System Control
Professor Kyongsu Yi
©2014 VDCL
Vehicle Dynamics and Control Laboratory Seoul National University
5. Basic Control Actions and Response of Control Systems
(1) PID Control (2) Routh’s stability tests
(3) Systems Type
Open loop and closed loop : model sensitivity
2
•Routh stability criterion
•Effects of Integral and derivative control
•Steady state error in unity feedback control systems
•Open loop and closed loop systems
Control Systems
u=f(r,c)
u
4
1. ON-OFF control
Classifications of controllers
h(t)
u
e
u
t
2. Proportional Control
Classifications of controllers
e k
U =
pk
p: The proportional Gain
J
MOTOR
+
-
Disturbance
Antenna Position
Control System
6
2. Proportional Control
Classifications of controllers
e k
U =
pk
p: The proportional Gain
k
p Js21+Bs cr e
2
2 2
c(s) Js Bs
r(s) Js Bs
1 Js Bs
p
p
p p
K
K
K K
= + =
+ +
+ +
=
+ -
2. Proportional Control
Classifications of controllers
=
• Step input response 1 ( ) r s = s
• steady state response
0
0 2
( ) lim ( )
lim 1 1
s
p
s p
c t sC s s K
Js Bs K s
→
→
=
= =
+ +
θ
8
2. Proportional Control
Classifications of controllers
=
• Response to torque disturbance
+ _
+ D
_ 21
Js +Bs
K
Pr=0 c
2 2
( )
p( ) 1 ( )
p p
C s K r s D s
Js Bs K Js Bs K
= +
+ + + +
Assume that 1 ( )
D s = s steady state response
p
s
s Js Bs K
ps K
t
c 1 1 1
)
( = lim ⋅
2+ + ⋅ =
∞
>
−
: steady-state error
Large small steady-state error large motor power is needed oscillations
large
small damping ratio K
pw
n wn Kp J
=
JKp
B
= 2 ζ
3. Proportional-Integral Control (PI control)
Classifications of controllers
=
• Response to torque disturbance
( ) 1
( ) P 1 i
U s K
E s T s
= +
+ e _
D
r
1
u cP
1
i
K T s
+
21 Js + Bs
0
( ) ( ) ( )
t P p
i
u t K e t K e t dt
= + T
∫
3 2
1 ( )
( )
P P
i
P P
i
K s K
T C s
R s Js Bs K s K T +
=
+ + +
No steady-state error for reference input
10
3. Proportional-Integral Control (PI control)
Classifications of controllers
=
+ e _
D
r
1
u cP
1
i
K T s
+
21 Js + Bs
2
2
3 2
1 ( )
1 1
( ) 1
P(1 )
i
P P
i
C s Js Bs
D s K
T s Js Bs s
Js Bs K s K T
= +
+ +
+
=
+ + +
( ) 1 D s = s
0 3 2
( ) lim 1 0
s P
P
i
C t s s
K s Js Bs K s
T
=
→=
+ + +
No steady-state error for step disturbance
4. Proportional-Derivative Control (PD control)
Classifications of controllers
=
+ e
r _ c
P d
K + K s
21
Js + Bs
( ) P ( ) d d ( ) u t K e t K e t
= + dt
2
( )
( ) ( )
P d
d P
K K s C s
R s Js B K s K
= +
+ + +
P d
JK K B 2
= +
ζ : increased effective damping
u
12
5. Proportional-Integral-Derivative Control (PID control)
Classifications of controllers
=
2
3 2
2
1 1 1
( )
1 1 1
( ) 1
i i
i i
T s Js Bs T
C s
R s Js Bs
T s Js Bs T
= + =
+ + +
+
+ e
r _
1
cc
1
di
K T s
T s
+ +
21 Js + Bs
6. I control
+ e
r _
1
cT s
i 21 Js + Bs
u
u
Ziegler-Nicholas Tuning Rules for PID controllers
=
+ e
r _
1
cc
1
di
K T s
T s
+ +
plant
u
Method 1) Transient response method
PLANT
R(max slope)
L
Step input
1 0.9, 3.3
1.2, 2 , 0.5
c
c i
c i d
K for P control RL
K T L for PI control
RL
K T L T L for PID control
