R E S E A R C H Open Access
Application of the product net technique and Kadec–Klee property to study nonlinear ergodic theorems and weak convergence theorems in uniformly convex multi-Banach spaces
H.M. Kenari1, Reza Saadati2* and Choonkil Park3
*Correspondence:[email protected]
2Department of Mathematics, Iran University of Science and Technology, Tehran, Iran Full list of author information is available at the end of the article
Abstract
LetYbe a uniformly convex multi-Banach space which has not a Frechet
differentiable norm. We use the technique of product net to obtain the nonlinear ergodic theorems inY. Finally, let the dual of uniformly convex multi-Banach space have the Kadec–Klee property, we instate the weak convergence theorem in the case of reversible semi-group.
MSC: Primary 39A10; 39B72; secondary 47H10; 46B03
Keywords: Reversible semi-groups; Kadec–Klee property; Asymptotically nonexpansive mapping; Almost orbit; Uniformly convex multi-Banach space
1 Preliminaries
Dales and Polyakov in [1] introduced a multi–normed space by using the concept of opera- tor sequence space, operator spaces, and Banach lattices; for more details and application, we refer to [1–3].
In this paper assume that (Y, · ) is a complex normed space, and let∈N. We denote byYthe vector spaceY⊕ · · · ⊕Yconsisting of-tuples (y1, . . . ,y), wherey1, . . . ,y∈Y. The linear operations onYare defined coordinate-wise. The zero element of eitherYor Yis denoted by 0. We denote byNthe set{1, 2, . . . ,}and byΣthe group of permuta- tions onsymbols.
Definition 1.1 Suppose thatY is a vector space, and take∈N. Forσ∈Σ, define Bσ(y) = (yσ(1), . . . ,yσ()), y= (y1, . . . ,y)∈Y.
Forβ= (βj)∈C, define
Kβ(y) = (βjyj), y= (y1, . . . ,y)∈Y.
©The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro- vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Definition 1.2 Assume that (Y, · ) is a complex (respectively, real) normed space, and takem∈N. A multi-norm of levelmon{Y:∈Nm}is a sequence ( · :∈Nm) such that · is a norm onYfor each∈Nm, such thaty1=yfor eachy∈Y (so that · 1is the initial norm), and such that the following Axioms (a1)–(a4) are satisfied for each∈Nmwithk≥2:
(a1) for eachσ∈Σandy∈Y, we have Bσ(y)
=y;
(a2) for eachβ1, . . . ,β∈C(respectively, eachβ1, . . . ,β∈R) andy∈Y, we have Kβ(y)
≤ maxj∈N
|βj| y; (a3) for eachy1, . . . ,y–1, we have
(y1, . . . ,y–1, 0)
=(y1, . . . ,y–1)
–1; (a4) for eachy1, . . . ,y–1∈Y,
(y1, . . . ,y–2,y–1,y–1)
=(y1, . . . ,y–1)
–1.
In this case, ((Y, · ) :∈Nm) is a multi-normed space of levelm.
A multi-norm on{Y:∈N}is a sequence ·
=
· :∈N
such that ( · :∈ Nm) is a multi-norm of level m for each m∈N. In this case, ((Ym, · m) :m∈N) is a multi-normed space.
Lemma 1.3([3]) Let((Y, · ) :∈N)be a multi-normed space,and take∈Nm.Then (a) (y, . . . ,y)=y(y∈Y);
(b) maxj∈Nyj ≤ (y1, . . . ,y)≤
j=1yj ≤maxj∈Nyj(y1, . . . ,y∈Y).
It follows from (b) that if (Y, · ) is a Banach space, then (Y, · ) is a Banach space for each∈N; in this case ((Y, · ) :∈N) is a multi-Banach space.
Example1.4 ([1]) The sequence ( · :∈N) on{Y:∈N}defined by (y1, . . . ,y)
:=max
j∈N
yj (y1, . . . ,y∈Y) is a multi-norm called the minimum multi-norm.
Example1.5 ([1]) Assume that{( · β :∈N) :β ∈B} is the (non-empty) family of all multi-norms on{Y:∈N}. For∈N, set
(y1, . . . ,y)
k:=sup
β∈B
(y1, . . .y)β
(y1, . . . ,y∈Y).
