• Tidak ada hasil yang ditemukan

Application of the product net technique and Kadec–Klee property to study nonlinear ergodic theorems and weak convergence theorems in uniformly convex multi-Banach spaces

N/A
N/A
Protected

Academic year: 2024

Membagikan "Application of the product net technique and Kadec–Klee property to study nonlinear ergodic theorems and weak convergence theorems in uniformly convex multi-Banach spaces"

Copied!
15
0
0

Teks penuh

(1)

R E S E A R C H Open Access

Application of the product net technique and Kadec–Klee property to study nonlinear ergodic theorems and weak convergence theorems in uniformly convex multi-Banach spaces

H.M. Kenari1, Reza Saadati2* and Choonkil Park3

*Correspondence:[email protected]

2Department of Mathematics, Iran University of Science and Technology, Tehran, Iran Full list of author information is available at the end of the article

Abstract

LetYbe a uniformly convex multi-Banach space which has not a Frechet

differentiable norm. We use the technique of product net to obtain the nonlinear ergodic theorems inY. Finally, let the dual of uniformly convex multi-Banach space have the Kadec–Klee property, we instate the weak convergence theorem in the case of reversible semi-group.

MSC: Primary 39A10; 39B72; secondary 47H10; 46B03

Keywords: Reversible semi-groups; Kadec–Klee property; Asymptotically nonexpansive mapping; Almost orbit; Uniformly convex multi-Banach space

1 Preliminaries

Dales and Polyakov in [1] introduced a multi–normed space by using the concept of opera- tor sequence space, operator spaces, and Banach lattices; for more details and application, we refer to [1–3].

In this paper assume that (Y, · ) is a complex normed space, and let∈N. We denote byYthe vector spaceY⊕ · · · ⊕Yconsisting of-tuples (y1, . . . ,y), wherey1, . . . ,yY. The linear operations onYare defined coordinate-wise. The zero element of eitherYor Yis denoted by 0. We denote byNthe set{1, 2, . . . ,}and byΣthe group of permuta- tions onsymbols.

Definition 1.1 Suppose thatY is a vector space, and take∈N. ForσΣ, define Bσ(y) = (yσ(1), . . . ,yσ()), y= (y1, . . . ,y)∈Y.

Forβ= (βj)∈C, define

Kβ(y) = (βjyj), y= (y1, . . . ,y)∈Y.

©The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro- vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

(2)

Definition 1.2 Assume that (Y, · ) is a complex (respectively, real) normed space, and takem∈N. A multi-norm of levelmon{Y:∈Nm}is a sequence ( · :∈Nm) such that · is a norm onYfor each∈Nm, such thaty1=yfor eachyY (so that · 1is the initial norm), and such that the following Axioms (a1)–(a4) are satisfied for each∈Nmwithk≥2:

(a1) for eachσΣandyY, we have Bσ(y)

=y;

(a2) for eachβ1, . . . ,β∈C(respectively, eachβ1, . . . ,β∈R) andyY, we have Kβ(y)

≤ maxj∈N

|βj| y; (a3) for eachy1, . . . ,y–1, we have

(y1, . . . ,y–1, 0)

=(y1, . . . ,y–1)

–1; (a4) for eachy1, . . . ,y–1Y,

(y1, . . . ,y–2,y–1,y–1)

=(y1, . . . ,y–1)

–1.

In this case, ((Y, · ) :∈Nm) is a multi-normed space of levelm.

A multi-norm on{Y:∈N}is a sequence ·

=

· :∈N

such that ( · :∈ Nm) is a multi-norm of level m for each m∈N. In this case, ((Ym, · m) :m∈N) is a multi-normed space.

Lemma 1.3([3]) Let((Y, · ) :∈N)be a multi-normed space,and take∈Nm.Then (a) (y, . . . ,y)=y(yY);

(b) maxj∈Nyj ≤ (y1, . . . ,y)

j=1yjmaxj∈Nyj(y1, . . . ,yY).

