I ntroduction to Nuclear Fusion
Prof. Dr. Yong-Su Na
2
What is requirement of a fusion reactor?
Discussion
Fusion Reactor
Neutron (14 MeV)
Blanket
Deuterium Tritium Lithium
Coolant
What is required to light a fire in a stove?
n
T
≥ ?
⋅
⋅ T τ
n
Criterion required (fusion triple product) Deuterium
Tritium
Fuel: D, T
Amount/density:
Heat insulation:
Ignition temperature:
J. D. Lawson
Fusion Reactor Energetics
https://www.euro-fusion.org/glossary/lawson-criteria/ 6
Why nτT?
• Fundamental requirement of a fusion reactor system
*
0
*
*
=
out−
in>
net
E E
E
*: referring to the entire reaction volumeThe overall net energy should be larger than the total energy externally supplied to sustain fusion reactions and associated processes subtracted from the total recovered energy
τb: burning time
∫ ∫
∫
bdEdt dt = b dEdt dt − b dEdt dt >in out
net
τ τ
τ
0 0
*
*
0
*
0 Considering the time variations of power
(Particularly for pulsed systems)
Fusion Reactor Energetics
6
• Fusion Plasma Energy Balance
*
*
in in
aux
E
E = η
( )
**
1
c fun
f E
E = −
c fu
alpha
E f
E
*=
*
fc: alpha particle fraction of fusion product energy
∫
+ +
=
+
=
b
o E
th rad
n in
fu aux
out
E dt E
E E
E E
E
τ
τ
**
*
*
*
*
*
*
∫ ∫
∫
b dE dt dt =
b dE dt dt −
b dE dt dt >
in out
net
τ τ
τ
0 0
*
*
0
*
0
Fusion Reactor Energetics
*
*
*
fu alpha
n
E E
E + =
*
*
*
*
in in
fu aux
fu
p
E
E E
Q E
= η
=
Plasma Q-value (fusion multiplication factor):measure for how efficiently an energy input to the plasma is converted into fusion energy
Energy Confinement Time
Time Temperature
τ
E1/e
Time Temperature
• τE is a measure of how fast the plasma looses its energy.
• The loss rate is smallest, τE largest
if the fusion plasma is big and well insulated.
Energy Confinement Time
10
1 0
*
*
*
*
− − >
+ ∫
bo E
th rad
fu c
p
E dt E
E Q f
τ
τ
Fusion Reactor Energetics
∫ ∫
∫
b dE dt dt =
b dE dt dt −
b dE dt dt >
in out
net
τ τ
τ
0 0
*
*
0
*
0
*
0
*
*
*
*
*
+ − − − ∫
b>
o E
th rad
n fu
aux
E dt
E E
E E
τ
τ
Describe reactor criteria in terms of Q
p10
• Ignition
Energy viability of the fusion plasma:
actual self-sustaining engineering reactor condition with no heating power
∫
+
>
bo E
th rad
fu
c
E dt
E E
f
τ
τ
**
*
*
∞
→
=
pin in
fu
Q
E E
*
*
η
Fusion Reactor Energetics
1 0
*
*
*
*
− − >
+ ∫
bo E
th rad
fu c
p
E dt E
E Q f
τ
τ
) (
) ( )
, (
) , (
*
* 3
t t E t
r t r r E
d
E th E
th
V
∫ τ = τ
∫ ∫ ∫ ∫
∫
+ +
b
>
b bo o E
th o
net cyc br
V dt
dt V
dt
c
dt
t r
t r dt E
P P
r d dt
Q t r R r d f
τ τ τ
τ ( , ) ) , ) (
( )
,
(
33
,
e e
i br
br
A n n Z kT
P =
2e
ψ
e cyc net
cyc
A n B kT
P =
2Volume integrated
[
1 2 1]
10
203 .
6 ×
− − − −≈ JeV T s
A
cyc
×
≈
−s eV
J A
brm
3
10
386 . 1
Fusion Reactor Energetics
∫
+
>
bo E
th rad
fu
c
E dt
E E
f
τ
τ
**
*
*
12
*
) (
2 ) 3 , ( )
, , ( )
,
,
(
E
e e i
i e
e net cyc e
e i br i
i dt dt c
T n T
T n n P
T n n P T
n P
f τ
+ + +
>
e i j T
n
E
th j j j, , 2
3
.
= =
- In a homogeneous plasma, local D-T fusion ignition condition:
Charged particle self-heating power > loss powers
(radiation + plasma transport)
- complex interrelation between the plasma density and its temperature as required for ignition
n T B T A
T A Q v
f n T
cyc dt br
dt dt c dt
E
σ ψ
τ
2,
*
4
) ( ) 3
(
−
> −
> <
nT P
P P
f
c,dt dtτ
E*> (
br+
cycnet) τ
E*+ 3
ni = ne = n, Ti = Te = TPlot?
Fusion Reactor Energetics
n T B T A
T A Q v
f n T
cyc br
dt dt
dt c dt
E σ ψ
τ 2
,
*
4 ) ( ) 3
(
−
> −
> <
• n = 1020 m-3: T ~ 30 keV, nτE* ~ 2.7x1020 m-3s, τE* ~ 2.7 s
Fusion Reactor Energetics
14
*
1
*
=
=
pin in
fu
Q
E E η
• Break-even (scientific)
The total fusion energy production amounts to a
magnitude equal to the effective plasma energy input
.Fusion Reactor Energetics
1 0
*
*
*
*
− − >
+ ∫
bo E
th rad
fu c
p
E dt E
E Q f
τ
τ
*
0
*
*
*
− − ∫
b>
o E
th rad
fu
c
E dt
E E
f
τ
τ
Q=1.14
Q = 1 Q = ∞
Status of the Tokamak Research
in D-D reactions
Ignition condition
16
s bar
keVs m
T n
E⋅
=
×
≥
−5
10
3
21 3τ
bar atm 1 . 01325
1 =
Status of the Tokamak Research
https://www.euro-fusion.org/2011/09/progress-in-fusion