RL
= −
= = −
= = = −
• This method works good if the unit step response is (sigmod) shaped
∫14
Ziegler-Nicholas Tuning Rules for PID controllers
=
Method 2) Ultimate sensitivity method PLANT
+
_
K
cc
1,
nK increase
decrease ω
ζ
〉〉 →
→
• Increase until you hit the stability limit K
c0.5
0.45 , 0.83
0.6 , 0.5 0.125
c U
c U i U
c U i U i U
K K for P control
K K T P for PI control
K K T P T P for PID control
= −
= = −
= = = −
Routh’s stability criterion
16
Stability of Feedback Systems
=
) (
) ( )
( ) ( 1
) ( )
( ) (
s Q
s P s
H s G
s G s
R s
C =
= +
Poles : s
iRe( )si <0
; stable Characteristic equation
Q s( ) =00
0
1 1
1
+ ⋅ ⋅ ⋅ + + =
+ b
−s
−b s b s
b
n n n nRouth’s Stability Criterion
=
Characteristic equation
0
0
1 1
1
+ ⋅ ⋅ ⋅ + + =
+ b
−s
−b s b s
b
n n n nNumber of the characteristic roots with positive real parts
=Number of sign changes of the first column have the same sign
• Rooth’s Criterion
18
=
Routh’s Stability Criterion
Example 1)
240 152
72 10
) (
2 3
4
5 + + + + +
= s s s s s
s P R
C
Two sign change
Q(s)=0 has two roots with positive real parts
unstable
=
Routh’s Stability Criterion
Example 2)
prevents completion of the array method 1) 1
s = x
4 2 3
4
2 2 1
) 5
( x
x x x
s x
Q = + + + +
two sign change unstable
method 2)
set Q s s ( )( + = 1) 0
20
=
2
2 4 3 2
2
( ) ( 1)( 2)
( ) ( 1)( 2) 3 3 2
1 ( 1)( 2)
K
C s s s s s K K
R s K s s s s K s s s s K
s s s s
+ + +
= = =
+ + + + + + + +
+ + + +
7 0
2− 9K >
⇒
K <149 K >00 14 K 9
∴ < <
Example 3)
Routh’s Stability Criterion
Analog/Digital Controller
22
Steady-state error and system types
Steady state Error in Unity Feedback control systems
=
R
+E (s ) G ( s ) C ( s ) -
) 1 (
) 1 )(
1 (
) 1 (
) 1 )(
1 ) (
(
2
1
+ + ⋅ ⋅ ⋅ +
+
⋅
⋅
⋅ +
= +
s T s
T s
T S
s T s
T s
T s K
G
p N
n b
a
N=0 ; Type 0, N=1 ; Type 1, N=2 ; Type 2
) ) (
( 1
) 1
( R s
s s G
E = +
Steady state Error
24
Steady state Error in Unity Feedback control systems
= 1) 일 경우 (unit step input), s s
R 1
)
( =
0 0
1 1 1
lim ( ) lim
1 ( ) 1 (0)
ss s s
e sE s s
G s s G
−> −>
= = =
+ +
Static position error constant
0
; 0
lim ( ) (0) ; 1
; 2
p s
k Type system
k G s G Type system
Type system
−>
= = = ∞
∞
1 ; 0
1 1
1 0 ; 1, 2,..
ss p
p
Type system e k
k Type system
+
= + =
kp
Steady state Error in Unity Feedback control systems
=
2) R s( ) 12 일 경우 (unit-ramp input),
= s
0 2 0 0
1 1 1 1
lim lim lim
1 ( ) ( ( ) 1) ( )
ss s s s
e s
G s s s G s sG s
−> −> −>
= = =
+ +
Static velocity error constant kv
0
0 ; 0
lim ( ) ; 1
; 2, 3..
v s
Type system
k SG s k Type system
Type system
−>
= =
∞
; 0
1 1
; 1
; 2, 3,..
0
ss v
Type system
e Type system
k k
Type system
∞
= =
26
Steady state Error in Unity Feedback control systems
3) R s( ) 13 일 경우 (unit-acceleration input),
= s
3 2
0 0
1 1 1
lim lim
1 ( ) ( )
ss s s
e s
G s s s G s
−> −>
= =
+
Static acceleration error constant
k
a2 0
0 ; 0
0 ; 1
lim ( )
; 2
; 3
a s
Type system Type system
k S G s
k Type system Type system
−>
= =
∞
; 0,1
1 1
; 2
0 ; 3, 4,..