Then ( · :∈N) is a multi-norm on{Y:∈N}, called the maximum multi-norm.
By the property (b) of multi-norms and the triangle inequality for the norm·k, we can get the following properties. Suppose that ((Y, · ) :∈N) is a multi-normed space. Let ∈Nand (y1, . . . ,y)∈Yk. For everyi∈ {1, . . . ,}, let (yim)m=1,2,...be a sequence inY such thatlimm→∞yim=yi. Then for each (z1, . . . ,z)∈Ywe have
m→∞lim
y1m–z1, . . . ,ym–z
= (y1–z1, . . . ,y–z).
A sequence (ym) inYis amulti-nullsequence if, for everyε> 0, there existsm0∈Nsuch that
sup
∈N
(yn, . . . ,ym+–1)
<ε (m≥m0).
Lety∈Y. We say that the sequence (ym) ismulti-convergenttoy∈Yand write
m→∞lim ym=y
when (ym–y) is a multi-null sequence.
Assume that G is a semi-topological semi-group. In this article, C is a nonempty bounded closed convex subset of a uniformly convex Banach spaceX. LetX∗be the dual ofX, then the value ofu∗∈X∗atu∈Xwill be denoted byu,u∗, and we associate the set
J(u) =
u∗∈X: u,u∗
=u2=u∗2 .
It is clear from the Hahn–Banach theorem thatJ(u) is not empty for allu∈X. Then the multi-valued operatorJ:X→X∗is called the normalized duality mapping ofX, alsok= {Jk(t) :t∈G}is a reversible semigroup of asymptotically nonexpansive functions acting onC. LetF(k) denote the set of all fixed points ofk, i.e.,F(k) ={u∈C:Jk(t)u=u,∀t∈ G}. For each> 0 andp∈G, we put
F
Jk(p)
=
u∈C:J1(p)u–u, . . . ,Jk(p)u–u
k≤
.
Note that if, for any> 0, there existsp∈Gsuch that for allp>p,u∈F(Jk(p)), then limp∈GJk(p)u=u; moreover,u∈F(k) by the continuity of elements {Jk(p),p∈G}(for more details, we refer to [4–9]).
We denote the set of all almost orbits ofkand the set{Jk(p)uk(·) :p∈G,uk∈AO(k)} byAO(k) andLAO(k), respectively. Denote byωω(uk) the set of all weak limit points of subnets of net{uk(t)}t∈G.
Lemma 1.6([10]) Assume that X is a Banach space and J is the normalized duality func- tion.Therefore
u+v2≤ u2+ 2v,j(u+v) for all j(u+v)∈J(u+v)and u,v∈X.
Lemma 1.7([11]) Assume that{(Xk, · k)}k∈Nis a uniformly convex multi-Banach space and∅ =C⊂Xkis a bounded closed convex set.Then there exists a strictly increasing con- tinuous convex functionξ: [0, +∞)→[0, +∞)withξ(0) = 0such that
ξ
J1
n
i=1
aiui
–
n i=1
aiJ1ui, . . . ,Jk
n
i=1
aiui
–
n i=1
aiJkui
k
≤ max
1≤i,j≤n
ui–uj–(J1ui–J1uj, . . . ,Jkui–Jkuj)
k
for all integers a1, . . . ,an≥0,n≥1withn
i=1ai= 1,u1, . . . ,un∈C,and every nonexpansive function Jkof C to C.
Lemma1.7implies that, for alla1, . . . ,an≥0 withn
i=1ai= 1,u1, . . . ,un∈C,
J1(p) n
i=1
aiui
–
n i=1
aiJ1(p)ui, . . . ,Jk(p) n
i=1
aiui
–
n i=1
aiJk(p)ui
k
≤
1 +α(p) ξ–1
1≤i,j≤nmax
ui–uj
– 1
1 +α(p)J1(p)ui–J1(p)uj, . . . ,Jk(p)ui–Jk(p)uj
k
≤
1 +α(p) ξ–1
1≤i,j≤nmax
ui–uj
–J1(p)ui–J1(p)uj, . . . ,Jk(p)ui–Jk(p)uj
k
+d·α(p)
in whichd= 4sup{u:u∈C}+ 1.