It follows from (b) that if (Y, · ) is a Banach space, then (Y, · ) is a Banach space for each∈N; in this case ((Y, · ) :∈N) is a multi-Banach space.

Example1.4 ([1]) The sequence ( · :∈N) on{Y:∈N}defined by (y1, . . . ,y)

:=max

j∈N

yj (y1, . . . ,yY) is a multi-norm called the minimum multi-norm.

Example1.5 ([1]) Assume that{( · β :∈N) :βB} is the (non-empty) family of all multi-norms on{Y:∈N}. For∈N, set

(y1, . . . ,y)

k:=sup

βB

(y1, . . .y)β

(y1, . . . ,yY).

Then ( · :∈N) is a multi-norm on{Y:∈N}, called the maximum multi-norm.

(3)

By the property (b) of multi-norms and the triangle inequality for the norm·k, we can get the following properties. Suppose that ((Y, · ) :∈N) is a multi-normed space. Let ∈Nand (y1, . . . ,y)∈Yk. For everyi∈ {1, . . . ,}, let (yim)m=1,2,...be a sequence inY such thatlimm→∞yim=yi. Then for each (z1, . . . ,z)∈Ywe have

m→∞lim

y1mz1, . . . ,ymz

= (y1z1, . . . ,yz).

A sequence (ym) inYis amulti-nullsequence if, for everyε> 0, there existsm0∈Nsuch that

sup

∈N

(yn, . . . ,ym+–1)

<ε (mm0).

LetyY. We say that the sequence (ym) ismulti-convergenttoyYand write

m→∞lim ym=y

when (ymy) is a multi-null sequence.

Assume that G is a semi-topological semi-group. In this article, C is a nonempty bounded closed convex subset of a uniformly convex Banach spaceX. LetXbe the dual ofX, then the value ofuXatuXwill be denoted byu,u, and we associate the set

J(u) =

uX: u,u

=u2=u2 .

It is clear from the Hahn–Banach theorem thatJ(u) is not empty for alluX. Then the multi-valued operatorJ:XXis called the normalized duality mapping ofX, alsok= {Jk(t) :tG}is a reversible semigroup of asymptotically nonexpansive functions acting onC. LetF(k) denote the set of all fixed points ofk, i.e.,F(k) ={uC:Jk(t)u=u,∀tG}. For each> 0 andpG, we put

F

Jk(p)

=

uC:J1(p)uu, . . . ,Jk(p)uu

k

.

Note that if, for any> 0, there existspGsuch that for allp>p,uF(Jk(p)), then limpGJk(p)u=u; moreover,uF(k) by the continuity of elements {Jk(p),pG}(for more details, we refer to [4–9]).

We denote the set of all almost orbits ofkand the set{Jk(p)uk(·) :pG,uk∈AO(k)} byAO(k) andLAO(k), respectively. Denote byωω(uk) the set of all weak limit points of subnets of net{uk(t)}tG.

Lemma 1.6([10]) Assume that X is a Banach space and J is the normalized duality func- tion.Therefore

u+v2u2+ 2v,j(u+v) for all j(u+v)∈J(u+v)and u,vX.

(4)

Lemma 1.7([11]) Assume that{(Xk, · k)}k∈Nis a uniformly convex multi-Banach space and∅ =CXkis a bounded closed convex set.Then there exists a strictly increasing con- tinuous convex functionξ: [0, +∞)→[0, +∞)withξ(0) = 0such that

ξ

J1

n

i=1

aiui

n i=1

aiJ1ui, . . . ,Jk

n

i=1

aiui

n i=1

aiJkui

k

≤ max

1≤i,jn

uiuj–(J1uiJ1uj, . . . ,JkuiJkuj)

k

for all integers a1, . . . ,an≥0,n≥1withn

i=1ai= 1,u1, . . . ,unC,and every nonexpansive function Jkof C to C.

