Chapter 3. Lattice Waves
Lattice waves
โข Lattice waves
: Vibrational motion of the atoms in a crystalline solid in terms of a wave passing through the atoms of the crystal as they are displaced by their thermal energy from their rest positions.
โข The thermal properties of solids are strongly related to the lattice waves
โข The movement of electrons (mobility) are hindered due to scattering by lattice waves.
โข Lattice waves have their particle-like counterpart, called phonons:
quanta of energy ฤงฯn, ฯn: normal vibrational modes
โข Energy exchanging interactions with lattice waves occur in integral multiple of ฤงฯn.
Lattice waves
โข Two examples:
1. Vibrations associated with a one-dimensional crystal in which all the atoms have the same mass and the same atomic spacing.
โAcoustic modesโ : long wavelength longitudinal vibration corresponds to the sound wave.
2. Vibrations with two or more different kinds of atoms in a one- dimensional crystals.
โ Two different masses with a common atomic spacing
โก Two different atomic spacings for atoms with the same mass ๐
๐
๐๐-1 ๐๐ ๐๐+1
๐-1 ๐ ๐๐
displacement position ๐+1 ๐
โOptical modesโ : long wavelength transverse vibrations characterized by
neighboring atoms being displaced in opposite directions. The long wavelength vibration can be excited by interaction with light if the material is at least
partially ionic.
โข Transverse waves in a one dimensional infinite string
๐: displacement away from the x-axis
Transverse waves in a 1-D infinite lattice
1 -1 up
1 +1 downward
Force at
: ~
: ~
r r
rr
r r
rr
x ra
F F F
a
F F F
a
๏ธ ๏ธ
๏ธ ๏ธ
๏ญ
๏ซ
๏ฝ
๏ญ ๏
๏ญ ๏ญ ๏
๐ ๐
๐๐-1 ๐๐ ๐๐+1
๐-1 ๐ ๐๐
displacement position
๐+1 ๐
Assumption
1. Restrict the forces between nearest neighbor atoms 2. The force is an attractive force ๐นฬฐ
3. ๐นฬฐ is constant and in the direction of the nearest neighbor atoms
(Assumption: ๐ โช ๐
Transverse waves in a 1-D infinite lattice
โข The harmonic solution
: mathematical wave passing through the displaced atoms.
Such a wave has physical reality only at the locations of atoms, i.e., only at x=ra. Then,
๐ ๐ฅ, ๐ก ๐ด exp ๐ ๐๐ฅ ๐๐ก
๐ ๐๐, ๐ก ๐ด exp ๐ ๐๐๐ ๐๐ก
O
โด The net upward force on the atom at ๐ฅ ๐๐ ๐น ๐น ๐๐ ๐
๐๐ก โ ๐ ๐
๐๐ก ๐๐ 2๐๐ ๐๐ where ๐ ๐น/๐๐
๐ ๐ด๐ ๐
๐ ๐ด๐ ๐
1 ~ r-1 r rr
F F
a
๏ธ ๏ธ
๏ญ ๏ญ
๏
1 ~ r r+1
rr
F F
a
๏ซ ๏ธ ๏ธ๏ญ
๏ญ ๏
โข Dispersion relationship
๏ญ Lattice wave has a dispersive system: The velocity varies with frequency and wave length
๏ญ Reducible to 0 โค k โค ฯ/a (The first Brillouin zone)
๐ 4๐ sin ๐ ๐/2 โ ๐ 2๐ / sin ๐ ๐/2
Transverse waves in a 1-D infinite lattice
๐ 2๐ ๐ ๐ ๐
2๐ 1 cos ๐ ๐
The shortest wavelength
๏ท
, (1 cos 2 ) 2sin2
cf ๏ญ
๏ฑ
๏ฝ๏ฑ
/
๏จ ๏ฝ F ma
Dispersion relation between ๐ and ๐
Transverse waves in a 1-D infinite lattice
๐โฒ ๐ด๐ ๐ด๐
๐ด๐ / โ ๐
๐๐ โ / โ ๐ exp ๐๐2๐๐ ๐
๐ 2๐ / sin ๐ ๐/2 sin ๐ ๐/2 โ ๐๐/2 ๐ฃ ~ ๐ฃ
~
๐
๐ ๐ / ๐ ๐น๐/๐ /
๏ท
small ๐ region
velocity becomes constant
cf) Displacement is identical for any ๐ and ๐ ๐
For small ๐ (long wavelength)
Transverse waves in a 1-D infinite lattice
โข Note:
โ ๐ space is the reciprocal lattice
โก
๐max 2 ๐น/๐๐
Debye frequency
๏ฌ
โ๏ฅ ๏ฌ ๏ฝ 2aInfinite wavelength
All atoms displaced by the same amount in the same direction.