For every∈(0, 1], define
a() =min 2
(d+ 2)2, 3 (3d+ 2)2ξ
4
and G=
h∈G:α(p)≤ ,
in whichξ(·) is as Lemma1.7. ThenG=∅for> 0, and ifp∈G, then for allt≥p,t∈G. Note thatGa()⊂Gfor all∈(0, 1].
2 Main result
For studies on ergodic theory and its history, we refer to [4–30]. The results of this paper are an extension and generalization of [31].
Lemma 2.1 For all p∈Ga(), coFa()
Jk(p)
⊂F
JK(p) .
Proof SinceF(JK(p)) is closed, we only need to prove that, for allp∈Ga(), coFa()
Jk(p)
⊂F
JK(p) . Letv=n
i=1aivi,vi∈Fa()(Jk(p)),ai≥0,i= 1, . . . ,n, andn
i=1ai= 1. Then J1(p)v–v, . . . ,Jk(p)v–v
k
=
J1(p) n
i=1
aivi– n
i=1
aivi, . . . ,Jk(p) n
i=1
aivi– n
i=1
aivi
k
≤
J1(p) n
i=1
aivi– n
i=1
aiJ1(p)vi, . . . ,Jk(p) n
i=1
aivi– n
i=1
aiJk(p)vi
k
≤2ξ–1
1≤i,j≤nmax
vi–vj–J1(p)vi–J1(p)vi, . . . ,Jk(p)vi–Jk(p)vi
k
+d·α(p)
+a()
≤2ξ–1
1≤i,j≤nmaxvi–J1(p)vi, . . . ,vi–Jk(p)vi
k+vj–J1(p)vj, . . . ,vj–Jk(p)vj
k
+d·α(p)
+a()
≤2ξ–1
2a() +d·a() +a()
≤ 2+
2=.
Lemma 2.2 For every p∈G4,
F4 Jk(p)
+B
0, 4
⊂F
Jk(p) .
Proof Letp∈G4 andu=v+w∈F4(Jk(p)) +B(0,4), wherev∈F4(Jk(p)) andw∈B(0,4), then
J1(p)u–u, . . . ,Jk(p)u–u
k
=J1(p)(v+w) – (v+w), . . . ,Jk(p)(v+w) – (v+w)
k
≤J1(p)(v+w) –J1(p)v, . . . ,Jk(p)(v+w) –Jk(p)v
k
+J1(p)v–v, . . . ,Jk(p)v–v
k+w
≤2w+J1(p)v–v, . . . ,Jk(p)v–v
k+w
≤3 4+
4 =.
Lemma 2.3 Assume that∈(0, 1]and p∈Ga(a(4)),so we can find n0∈N such that,for each n≥n0and u∈C,
1 n
n i=1
Jk
pi u∈F
Jk(p) .
Proof Let∈(0, 1] andm=2d+1a(
4). There isn0∈Nsatisfying n0≥max
12md
, 32m2d(d+ 1)
ξ a(4)
2
–1
. For anyn≥n0andp∈Ga(a(4)), we can take a number
K=m2d
1 + 2nα(p) ξ
a(4) 2
–1 k<n
2
. For everyi∈Nandu∈C, we put
ai(u) =ξ 8
9
1 m
m j=1
J1
pi+j+1
u–J1(p)1 m
m j=1
J1
pi+j u, . . . ,
1 m
m j=1
Jk pi+j+1
u–Jk(p)1 m
m j=1
Jk pi+j
u
k
.
Byα(p)≤18and ai(u)≤ max
1≤j,t≤mJ1 pi+j
u–Jk pi+t
u, . . . ,Jk pi+j
u–Jk pi+t
u
k
–J1 pi+j+1
u–Jk pi+t+1
u, . . . ,Jk pi+j+1
u–Jk pi+t+1
u
k+d·α(p)
≤
1≤j<t≤m
J1
pi+j u–J1
pi+t u, . . .Jk
pi+j u–Jk
pi+t u
k
–J1
pi+j+1 u–J1
pi+t+1 u, . . .Jk
pi+j+1 u–Jk
pi+t+1 u
k+dα(p) , we get
n i=1
ai(u)
≤ n
i=1
1≤j<t≤m
J1
pi+j u–Jk
pi+t u, . . . ,Jk
pi+j u–Jk
pi+t u
k
–J1
pi+j+1 u–Jk
pi+t+1 u, . . . ,Jk
pi+j+1 u–Jk
pi+t+1 u
k+d·α(p)
=
1≤j<t≤m
n i=1
J1
pi+j u–Jk
pi+t u, . . . ,Jk
pi+j u–Jk
pi+t u
k
–J1
pi+j+1 u–Jk
pi+t+1 u, . . . ,Jk
pi+j+1 u–Jk
pi+t+1 u
k+d·α(p)
≤
1≤j<t≤m
d+nd·α(p)
≤m2d
1 +nα(p) .