Lemma1.7implies that, for alla1, . . . ,an≥0 withn

i=1ai= 1,u1, . . . ,unC,

J1(p) n

i=1

aiui

n i=1

aiJ1(p)ui, . . . ,Jk(p) n

i=1

aiui

n i=1

aiJk(p)ui

k

1 +α(p) ξ–1

1≤i,jnmax

uiuj

– 1

1 +α(p)J1(p)uiJ1(p)uj, . . . ,Jk(p)uiJk(p)uj

k

1 +α(p) ξ–1

1≤i,jnmax

uiuj

J1(p)uiJ1(p)uj, . . . ,Jk(p)uiJk(p)uj

k

+d·α(p)

in whichd= 4sup{u:uC}+ 1.

For every∈(0, 1], define

a() =min 2

(d+ 2)2, 3 (3d+ 2)2ξ

4

and G=

hG:α(p)≤ ,

in whichξ(·) is as Lemma1.7. ThenG=∅for> 0, and ifpG, then for alltp,tG. Note thatGa()Gfor all∈(0, 1].

2 Main result

For studies on ergodic theory and its history, we refer to [4–30]. The results of this paper are an extension and generalization of [31].

Lemma 2.1 For all pGa(), coFa()

Jk(p)

F

JK(p) .

(5)

Proof SinceF(JK(p)) is closed, we only need to prove that, for allpGa(), coFa()

Jk(p)

F

JK(p) . Letv=n

i=1aivi,viFa()(Jk(p)),ai≥0,i= 1, . . . ,n, andn

i=1ai= 1. Then J1(p)vv, . . . ,Jk(p)vv

k

=

J1(p) n

i=1

aivin

i=1

aivi, . . . ,Jk(p) n

i=1

aivin

i=1

aivi

k

J1(p) n

i=1

aivin

i=1

aiJ1(p)vi, . . . ,Jk(p) n

i=1

aivin

i=1

aiJk(p)vi

k

≤2ξ–1

1≤i,jnmax

vivjJ1(p)viJ1(p)vi, . . . ,Jk(p)viJk(p)vi

k

+d·α(p)

+a()

≤2ξ–1

1≤i,jnmaxviJ1(p)vi, . . . ,viJk(p)vi

k+vjJ1(p)vj, . . . ,vjJk(p)vj

k

+d·α(p)

+a()

≤2ξ–1

2a() +d·a() +a()

2+

2=.

Lemma 2.2 For every pG4,

F4 Jk(p)

+B

0, 4

F

Jk(p) .

Proof LetpG4 andu=v+wF4(Jk(p)) +B(0,4), wherevF4(Jk(p)) andwB(0,4), then

J1(p)uu, . . . ,Jk(p)uu

k

=J1(p)(v+w) – (v+w), . . . ,Jk(p)(v+w) – (v+w)

k

J1(p)(v+w) –J1(p)v, . . . ,Jk(p)(v+w) –Jk(p)v

k

+J1(p)vv, . . . ,Jk(p)vv

k+w

≤2w+J1(p)vv, . . . ,Jk(p)vv

k+w

≤3 4+

4 =.

Lemma 2.3 Assume that∈(0, 1]and pGa(a(4)),so we can find n0N such that,for each nn0and uC,

1 n

n i=1

Jk

pi uF

Jk(p) .

(6)

Proof Let∈(0, 1] andm=2d+1a(

4). There isn0Nsatisfying n0≥max

12md

, 32m2d(d+ 1)

ξ a(4)

2

–1

. For anynn0andpGa(a(4)), we can take a number

K=m2d

1 + 2(p) ξ

a(4) 2

–1 k<n

2

. For everyiNanduC, we put

ai(u) =ξ 8

9

1 m

m j=1

J1

pi+j+1

uJ1(p)1 m

m j=1

J1

pi+j u, . . . ,

1 m

m j=1

Jk pi+j+1

uJk(p)1 m

m j=1

Jk pi+j

u

k

.