โข Neighboring atoms are displaced by the same distance in opposite directions.
โข The shortest wavelength;
โข The dashed wave (n>2) has shorter wavelength. However it does not give any new information on the position of atoms.
โข Equivalent to the Bragg reflection condition
โข Cannot propagate: group velocity at k=๏ฐ/ais equivalent to zero
Acoustical Branch
๐ 2๐
๐๐ 2๐ sin ๐ ๐ 2๐, ๐ 1, ๐ ๐
(โต ๐ 2๐ / sin ๐ ๐/2 )
Transverse waves in a 1-D finite lattice
โข General solution for transverse waves
1, 2, ,( 1)
k m m n
L
๏ ๏ฝ ๏ฐ ๏ฝ ๏ ๏ซ
๐ ๐ sin ๐๐๐
2๐ฟ ๐ sin ๐๐๐
2 ๐ 1 ๐ ๐: # of moving atoms
โด ๐ ๐ sin ๐๐
2 ๐ 1 : normal modes
sin( / ( 1))
The general solution for the atom at is
i t
rm m
r m rm
m
A m r n e
x ra A
๏ธ ๏ฐ ๏ท
๏ธ ๏ธ
๏ฝ ๏ซ ๏ญ
๏ฝ
๏ฝ
๏ฅ
Finite set of discrete (๏ท,k) values ๐ ๐ฅ, ๐ก ๐ด exp ๐ ๐๐ฅ ๐๐ก ๐ต exp ๐ ๐๐ฅ ๐๐ก๐ 2 : total number of atoms (boundary conditions)
(allowed frequencies)
(displacement at ๐ฅ ๐๐ and for ๐ )
๐ 0 ๐ ๐ฟ 0
Longitudinal waves in a 1-D infinite lattice
โข The restoring force for longitudinal displacement depends on the spatial variation of the force (F) between atoms
โข Let F(a) represent the force between atoms when separated by a normal lattice spacing (a), then the net force on the r
thatom is
๐-1 ๐ ๐๐ ๐+1 ๐
๐๐-1 ๐๐ ๐๐+1
๐น ๐น ๐ ๐ ๐ ๐น ๐ ๐ ๐
๐น ๐ ๐ ๐ ๐น ๐ ๐ ๐ ๐๐น
๐๐ โฏ
๐น ๐ ๐ ๐ ๐น ๐ ๐ ๐ ๐๐น
๐๐ โฏ
For very small displacement
โด ๐น ๐ 2๐ ๐ 1 ๐๐น
๐๐ ๐๐ ๐ ๐๐ก
Longitudinal waves in a 1-D infinite lattice
๐น ๐ 2๐ ๐ ๐๐น
๐๐ ๐๐ ๐ ๐๐ก Let ๐โฒ 1
๐ ๐๐น
๐๐ Then ๐ ๐
๐๐ก ๐โฒ๐ 2๐โฒ๐ ๐โฒ๐
L: longitudinal acoustic wave T1, T2: transverse acoustic waves T1=T2 for isotropic crystal structure
long ฮป longitudinal wave โก sound waves 3D
Crystallographic direction
Frequency (THz)
Q: Why are the frequencies for L greater than T?