Suppose that there is an element saytin{ai(u) :i= 1, 2, . . . , 2n}such that ifai(u)≥ξ(a(24)), then
tξ a(4)
2
≤m2d
1 + 2nα(p) .
Hence
t≤m2d
1 + 2nα(p) ξ
a(4) 2
–1
=K.
So, there are at mostN= [K] terms in{ai(u) :i= 1, 2, . . . , 2n}withai(u)≥ξ(a(24)). Then, for everyiin{1, 2, . . . ,n}, there exists at least one termai+j0(u) (0≤j0≤N) in{ai+j(u) :j= 0, 1, . . . ,N}holdai+j0<ξ(a(24)).
Put
i=min
j:ai+j(u) <ξ a(4)
2
, 0≤j≤N
,
i= 1, 2, . . . ,n. Now, there are at mostNelements in{i= 1, 2, . . . ,n}such thati= 0. Since
J1(p)1 m
m j=1
J1 pi+i+j
u– 1 m
m j=1
J1 pi+i+j
u, . . . ,
Jk(p)1 m
m j=1
Jk
pi+i+j u– 1
m m
j=1
Jk
pi+i+j u
k
≤
J1(p)1 m
m j=1
J1 pi+i+j
u– 1 m
m j=1
J1
pi+i+j+1 u, . . . ,
Jk(p)1 m
m j=1
Jk
pi+i+j u– 1
m m
j=1
Jk
hi+i+j+1 u
k
+
1 m
m j=1
J1
pi+i+j u– 1
m m
j=1
J1
pi+i+j+1 u, . . . ,
1 m
m j=1
Jk pi+i+j
u– 1 m
m j=1
Jk
pi+i+j+1 u
k
≤9 8ξ–1
ai+i(u) + d
2m
≤ 9 16a
4
+1
4a
4
<a
4
,
we can conclude that, for allp∈Ga(a(4)), 1
m m
j=1
Jk
pi+i+j
u∈Fa(4)
Jk(p) .
By Lemma2.1, we get, for allp∈Ga(a(4))⊂Ga(4), 1
n n
i=1
1 m
m j=1
Jk
pi+i+j
u∈coFa(4)
Jk(p)
⊂F4 Jk(p)
.
Using Lemma2.2and
1 n
n i=1
J1
pi u–1
n n
i=1
1 m
m j=1
J1
pi+i+j u, . . . ,
1 n
n i=1
Jk pi
u–1 n
n i=1
1 m
m j=1
Jk pi+i+j
u
k
≤ 1 mn
m j=1
n
i=1
J1
pi u–
n i=1
J1
pi+i+j u, . . . ,
n i=1
Jk
pi
u–sumni=1Jk
pi+i+j u
k
≤ 1 mn
m j=1
n
i=1
J1
pi u–
n i=1
J1
pi+j u, . . . ,
n i=1
Jk
pi u–
n i=1
Jk
pi+j u
k
+ 1 mn
m j=1
n
i=1
L1 pi+j
u– n
i=1
J1 pi+i+j
u, . . . , n
i=1
Jk
pi+j u–
n i=1
Jk
pi+i+j u
k
≤md n +Nd
n
≤
12+m2d2(ξ(a(
4) 2 ))–1
n + 2m2d2α(p)
ξ a(4)
2 –1
<
12+ 32+
8<
4, we obtain
1 n
n i=1
Jk pi
u∈F
4
Jk(p) +B
0,
4
⊂F
Jk(p)
.
Lemma 2.4 Suppose that uk(·)is an almost orbit ofk.So limt∈Gγu1(t) + (1 –γ)ϕ–g, . . . ,γuk(t) + (1 –γ)ϕ–g
k
exist for everyγ ∈(0, 1)andϕ,g∈F(k).
