• Tidak ada hasil yang ditemukan

Advanced Thermodynamics (M2794.007900)

N/A
N/A
Protected

Academic year: 2024

Membagikan "Advanced Thermodynamics (M2794.007900)"

Copied!
12
0
0

Teks penuh

(1)

Thermodynamic Potentials

Chapter 8

Advanced Thermodynamics (M2794.007900)

Min Soo Kim

Seoul National University

(2)

8.1 Introduction

U

Internalenergy

F

H G

Helmholtz Free energy

Gibbs

Free energy Enthalpy

U = energy needed to create a system

F = energy needed to create a system – energy provided by the enviroment

H = energy needed to

create a system + the work needed to make room for it

G = total energy needed to create a system + the work needed to make room for it – energy provided by the enviroment

𝑮 = đ‘ŧ + 𝑷đ‘Ŋ − đ‘ģđ‘ē đ‘¯ = đ‘ŧ + 𝑷đ‘Ŋ

𝑭 = đ‘ŧ − đ‘ģđ‘ē

+𝑷đ‘Ŋ

−đ‘ģđ‘ē

(3)

8.1 Introduction

𝒅đ‘ŧ = đ‘ģ𝒅đ‘ē − 𝑷𝒅đ‘Ŋ

đ‘ē 𝒂𝒏𝒅 đ‘Ŋ

: intrinsically extensive quantities

đ‘ģ 𝒂𝒏𝒅 − 𝑷:

intensive variables that are said to be canonically conjugate to them So, canonically conjugate pairs are

đ‘ģ, đ‘ē 𝒂𝒏𝒅 − 𝑷, đ‘Ŋ đ‘ģ 𝒂𝒏𝒅 đ‘ē are thermal variables,

whereas 𝑷 𝒂𝒏𝒅 đ‘Ŋ are by nature mechanical variables

đ‘ē , đ‘Ŋ đ‘ē, 𝑷 đ‘ģ, đ‘Ŋ đ‘ģ, 𝑷

(4)

8.1 Introduction

𝒅đ‘ŧ = ( 𝝏đ‘ŧ

𝝏đ‘ē )

đ‘Ŋ

𝒅đ‘ē + ( 𝝏đ‘ŧ

𝝏đ‘Ŋ )

đ‘ē

𝒅đ‘Ŋ đ‘ŧ = đ‘ŧ(đ‘ē, đ‘Ŋ)

Assume

( 𝝏đ‘ŧ

𝝏đ‘ē )

𝒗

= đ‘ģ , ( 𝝏đ‘ŧ

𝝏đ‘Ŋ )

𝒔

= −𝑷

However, the selection of the two independent variables is a in matter of choice

(5)

8.3 Definition of the Thermodynamic Potentials

đ’…đ‘¯ = ( đđ‘¯

𝝏đ‘ē )

𝑷

𝒅đ‘ē + ( đđ‘¯

𝝏𝑷 )

𝒔

𝒅𝑷 đ‘¯ = đ‘¯(đ‘ē, 𝑷)

Assume

( đđ‘¯

𝝏đ‘ē )

𝑷

= đ‘ģ , ( đđ‘¯

𝝏𝑷 )

đ‘ē

= đ‘Ŋ

đ’…đ‘¯ = đ‘ģ𝒅đ‘ē + đ‘Ŋ𝒅𝑷

đ‘¯ = đ‘ŧ + 𝑷đ‘Ŋ

(6)

𝒅𝑭 = ( 𝝏𝑭

𝝏đ‘Ŋ )

đ‘ģ

𝒅đ‘Ŋ + ( 𝝏𝑭

𝝏đ‘ģ )

đ‘Ŋ

𝒅đ‘ģ 𝑭 = 𝑭(đ‘ģ, đ‘Ŋ)

Assume

( 𝝏𝑭

𝝏đ‘Ŋ )

đ‘ģ

= −𝑷 , 𝝏𝑭

𝝏đ‘ģ

đ‘Ŋ

= −đ‘ē

𝒅𝑭 = −𝑷𝒅đ‘Ŋ − đ‘ē𝒅đ‘ģ 𝑭 = đ‘ŧ − đ‘ēđ‘ģ

8.3 Definition of the Thermodynamic Potentials

(7)

𝒅𝑮 = ( 𝝏𝑮

𝝏đ‘ģ )

𝑷

𝒅đ‘ģ + ( 𝝏𝑮

𝝏𝑷 )

đ‘ģ

𝒅𝑷 𝐆 = 𝑮(đ‘ģ, 𝑷)