๐ ๐
๐๐ก ๐๐ 2๐๐ ๐๐
simiar to transverse waves except for ๐ โ ๐โฒ
Longitudinal waves in a 1-D infinite lattice
โข Long wavelength longitudinal wave โก sound waves
โข Velocity is given by the slope at k=0
๐ฃ ๐
๐ ~ ๐ / ๐
๐ฃ ๐
๐ ~ ๐โฒ / ๐
๐น โ ๐
๐ฃ ๐๐ ๐ ๐ ๐ฃ
๐ 1
๐ ๐๐น ๐๐ ,
The longitudinal waves are ๐ times faster than transverse waves.
๐โฒ ๐๐
๐ ๐น
๐๐ ,
Density of states for lattice waves
โข Density of states: # of allowed vibrational modes, N( ๏ฎ ), per unit frequency interval, d ๏ฎ .
max
max 2 1/2 max
max
sin
2( +1)
2( +1) cos 2( +1)
1 : frequency spacing 2( +1)
m n
d m
dm n n
n
๏ฎ
๏ฎ ๏ฎ ๏ฐ
๏ฐ ๏ฐ
๏ฎ ๏ฎ
๏ฐ๏ฎ ๏ฎ
๏ฎ ๏ฎ
๏ฉ ๏น
๏ฝ ๏ช ๏บ
๏ซ ๏ป
๏ฉ ๏น
๏ ๏ฝ ๏ฝ ๏ช ๏บ
๏ซ ๏ป
๏ฉ ๏ฆ ๏ถ ๏น
๏ช ๏บ
๏ ๏ฝ ๏ญ ๏ง ๏ท
๏ช ๏จ ๏ธ ๏บ
๏ซ ๏ป
2 1/2
max max
2( +1)
( ) n 1
N ๏ฎ ๏ฎd ๏ฎ d๏ฎ
๏ฐ๏ฎ ๏ฎ
๏ฉ ๏ฆ ๏ถ ๏น๏ญ
๏ช ๏บ
๏ ๏ญ ๏ง ๏ท
๏ช ๏จ ๏ธ ๏บ
๏ซ ๏ป
In a frequency interval d๏ฎ, there are d๏ฎ/๏๏ฎ states. Therefore,
N(v) starts with a value of [2(n+1)/๏ฐvmax] at v=0 and then increases with increasing v to a large value as v approaches vmax.
cf) cos ๐ = 1 sin ๐
between allowed modes From ๐ 2๐ / sin
Lattice waves for two kinds of atoms
โข
โ Lattice parameter is the same (a)
โก Masses are different (m and M) ex) compound
โข
โ Lattice parameters are different (a and b)
โก Mass is the same (m)
ex) more atoms in a unit cell
m M
a b
The first case (different masses & same spacing)
โข Follow the same procedure of transverse wave except that near atoms are different kinds.
m M
Zr-1 ๐๐-1 Zr ๐๐ Zr+1 ๐๐+1
(2r-1)a 2ra (2r+1)a r=0, 1, 2, โฏ
โ . ๐ ๐
๐๐ก ๐ ๐ 2๐ ๐ ๐ ๐ where ๐ ๐น ๐๐
โ ก. ๐ ๐
๐๐ก ๐ ๐ 2๐ ๐ ๐ ๐ where ๐ ๐น ๐๐
๐ ๐ด๐ for ๐ฅ 2๐ 1 ๐ ๐ ๐ต๐ for ๐ฅ 2๐๐
โข Assume that harmonic waves with the same values
of ๐ and ๐ for both types of atoms
M M M
M M M
2 2
2
2 0
2 0
ika ika ika
ika ika
e A e A B e B
A A e B e B
๏ท ๏จ ๏จ ๏จ
๏ท ๏จ ๏จ ๏ญ ๏จ
๏ญ ๏ซ ๏ญ ๏ญ ๏ฝ
๏ญ ๏ซ ๏ญ ๏ญ ๏ฝ
๐ ๐ด๐ ๐ ๐ด๐
M M
m m
2
2
( 2 ) 2 cos 0
2 cos ( 2 ) 0
A B ka
A ka B
๏ท ๏จ ๏จ
๏จ ๏ท ๏จ
๏ญ ๏ซ ๏ฝ
๏ซ ๏ญ ๏ฝ