Proof To complete the proof, it is enough to prove that
s∈Ginfsup
t∈G
γu1(ts) + (1 –γ)ϕ–g, . . . ,γuk(ts) + (1 –γ)ϕ–g
k
≤sup
s∈Ginf
t∈Gγu1(ts) + (1 –γ)ϕ–g, . . . ,γuk(ts) + (1 –γ)ϕ–g
k.
We know, for every> 0, there aret0ands0∈Gsuch that, for anyt∈G,α(tt0) <1+d and ϕ(ts0) <, whereϕ(t) =supp∈G(u1(pt) –J1(p)u1(t), . . . ,uk(pt) –Jk(p)uk(t))k. So, for every
a∈G,
s∈Ginfsup
t∈G
u1(tss0) –ϕ, . . . ,uk(tss0) –ϕ
k
≤sup
t∈G
u1(tt0as0) –ϕ, . . . ,uk(tt0as0) –ϕ
k
≤sup
t∈G
u1(tt0as0) –J1(tt0)u1(as0), . . . ,uk(tt0as0) –Jk(tt0)uk(as0)
k
+sup
t∈G
J1(tt0)u1(as0) –ϕ, . . . ,Jk(tt0)uk(as0) –ϕ
k
≤ϕ(as0) +sup
t∈G
1 +α(tt0)
·u1(as0) –ϕ, . . . ,uk(as0) –ϕ
k
≤u1(as0) –ϕ, . . . ,uk(as0) –ϕ
k+ 2.
Hence
s∈Ginfsup
t∈G
u1(tss0) –ϕ, . . . ,uk(tss0) –ϕ
k≤inf
a∈Gu1(as0) –ϕ, . . . ,uk(as0) –ϕ
k+ 2.
Thus, there existss1∈Gsuch that sup
t∈G
u1(ts1s0) –ϕ, . . . ,uk(ts1s0) –ϕ
k<inf
a∈Gu1(as0) –ϕ, . . . ,uk(as0) –ϕ
k+ 3.
Then, for everya∈G, we get
s∈Ginfsup
t∈G
γu1(ts) + (1 –γ)ϕ–g, . . . ,γuk(ts) + (1 –γ)ϕ–g
k
≤sup
t∈G
γu1(tt0as1s0) + (1 –γ)ϕ–g, . . . ,γuk(tt0as1s0) + (1 –γ)ϕ–g
k
≤γsup
t∈G
u1(tt0as1s0) –J1(tt0)u1(as1s0), . . . ,uk(tt0as1s0) –Jk(tt0)uk(as1s0)
k
+sup
t∈G
γJ1(tt0)u1(as1s0) + (1 –γ)ϕ–g, . . . ,γJk(tt0)uk(as1s0) + (1 –γ)ϕ–g
k
≤ϕ(as1s0) +sup
t∈G
γJ1(tt0)u1(as1s0) + (1 –γ)ϕ–J1(tt0)
γu1(as1s0) + (1 –γ)ϕ , . . . , γJk(tt0)uk(as1s0) + (1 –γ)ϕ–Jk(tt0)
γuk(as1s0) + (1 –γ)ϕ
k
+sup
t∈G
J1(tt0)
γu1(as1s0) + (1 –γ)ϕ –g, . . . , Jk(tt0)
γuk(as1s0) + (1 –γ)ϕ –g
k
+sup
t∈G
1 +α(tt0)
ξ–1u1(as1s0) –ϕ, . . . ,uk(as1s0) –ϕ
k
–J1(tt0)u1(as1s0) –ϕ, . . . ,Jk(tt0)uk(as1s0) –ϕ
k+d·α(tt0) +sup
t∈G
1 +α(tt0)γu1(as1s0) + (1 –γ)ϕ–g, . . . ,γuk(as1s0) + (1 –γ)ϕ–g
k
≤+ (1 –)sup
t∈Gξ–1u1(as1s0) –ϕ, . . . ,uk(as1s0) –ϕ
k
–u1(tt0as1s0) –ϕ, . . . ,uk(tt0as1s0) –ϕ
k+ϕ(as1s0) +
+ (1 +)γu1(as1s0) + (1 –γ)ϕ–g, . . . ,γuk(as1s0) + (1 –γ)ϕ–g
k
≤+ (1 +)ξ–1(5)
+ (1 +)γu1(as1s0) + (1 –γ)ϕ–g, . . . ,γuk(as1s0) + (1 –γ)ϕ–g
k. Then
s∈Ginfsup
t∈G
γu1(ts) + (1 –γ)ϕ–g, . . . ,γuk(ts) + (1 –γ)ϕ–g