Assume

( 𝝏𝑮

𝝏đ‘ģ )

𝑷

= −đ‘ē , 𝝏𝑮

𝝏𝑷

đ‘ģ

= đ‘Ŋ

𝒅𝑮 = −đ‘ē𝒅đ‘ģ + đ‘Ŋ𝒅𝑷 𝑮 = đ‘ŧ + 𝑷đ‘Ŋ − đ‘ēđ‘ģ

8.3 Definition of the Thermodynamic Potentials

(8)

8.4 The Maxwell Relations

𝝏

𝟐

đ‘ŧ

𝝏đ‘Ŋ𝝏đ‘ē = ( 𝝏đ‘ģ

𝝏đ‘Ŋ )

đ‘ē

= 𝝏

𝟐

đ‘ŧ

𝝏đ‘ē𝝏đ‘Ŋ = −( 𝝏𝑷

𝝏đ‘ē )

đ‘Ŋ

Each of the four thermodynamic potentials is a state variable whose differential is exact. As an example, we consider

( 𝝏đ‘ģ

𝝏đ‘Ŋ )

đ‘ē

= −( 𝝏𝑷

𝝏đ‘ē )

đ‘Ŋ

𝒅đ‘ŧ = đ‘ģ𝒅đ‘ē + −𝑷 𝒅đ‘Ŋ = ( 𝝏đ‘ŧ

𝝏đ‘ē )

đ‘Ŋ

𝒅đ‘ē + ( 𝝏đ‘ŧ

𝝏đ‘Ŋ )

đ‘ē

𝒅đ‘Ŋ

Maxwell relation :

(9)

8.5 The Helmholtz Function

Change in U is the heat flow in an isochoric reversible process

𝒅đ‘ŧ = đ‘ģ𝒅đ‘ē + −𝑷 𝒅đ‘Ŋ

Change in H is the heat flow in an isobaric reversible process

∆đ‘ŧ = 𝑸

đ‘ē𝒖𝒑𝒑𝒍𝒊𝒆𝒅

→

đ’…đ‘¯ = đ‘ģ𝒅đ‘ē + đ‘Ŋ𝒅𝑷 → âˆ†đ‘¯ = 𝑸

đ‘ē𝒖𝒑𝒑𝒍𝒊𝒆𝒅
(10)

8.5 The Helmholtz Function

Change in F

𝒅𝑭 = −đ‘ē𝒅đ‘ģ − 𝑷𝒅đ‘Ŋ → ∆𝑭 = − āļą đ‘ˇđ’…đ‘Ŋ

∆𝑾 = −∆𝑭 đ‘ģ

𝑸 𝒇𝒓𝒐𝒎 đ‘ē𝒚𝒔𝒕𝒆𝒎

∆𝑭 =

Maximum energy available for work in the isothermal process

(Work done on/by the system)

∆𝑾 ≤ −∆𝑭

(no change in 𝑇)

Figure 8.2 Piston
(11)

8.6 The Gibbs Function

𝒅𝑮 = −đ‘ē𝒅đ‘ģ + đ‘Ŋ𝒅𝑷

𝜹𝑸

đ‘ģ ≤ 𝒅đ‘ē

Consider a system in a surrounding environment that constitutes a

temperature and pressure reservoir. Most chemical reactions and some phase changes take place in this way.

→ 𝜹𝑮 = ∆đ‘ŧ + 𝑷𝒅đ‘Ŋ − đ‘ģ𝒅đ‘ē ≤ 𝟎

𝑰𝒇, đ‘ģ = 𝑷 = đ‘Ē𝒐𝒏𝒔𝒕. ∆𝑮)

đ‘ģ,𝑷

≤ 𝟎

(12)

8.6 The Gibbs Function

Change in G

∆𝑾

𝒏𝒎

≤ −∆𝑮 (no change in 𝑇, 𝑃)

∆𝑮 =

Maximum energy available for work in the isothermal, isobaric process

đ‘ģ𝒅đ‘ē â‰Ĩ 𝒅đ‘ŧ + 𝑷𝒅đ‘Ŋ + ∆𝑾

𝒏𝒐𝒏−𝒎𝒆𝒄𝒉

∆𝑾

𝒏𝒐𝒏−𝒎𝒆𝒄𝒉

≤ − ∆đ‘ŧ + 𝑷∆đ‘Ŋ − đ‘ģ∆đ‘ē = −∆𝑮

Referensi

Dokumen terkait