ss a
Type system
e Type system
k k
Type system
∞
= =
Open/Closed loop control systems
=
R Ts +1
k kc
controller open loop y
closed loop R
+1 Ts
k kc
controller
y
Open loop Transfer function 에서
1
c
1
cy k
k k
R = Ts → = k
+
이되어야 error=0 이된다.Closed loop Transfer function 에서
k k Ts
k k Ts
k k Ts k k R
y
p p
p p
+
= + + +
= +
1 1 1
1
Steady/ state error for 1 ( ) R s = s
Open loop Transfer function 에서 = 0 ess
k k k
k k e k
p p
p
ss = +
− +
= 1
1 1 1
Closed loop Transfer function 에서 +
-
28
Open/Closed loop control systems
=
Model error sensitivity 1 ,
10 ∆ =
= k
k model error
Open loop Systems
1 , ( ) 1.1
1
y k k k k
R k Ts y t k
+ ∆ + ∆
= = =
+
(10% steady state error)Closed loop Systems
k e k
p
ss
= +
1
1 100 1 1
0.0099 100 101
1
p ss
k e
k k
k
= ⇒ = = =
+
let,
1 1 1
0.00901
100 1 10(11) 111
1 ( )
ss
k k
e
k k
k + ∆
= = = =
+ + ∆ +
End of section 5
30
Higher Order Systems
= n n
n n
m m
m m
a s a s
a s a
b s b s
b s b s H s G
s G s
R s C
+ +
⋅
⋅
⋅ + +
+ +
⋅
⋅
⋅ +
= +
= +
−
− −
−
1 1
1 0
1 1
1 0
) ( ) ( 1
) ( )
( ) (
• unit step response
R s( ) 1= s
s a s
a
b s
s b
C n m
m 1
) (
0 0
0 ⋅
+
⋅
⋅
⋅ +
+
⋅
⋅
⋅
= + ,
characteristic equation
1 0
1 1
0sn +asn− +⋅⋅⋅+an− s+an = a
pi
s= i=1,⋅⋅⋅q
j
s=−ζkωk ± 1−ζk2ωk k =1,⋅⋅⋅r
zero ;
s=Zi i=1,⋅⋅⋅m2 1
2 2
2 2 1 1
1 1
( ) ( ) 1
( ) 2
( ) ( 2 )
m
q r
i j k k k k k k
i
q r
j i r k k k
i k k k
j k
k s z a a b s C
C s s s p s s
s s p s
ζ ω ω ζ
ζ ω ω ζ ω ω
=
= =
= =
Π − + + −
= = + +
− + +
Π − Π + +
∑ ∑
∑
∑
∑
=−
=
−
=
− +
− +
+
= r
k
k k
t k r
k
k k
t k q
j
t p
je b e t C e t
a a
t
C i k k k k
1
2 1
2 1
1 sin 1
cos )
( ζ ω ω ζ ζω ω ζ
Effect of sensors on system performance
=
• Fast sensor dynamics ; H(s)=constant - First order sensor
- Overdamped second order - underdamped second order
32
=
Phase Lead and Phase Lag in Sinusoidal Response
) (
) (
s X
t x
) (
) (
s Y
t ) y
(s G
em Linearsyst
ω ω
ω ω ω
ω
j s
a j
s a s
s b s
s b s
s b
s s X G s X s G s Y
s s X X
n n
+ − + +
+ +
⋅
⋅
⋅ + +
+ +
=
= +
=
⇒
= +
2 2 1
1
2 2 2
2
) ( ) ( ) ( ) ( ) (
위 system 에 x t( )= X sinωt 를 넣어주면 y t( )는 ?
1) Transient response Stable system인경우 = 0 2) Stable system인 경우 Steady state response 는
) ( ,
) ( ),
sin(
) sin(
) 2 (
) ( )
(
, ) ( )
(
) ( )
(
2 ) ) (
( )
(
2 ) ) (
( )
( ) (
) ( )
( 2 2
2 2
ω φ
ω φ
ω
φ ω ω
ω
φ ω
ω
ω ω
ω ω ω
ω
ω ω ω
ω
φ ω φ
ω φ φ
ω ω ω
ω
j G j
G X Y t
Y
t j
G j X
e j e
G X t y
phase e
j G j
G
e j G j
G
j j j XG
s s s X G a
j j j XG
s s s G a
e a ae
t y
t j t
j j j
j s
j s t
j t
j
∠
=
= +
=
+
− =
=
∴
=
=
−
=
= + −
=
− −
= +
+ −
=
+
=
+
− +
−
=
−
=
−
=
Phase Lead and Phase Lag in Sinusoidal Response
2
1 2 2
1 2 2
( ) 1
( ) , ( )
1 1
( ) , ( ) , ( ) tan
1 1
( ) sin( ), tan
ss 1 G s K
Ts
K K
G j G j
Tj T
K K
G j G j G j T
Tj T
y t X K t T
T
ω ω
ω
ω ω ω ω
ω ω
ω φ φ ω
ω
−
−
= +
= =
+ +
= = ∠ = −
+ +
∴ = + = −
+
< 0
φ : phase lag, φ > 0 : phase lead
Example) First order system
0 2 4 6 8 10 12 14 16 18 20
-3 -2 -1 0 1 2 3
x(t) y(t)
0 2 4 6 8 10 12 14 16 18 20
-3 -2 -1 0 1 2 3
End of section 5
5-6 routh stability criterion
5-7 Effects of Integral and derivative control 5-8 steady state error in unity feedback
control systems
Next Root locus analysis