜎

𝜏 0

𝝉

𝒙𝒚

𝜎

𝒙

𝜎

𝒚 𝜎𝑥 + 𝜎𝑦

2

𝑅

Point on Circle

2𝜃

𝜎

𝒙𝟏

𝜎

𝒚𝟏

𝝉

𝒙𝟏𝒚𝟏

at arbitrary angle 𝜃

(33)

Point on Circle

Mohr’s circle application II

𝜎

𝜏 0

𝝉

𝒙𝒚

𝜎

𝒙

𝜎

𝒚 𝜎𝑥 + 𝜎𝑦

2

𝑅

2𝜃

𝑝

principal angle 𝜃𝑝

𝜎

𝟏

𝜎

𝟐
(34)

Point on Circle

Mohr’s circle application III

𝜎

𝜏 0

𝝉

𝒙𝒚

𝜎

𝒙

𝜎

𝒚

𝜎𝑥 + 𝜎𝑦 2

𝑅

2𝜃

𝑠

max. shear angle 𝜃𝑠

𝝉

𝒎𝒂𝒙

𝝉

𝒎𝒂𝒙

= 2(𝜃

𝑝+45

)

𝜏𝑚𝑎𝑥

θs

(35)

Mohr’s circle Example

(36)

Mohr’s circle Example

Referensi

Dokumen terkait