Byα(p)≤18and ai(u)≤ max

1≤j,tmJ1 pi+j

uJk pi+t

u, . . . ,Jk pi+j

uJk pi+t

u

k

J1 pi+j+1

uJk pi+t+1

u, . . . ,Jk pi+j+1

uJk pi+t+1

u

k+d·α(p)

1≤j<tm

J1

pi+j uJ1

pi+t u, . . .Jk

pi+j uJk

pi+t u

k

J1

pi+j+1 uJ1

pi+t+1 u, . . .Jk

pi+j+1 uJk

pi+t+1 u

k+(p) , we get

n i=1

ai(u)

n

i=1

1≤j<tm

J1

pi+j uJk

pi+t u, . . . ,Jk

pi+j uJk

pi+t u

k

J1

pi+j+1 uJk

pi+t+1 u, . . . ,Jk

pi+j+1 uJk

pi+t+1 u

k+d·α(p)

=

1≤j<tm

n i=1

J1

pi+j uJk

pi+t u, . . . ,Jk

pi+j uJk

pi+t u

k

J1

pi+j+1 uJk

pi+t+1 u, . . . ,Jk

pi+j+1 uJk

pi+t+1 u

k+d·α(p)

1≤j<tm

d+nd·α(p)

m2d

1 +(p) .

Suppose that there is an element saytin{ai(u) :i= 1, 2, . . . , 2n}such that ifai(u)≥ξ(a(24)), then

a(4)

2

m2d

1 + 2(p) .

(7)

Hence

tm2d

1 + 2(p) ξ

a(4) 2

–1

=K.

So, there are at mostN= [K] terms in{ai(u) :i= 1, 2, . . . , 2n}withai(u)≥ξ(a(24)). Then, for everyiin{1, 2, . . . ,n}, there exists at least one termai+j0(u) (0≤j0N) in{ai+j(u) :j= 0, 1, . . . ,N}holdai+j0<ξ(a(24)).

Put

i=min

j:ai+j(u) <ξ a(4)

2

, 0≤jN

,

i= 1, 2, . . . ,n. Now, there are at mostNelements in{i= 1, 2, . . . ,n}such thati= 0. Since

J1(p)1 m

m j=1

J1 pi+i+j

u– 1 m

m j=1

J1 pi+i+j

u, . . . ,

Jk(p)1 m

m j=1

Jk

pi+i+j u– 1

m m

j=1

Jk

pi+i+j u

k

J1(p)1 m

m j=1

J1 pi+i+j

u– 1 m

m j=1

J1

pi+i+j+1 u, . . . ,

Jk(p)1 m

m j=1

Jk

pi+i+j u– 1

m m

j=1

Jk

hi+i+j+1 u

k

+

1 m

m j=1

J1

pi+i+j u– 1

m m

j=1

J1

pi+i+j+1 u, . . . ,

1 m

m j=1

Jk pi+i+j

u– 1 m

m j=1

Jk

pi+i+j+1 u

k

≤9 8ξ–1

ai+i(u) + d

2m

≤ 9 16a

4

+1

4a

4

<a

4

,

we can conclude that, for allpGa(a(4)), 1

m m

j=1

Jk

pi+i+j

uFa(4)

Jk(p) .

By Lemma2.1, we get, for allpGa(a(4))Ga(4), 1

n n

i=1

1 m

m j=1

Jk

pi+i+j

u∈coFa(4)

Jk(p)

F4 Jk(p)

.

(8)

Using Lemma2.2and

1 n

n i=1

J1

pi u–1

n n

i=1

1 m

m j=1

J1

pi+i+j u, . . . ,

1 n

n i=1

Jk pi

u–1 n

n i=1

1 m

m j=1

Jk pi+i+j

u

k

≤ 1 mn

m j=1

n

i=1

J1

pi u

n i=1

J1

pi+i+j u, . . . ,

n i=1

Jk

pi

usumni=1Jk

pi+i+j u

k

≤ 1 mn

m j=1

n

i=1

J1

pi u

n i=1

J1

pi+j u, . . . ,

n i=1

Jk

pi u

n i=1

Jk

pi+j u

k

+ 1 mn

m j=1

n

i=1

L1 pi+j

un

i=1

J1 pi+i+j

u, . . . , n

i=1

Jk

pi+j u

n i=1

Jk

pi+i+j u

k

md n +Nd

n

12+m2d2(ξ(a(

4) 2 ))–1

n + 2m2d2α(p)

ξ a(4)

2 –1

<

12+ 32+

8<

4, we obtain

1 n

n i=1

Jk pi

uF

4

Jk(p) +B

0,

4

F

Jk(p)

.