M m M m M m
M m M m
4 2 2
4 2 2
(2 2 ) 4 4 cos 0
2( ) 4 sin 0
ka ka
๏ท ๏จ ๏จ ๏ท ๏จ ๏จ ๏จ ๏จ
๏ท ๏จ ๏จ ๏ท ๏จ ๏จ
๏ญ ๏ซ ๏ซ ๏ญ ๏ฝ
๏ญ ๏ซ ๏ซ ๏ฝ
๐ ๐ ๐ ๐ ๐ 4๐ ๐ sin ๐ ๐ (dispersion relations)
M M
m m
2
2
2 2 cos
2 cos 2 0
ka ka
๏ท ๏จ ๏จ
๏จ ๏ท ๏จ
๏ญ ๏ฝ
๏ญ
๏ฑ: two separate branches in the vibration spectrum
๐ด ๐ต
2๐ cos ๐ ๐ ๐ 2๐
for ๐ฅ 2๐ 1 ๐ for ๐ฅ 2๐๐
๐ ๐ต๐
๐ ๐ด
๐ต ๐ ๐ ๐ ๐
๐๐ก ๐ ๐ 2๐ ๐ ๐ ๐
๐ ๐
๐๐ก ๐ ๐ 2๐ ๐ ๐ ๐
The first case (different masses & same spacing)
1) For k = 0
< optical mode >
< acoustic mode >
ฯ+
ฯ-
The first case (different masses & same spacing)
๐ด ๐ต
2๐ cos ๐ ๐
๐ 2๐
2๐
2๐ 1
โต 1 ๐ฅ / 1 ๐ฅ/2 forย ๐ฅ<<1)
<<1
From previous solution,
๐ ๐ ๐ ๐ ๐ 1 4๐ ๐ ๐ ๐
๐ ๐
/
๐ ๐ ๐ ๐ ๐ 1 2๐ ๐ ๐ ๐
๐ ๐
๐ ๐ ๐ ๐
2๐ ๐ ๐ ๐
๐ ๐
โต cos ๐๐ 1 and ๐ 0 at k = 0
:Equal displacement of neighboring atoms
๐ด ๐ต
๐ ๐
๐ 2 ๐ ๐
a)
b)
:Opposite displacement
: In the long wavelength mode(k=0), neighboring atoms are displaced in opposite directions.
2) Near k = ฯ / 2a, sin
2ka โ 1
๐ ๐ ๐ ๐ 4๐ ๐
๐ ๐ ๐ ๐
โ ๐ 2๐ ๐ด
๐ต 0
โก ๐ 2๐ ๐ด
๐ต โ
gap opens for mโ M ๐ด
๐ต
2๐ cos ๐ ๐
๐ 2๐
The first case (different masses & same spacing)
Large mass
Small mass
A B
A
B
๐ ๐ ๐ ๐ ๐ 4๐ ๐ sin ๐ ๐
๐ 2๐ ๐ ๐ ๐
๐ ๐
๐ 2 ๐ ๐ ๐ 2๐
๐ 2๐
k = ฯ / 2a k = 0
Vibration spectrum pf CdTe
LO:ย Longitudinalย opticalย vibration TO:ย Transverseย opticalย vibration LA:ย Longitudinalย acousticย vibration TA:ย Transverseย acousticย vibration
An EM wave that propagates the lattice displaces the oppositely charged ions in opposite directions and forces them to vibrate at the frequency of the wave.
Most of the energy is then absorbed from the EM wave and converted to lattice vibrational energy (heat).
Reststrahlen absorption
: (German: residual rays)
โข long wavelength transverse modes in partially ionic crystals could be directly excited by light of a suitable.
โข Strong interaction between a light wave and a lattice wave under the unusual conditions for resonance.
extinction coefficient Kversus wavelength