k
≤(1 +)ξ–1(5) + (1 +)inf
a∈Gγu1(as1s0) + (1 –γ)ϕ–g, . . . ,γuk(as1s0) + (1 –γ)ϕ–g
k
≤(1 +)ξ–1(5) + (1 +)sup
b∈Ginf
a∈Gγu1(ab) + (1 –γ)ϕ–g, . . . ,γuk(ab) + (1 –γ)ϕ–g
k. Hence,
s∈Ginfsup
t∈G
γu1(ts) + (1 –γ)ϕ–g, . . . ,γuk(ts) + (1 –γ)ϕ–g
k
≤sup
s∈Ginf
t∈Gγu1(ts) + (1 –γ)ϕ–g, . . . ,γuk(ts) + (1 –γ)ϕ–g
k
because> 0 is arbitrary.
Theorem 2.5 Assume that{(Xk,·k)}k∈Nis a uniformly convex multi-Banach space,and suppose that∅ =C⊂X is bounded and closed.Assume thatk={Jk(t) :t∈G}for each k≥1is a reversible semigroup of asymptotically nonexpansive functions on C.If D has a left invariant mean,then there exists a retraction PkfromLAO(k)onto F(k)in which:
(1) Pkis nonexpansive in the sense (P1u1–P1v1, . . . ,Pkuk–Pkvk)
k
≤inf
s∈Gsup
t∈G
u1(st) –v1(st), . . . ,uk(st) –vk(st)
k, ∀uk,vk∈LAO(k);
(2) PkJk(p)uk=Jk(p)Pkuk=Pkukfor alluk∈AO(k)andp∈G;
(3) Pkuk∈
s∈Gconv{uk(t) :t≥s}for alluk∈LAO(k).
Proof We knowDhas a left invariant mean, so there is a net{γk,α:α∈A}of finite means onGin whichlimα∈A(γ1,α–∗sγ1,α, . . . ,γk,α–∗sγk,α)k= 0 for everys∈G, in whichAis a directed system. PuttingI=A×G={β= (α,t) :α∈A,t∈G}. Forβi= (αi,ti)∈I,i= 1, 2, defineβ1≤β2iffα1≤α2,t1≤t2. Then,Iis also a directed system. For eachβ= (α,t)∈I, definePk,1β=α,Pk,2β=t, andγβ=γα. So, for everys∈G,
limβ∈Iγ1,β–∗γ1,β, . . . ,γk,β–∗γk,β
k= 0. (2.1)
Assume thatγ ={{tβ}β∈I,tβ≥Pk,2β,∀β∈I}. Taking any{tβ,β∈I} ∈γ, sincer∗tβγk,βis bounded, without loss of generality, letr∗tβγk,β beweak∗ convergent. Then, for alluk∈
LAO(k),ω-limβ∈Iγk,β(t)uk(ttβ)exist. We define Pkuk=ω-lim
β∈Iγk,β(t)uk(ttβ) .
On the other hand, for everyuk∈LAO(k),Pkuk∈
s∈Gconv{u(t) :t≥s}. Next, we shall show thatPkuk∈F(k). Then, for every∈(0, 1], there ist0∈Gsuch that, for eacht≥t0, ϕ(t) < a()4 . Also, we can suppose thatPk2β≥t0for everyβ∈I, sotβ≥t0,{tβ} ∈γ. From Lemma2.3, for everyp∈Ga(a(a()
16)), there isn∈Nsuch that, for eacht∈Gandβ∈I, 1
n n
i=1
Jk
pi
uk(ttβ)∈Fa() 4
Jk(p) .