Lemma 2.4 Suppose that uk(·)is an almost orbit ofk.So limtGγu1(t) + (1 –γ)ϕg, . . . ,γuk(t) + (1 –γ)ϕg

k

exist for everyγ ∈(0, 1)andϕ,gF(k).

Proof To complete the proof, it is enough to prove that

sGinfsup

tG

γu1(ts) + (1 –γ)ϕg, . . . ,γuk(ts) + (1 –γ)ϕg

k

≤sup

sGinf

tGγu1(ts) + (1 –γ)ϕg, . . . ,γuk(ts) + (1 –γ)ϕg

k.

We know, for every> 0, there aret0ands0Gsuch that, for anytG,α(tt0) <1+d and ϕ(ts0) <, whereϕ(t) =suppG(u1(pt) –J1(p)u1(t), . . . ,uk(pt) –Jk(p)uk(t))k. So, for every

(9)

aG,

sGinfsup

tG

u1(tss0) –ϕ, . . . ,uk(tss0) –ϕ

k

≤sup

tG

u1(tt0as0) –ϕ, . . . ,uk(tt0as0) –ϕ

k

≤sup

tG

u1(tt0as0) –J1(tt0)u1(as0), . . . ,uk(tt0as0) –Jk(tt0)uk(as0)

k

+sup

tG

J1(tt0)u1(as0) –ϕ, . . . ,Jk(tt0)uk(as0) –ϕ

k

ϕ(as0) +sup

tG

1 +α(tt0)

·u1(as0) –ϕ, . . . ,uk(as0) –ϕ

k

u1(as0) –ϕ, . . . ,uk(as0) –ϕ

k+ 2.

Hence

sGinfsup

tG

u1(tss0) –ϕ, . . . ,uk(tss0) –ϕ

k≤inf

aGu1(as0) –ϕ, . . . ,uk(as0) –ϕ

k+ 2.

Thus, there existss1Gsuch that sup

tG

u1(ts1s0) –ϕ, . . . ,uk(ts1s0) –ϕ

k<inf

aGu1(as0) –ϕ, . . . ,uk(as0) –ϕ

k+ 3.

Then, for everyaG, we get

sGinfsup

tG

γu1(ts) + (1 –γ)ϕg, . . . ,γuk(ts) + (1 –γ)ϕg

k

≤sup

tG

γu1(tt0as1s0) + (1 –γ)ϕg, . . . ,γuk(tt0as1s0) + (1 –γ)ϕg

k

γsup

tG

u1(tt0as1s0) –J1(tt0)u1(as1s0), . . . ,uk(tt0as1s0) –Jk(tt0)uk(as1s0)

k

+sup

tG

γJ1(tt0)u1(as1s0) + (1 –γ)ϕg, . . . ,γJk(tt0)uk(as1s0) + (1 –γ)ϕg

k

ϕ(as1s0) +sup

tG

γJ1(tt0)u1(as1s0) + (1 –γ)ϕJ1(tt0)

γu1(as1s0) + (1 –γ)ϕ , . . . , γJk(tt0)uk(as1s0) + (1 –γ)ϕJk(tt0)

γuk(as1s0) + (1 –γ)ϕ

k

+sup

tG

J1(tt0)

γu1(as1s0) + (1 –γ)ϕg, . . . , Jk(tt0)

γuk(as1s0) + (1 –γ)ϕg

k

+sup

tG

1 +α(tt0)

ξ–1u1(as1s0) –ϕ, . . . ,uk(as1s0) –ϕ

k

J1(tt0)u1(as1s0) –ϕ, . . . ,Jk(tt0)uk(as1s0) –ϕ

k+d·α(tt0) +sup

tG

1 +α(tt0)γu1(as1s0) + (1 –γ)ϕg, . . . ,γuk(as1s0) + (1 –γ)ϕg

k

+ (1 –)sup

tGξ–1u1(as1s0) –ϕ, . . . ,uk(as1s0) –ϕ

k

u1(tt0as1s0) –ϕ, . . . ,uk(tt0as1s0) –ϕ

k+ϕ(as1s0) +

(10)

+ (1 +)γu1(as1s0) + (1 –γ)ϕg, . . . ,γuk(as1s0) + (1 –γ)ϕg

k

+ (1 +)ξ–1(5)

+ (1 +)γu1(as1s0) + (1 –γ)ϕg, . . . ,γuk(as1s0) + (1 –γ)ϕg

k. Then

sGinfsup

tG

γu1(ts) + (1 –γ)ϕg, . . . ,γuk(ts) + (1 –γ)ϕg

k

(1 +)ξ–1(5) + (1 +)inf

aGγu1(as1s0) + (1 –γ)ϕg, . . . ,γuk(as1s0) + (1 –γ)ϕg

k

(1 +)ξ–1(5) + (1 +)sup

bGinf

aGγu1(ab) + (1 –γ)ϕg, . . . ,γuk(ab) + (1 –γ)ϕg

k. Hence,

sGinfsup

tG

γu1(ts) + (1 –γ)ϕg, . . . ,γuk(ts) + (1 –γ)ϕg

k

≤sup

sGinf

tGγu1(ts) + (1 –γ)ϕg, . . . ,γuk(ts) + (1 –γ)ϕg

k

because> 0 is arbitrary.

Theorem 2.5 Assume that{(Xkk)}k∈Nis a uniformly convex multi-Banach space,and suppose that∅ =CX is bounded and closed.Assume thatk={Jk(t) :tG}for each k≥1is a reversible semigroup of asymptotically nonexpansive functions on C.If D has a left invariant mean,then there exists a retraction PkfromLAO(k)onto F(k)in which:

(1) Pkis nonexpansive in the sense (P1u1P1v1, . . . ,PkukPkvk)

k

≤inf

sGsup

tG

u1(st) –v1(st), . . . ,uk(st) –vk(st)

k, ∀uk,vk∈LAO(k);

(2) PkJk(p)uk=Jk(p)Pkuk=Pkukfor alluk∈AO(k)andpG;

(3) Pkuk

sGconv{uk(t) :ts}for alluk∈LAO(k).

Proof We knowDhas a left invariant mean, so there is a net{γk,α:αA}of finite means onGin whichlimαA(γ1,αsγ1,α, . . . ,γk,αsγk,α)k= 0 for everysG, in whichAis a directed system. PuttingI=A×G={β= (α,t) :αA,tG}. Forβi= (αi,ti)∈I,i= 1, 2, defineβ1β2iffα1α2,t1t2. Then,Iis also a directed system. For eachβ= (α,t)∈I, definePk,1β=α,Pk,2β=t, andγβ=γα. So, for everysG,

limβIγ1,βγ1,β, . . . ,γk,βγk,β

k= 0. (2.1)

Assume thatγ ={{tβ}βI,tβPk,2β,∀βI}. Taking any{tβ,βI} ∈γ, sincerγk,βis bounded, without loss of generality, letrγk,β beweak convergent. Then, for alluk

(11)

LAO(k),ω-limβIγk,β(t)uk(ttβ)exist. We define Pkuk=ω-lim

βIγk,β(t)uk(ttβ) .

On the other hand, for everyuk∈LAO(k),Pkuk

sGconv{u(t) :ts}. Next, we shall show thatPkukF(k). Then, for every∈(0, 1], there ist0Gsuch that, for eachtt0, ϕ(t) < a()4 . Also, we can suppose thatPk2βt0for everyβI, sotβt0,{tβ} ∈γ. From Lemma2.3, for everypGa(a(a()

16)), there isnNsuch that, for eachtGandβI, 1

n n

i=1

Jk

pi

uk(ttβ)∈Fa() 4

Jk(p) .