Since for everyt∈G
1
n n
i=1
J1
pi
u1(ttβ) –1 n
n i=1
u1
pittβ
, . . . ,1 n
n i=1
Jk
pi
uk(ttβ) –1 n
n i=1
uk
pittβ
k
≤ϕ(ttβ) <a() 4 , we have, for everyp∈Ga(a(a()
16)), 1
n n
i=1
uk pittβ
∈Fa() 4
Jk(p) +B
0,a()
4
⊂Fa()
Jk(p) .
Equation (2.1) implies that
limβ∈I
γ1,β(t)
1 n
n i=1
u1
pittβ
–γ1,βu1(ttβ) , . . . ,
γk,β(t) 1
n n
i=1
uk pittβ
–γk,βuk(ttβ)
k
= 0.
Combining it with the definition ofPkuk, we get, for allp∈Ga(a(a() 16)), Pkuk=ω-lim
β∈Iγk,β(t)
1 n
n i=1
uk
pittβ
∈coFa()
Jk(p) .
Lemma2.1also implies that for everyp∈Ga(a(a()
16)),Pkuk∈F(Jk(p)). Now, the continuity ofJk(p) implies thatPkuk∈F(k). Obviously, for anyp∈G,
PkJk(p)uk=ω-lim
β∈Iγk,β(t)Jk(p)uk(ttβ)
=ω-lim
β∈Iγk,β(t)uk(httβ)
=ω-lim
β∈Iγk,β(t)uk(ttβ)
(using (2.1))
=Pkuk
and for everyvk∈LAO(k) ands∈G, we have (P1u1–P1v1, . . . ,P1u1–P1v1)
k
≤lim inf
β∈I γ1,β(t)u1(ttβ)
–γ1,β(t)v1(ttβ)
, . . . ,γk,β(t)uk(ttβ)
–γk,β(t)vk(ttβ)
k
=lim inf
β∈I γ1,β(t)u1(sttβ)
–γ1,β(t)v1(sttβ) , . . . , γk,β(t)uk(sttβ)
–γk,β(t)vk(sttβ)
k (by (2.1))
≤lim inf
β∈I γ1,β(t), . . . ,γ1,β(t)
k·sup
t∈G
u1(sttβ) –v1(sttβ), . . . ,uk(sttβ) –vk(sttβ)
k
≤sup
t∈G
u1(st) –v1(st), . . . ,uk(st) –vk(st)
k. Thus,
(P1u1–P1v1, . . . ,Pkuk–Pkvk)
k≤inf
s∈Gsup
t∈G
u1(st) –v1(st), . . . ,uk(st) –vk(st)
k.
Theorem 2.6(Ergodic theorem [17]) Assume that{(Xk, · k)}k∈Nis a uniformly convex multi-Banach space,and suppose that∅ =C⊂X is bounded and closed.Assume thatk= {Jk(t) :t∈G}is a reversible semigroup of asymptotically nonexpansive functions on C.If D has a left invariant mean and there is a unique retraction PkfromLAO(K)onto F(k), which satisfies properties(1)–(3)in Theorem2.5,then for every strongly net{νk,α:α∈A}
on D and uk∈AO(k), ω-lim
α∈A
uk(tp)dνk,α(t) =Pk∈F(k) uniformly in p∈γ(G), in whichγ(G) ={s∈G:st=ts for all t∈G}.
Theorem 2.7 Assume that{(Xk, · k)}k∈N is a uniformly convex multi-Banach space, and suppose that∅ =C⊂X is bounded and closed.Assume thatk ={Jk(t) :t∈G} of a reversible semigroup of asymptotically nonexpansive mappings on C,and let uk(·)be an almost orbit ofk.If
ω-lim
t∈Guk(pt) –uk(t) = 0 for every p∈G,then
ωω(uk)⊂F(k).
Proof Let∈(0, 1], then there ist0∈Gsuch that, fort≥t0, ϕ(t) <a()4 . Suppose that pk∈ωω(uk), so we can find a subnet{uk(tα)}α∈Aof{uk(t)}t∈G withω-limα∈Auk(tα) =pk
in which, for everyα∈A,tα≥t0, in whichAis a directed system. Using Lemma2.3, for everyp∈Ga(a(a()
16)), we can findn∈Nsuch that, for everyα∈A, 1
n n
i=1
Jk
pi
uk(tα)∈Fa() 4
Jk(p) .