Since for everytG

1

n n

i=1

J1

pi

u1(ttβ) –1 n

n i=1

u1

pittβ

, . . . ,1 n

n i=1

Jk

pi

uk(ttβ) –1 n

n i=1

uk

pittβ

k

ϕ(ttβ) <a() 4 , we have, for everypGa(a(a()

16)), 1

n n

i=1

uk pittβ

Fa() 4

Jk(p) +B

0,a()

4

Fa()

Jk(p) .

Equation (2.1) implies that

limβI

γ1,β(t)

1 n

n i=1

u1

pittβ

γ1,βu1(ttβ) , . . . ,

γk,β(t) 1

n n

i=1

uk pittβ

γk,βuk(ttβ)

k

= 0.

Combining it with the definition ofPkuk, we get, for allpGa(a(a() 16)), Pkuk=ω-lim

βIγk,β(t)

1 n

n i=1

uk

pittβ

∈coFa()

Jk(p) .

Lemma2.1also implies that for everypGa(a(a()

16)),PkukF(Jk(p)). Now, the continuity ofJk(p) implies thatPkukF(k). Obviously, for anypG,

PkJk(p)uk=ω-lim

βIγk,β(t)Jk(p)uk(ttβ)

=ω-lim

βIγk,β(t)uk(httβ)

=ω-lim

βIγk,β(t)uk(ttβ)

(using (2.1))

=Pkuk

(12)

and for everyvk∈LAO(k) andsG, we have (P1u1P1v1, . . . ,P1u1P1v1)

k

≤lim inf

βI γ1,β(t)u1(ttβ)

γ1,β(t)v1(ttβ)

, . . . ,γk,β(t)uk(ttβ)

γk,β(t)vk(ttβ)

k

=lim inf

βI γ1,β(t)u1(sttβ)

γ1,β(t)v1(sttβ) , . . . , γk,β(t)uk(sttβ)

γk,β(t)vk(sttβ)

k (by (2.1))

≤lim inf

βI γ1,β(t), . . . ,γ1,β(t)

k·sup

tG

u1(sttβ) –v1(sttβ), . . . ,uk(sttβ) –vk(sttβ)

k

≤sup

tG

u1(st) –v1(st), . . . ,uk(st) –vk(st)

k. Thus,

(P1u1P1v1, . . . ,PkukPkvk)

k≤inf

sGsup

tG

u1(st) –v1(st), . . . ,uk(st) –vk(st)

k.

Theorem 2.6(Ergodic theorem [17]) Assume that{(Xk, · k)}k∈Nis a uniformly convex multi-Banach space,and suppose that∅ =CX is bounded and closed.Assume thatk= {Jk(t) :tG}is a reversible semigroup of asymptotically nonexpansive functions on C.If D has a left invariant mean and there is a unique retraction PkfromLAO(K)onto F(k), which satisfies properties(1)(3)in Theorem2.5,then for every strongly net{νk,α:αA}

on D and uk∈AO(k), ω-lim

αA

uk(tp)k,α(t) =PkF(k) uniformly in pγ(G), in whichγ(G) ={sG:st=ts for all tG}.

Theorem 2.7 Assume that{(Xk, · k)}k∈N is a uniformly convex multi-Banach space, and suppose that∅ =CX is bounded and closed.Assume thatk ={Jk(t) :tG} of a reversible semigroup of asymptotically nonexpansive mappings on C,and let uk(·)be an almost orbit ofk.If

ω-lim

tGuk(pt) –uk(t) = 0 for every pG,then

ωω(uk)⊂F(k).

Proof Let∈(0, 1], then there ist0Gsuch that, fortt0, ϕ(t) <a()4 . Suppose that pkωω(uk), so we can find a subnet{uk(tα)}αAof{uk(t)}tG withω-limαAuk(tα) =pk

in which, for everyαA,tαt0, in whichAis a directed system. Using Lemma2.3, for everypGa(a(a()

16)), we can findn∈Nsuch that, for everyαA, 1

n n

i=1

Jk

pi

uk(tα)∈Fa() 4

Jk(p) .

Referensi

Dokumen terkait