System Control
Professor Kyongsu Yi
©2014 VDCL
Vehicle Dynamics and Control Laboratory Seoul National University
7. Control System Design by
the Root-Locus Method
Control system design
• Control System Design ; to perform specific tasks
• requirements ; performance specifications
- accuracy (steady state error)
- relative stability ( , damping ratio)
- speed of response ( , , : natural frequency)
• Given purpose precise performance specifications an optimal control system
• Controller ;
- digital controller , in many cases - microprocessor based controller - software; control algorithm
- hydraulic pneumatic
electronic (analog) mechanical
ζ
T e
−ζωnt ωnDesign procedure
Yes
Given purpose for given system
Modeling
Design controller
Digital simulation
Evaluation
Prototype test / Gain tuning
END
1) Build up test month to years Suspension
- spring, damper - tune the parameter
- test/evaluation (road tests)
2) Lab tests (simulator) week to months
3) Computer simulation (software) day to weeks / test 검증 (vehicle test/final tuning)
48개월 개발기간 ; 80년대 초반
36개월 80년대 말
30개월 90년대 초반
24개월 2000년대
자동차
Preliminary Design Considerations
• Root – Locus approach ; - graphical method
- gain or parameter variations
• Effect of the addition of poles ; less stable
• Effect of the addition of zeros ; more stable
× σ jω
× σ jω
× × σ
jω
× ×
× σ jω
× ×
× σ jω
× ×
× σ jω
× ×
× σ jω
× ×
× σ jω
× ×
Lead/Lag Compensation
1
( ) 1
c c
s T G s K
s α T
= +
+
1 ( )
( ) 1
o
c i
E s K s T
E s s
α T
= +
+
Lead/Lag Compensation
1 1 2 2 4 1 3 2 c
T R C T R C K R C
R C α
=
=
=
Lead/Lag Compensation
1
( ) 1
c c
s T G s K
s αT
= +
+
When s= jω 1 1
( )
Gc j j j
T T
ω ω ω
α
= + − +
Lead Compensator Lag Compensator
1 1
( ) 0 0 1 G jc
T T ω α
<α > < <
1 1
( ) 0 1 G jc
T T ω α
>α < <
σ jω
1
−T
×
1 αT
− σ
jω
1
−T
×
1 αT
−
Lead Lag
Root Locus / Lead/Lag Compensator
• Root locus lead/lag compensator : powerful tool
when ; specification – time domain spec.
• damping ratio • natural frequency
• dominant closed loop poles • rise time etc.
① Time domain spec
② unstable or
undesirable transient-response characteristics
Lead Compensators ( relocate dominant closed loop poles)
0.5 2
2
n
Kv
ζ ω
=
=
=
Example
Ex.
(
4)
( ) 2
G s = s s +
2
( ) 4
( ) 2 4
C s
R s = s s
+ + , closed loop poles : s= − ±1 3j
The static velocity error constant
0 2
0
( ) 1 ( )
1 ( )
1 1
( ) lim
1 ( )
1 1 1
lim 0.5
( ) 2
ss s
s v
E s R s
G s
e t s
G s s sG s K
→
→
=
+
= +
= = = =
Desired : ωn =4,ζ =0.5 2 2 3
s j
⇒ = − ± σ
jω
2
×
×
3
current closed loop poles Root Locus
Real Axis
Imaginary Axis
-1 -0.8 -0.6 -0.4 -0.2 0
-5 -4 -3 -2 -1 0 1 2 3 4 5
System: sysT Gain: 0 Pole: -1 + 1.73i Damping: 0.5 Overshoot (%): 16.3 Frequency (rad/sec): 2
System: sysT Gain: 0 Pole: -1 - 1.73i Damping: 0.5 Overshoot (%): 16.3 Frequency (rad/sec): 2
Example
Desired : ωn =4,ζ =0.5 2 2 3
s j
⇒ = − ±
1) Angle of deficiency
φ
2 2 3
4 210
( 2) s j s s =− ± = −
+
1
30 , 30 , 0 1
1 s T K
s T
φ α
α
= = + = < <
+
Lead Compensator 2) Choose such that 1
αT 1 T
1 1 30 s T s αT
+ = +
가능한한
α
가크게 증가 (Good)K
vText 방법 ploe = -5.4 zero = -2.9 =0.536
1 0.345 2.9
1 0.185 5.4
T αT
= =
= =
α
Example
Pole-zero location for large
α
0 2
0
1 1
lim 1 ( ) ( )
1 1
lim ( ) ( )
ss s
c
s
c v
e s
G s G s s
sG s G s K
→
→
= +
= =
0
0
lim ( ) ( ) 1 lim 4
1 2
2
v c
s
s
K sG s G s s T
K s
s T K
α α
→
→
=
= +
+ +
= ⋅ ⋅
Example
Lead Compensator : pole-zero selection for large
P
α
σ jω
×
15
4 D
−
P
15
C B
2 2 φ
φ
1
−T 1
αT
−
: desired pole
2 2 3 j
− +
C D
: pole :
: zero : 1
−T 1 αT
−
Lead Compensator
Fig 7-9 Ogata
Example
3) Magnitude Condition
2 2 3
2 2 3
2.9 4 ( ) ( )
5.4 ( 2)
1 ( ) ( ) 0
2.9 4
( ) ( ) 1
5.4 ( 2)
c c
c s j
c c
s j
G s G s K s
s s s G s G s
G s G s K s
s s s
=− +
=− +
= +
+ +
+ =
= = +
+ +
Lead Compensator 1
2.9 1 0.345 1
( ) 4.68 2.51
5.4 1 1 0.185 1
c c c
s s T Ts s
G s K K
s Ts s
s T
αα α
+ + + +
= = = =
+ + + +
Kc =4.68
Analog controller
2 4 1 1
1 3 2 2
( ) 1
( ) 1
o i
E s R R R C s E s R R R C s
= +
+
1 2
3
10 10
C C F
R k
µ
= =
= Ω Arbitrarily chosen
Digital controller
1
1 1
1 2 2 2
( ) 0.185 1
, 0.185
c
u a
G s K
e s
u K e
u u u u u ae
u
= = +
+
=
= + + =
>
Example
Root locus of the compensated system
× σ j ω
× ×
− 5.4
− 2.9
− 2 0
2 2 3 j
• − +
2 2 3 j
• − −
( )
2.9 4
5.4 2
c
K s
s s s
+
+ +
Comparison of step responses • original system
• compensated system
Root Locus
Real Axis
Imaginary Axis
-6 -5 -4 -3 -2 -1 0
-15 -10 -5 0 5 10 15
System: sysDG Gain: 1.08 Pole: -2 - 3.54i Damping: 0.492 Overshoot (%): 17 Frequency (rad/sec): 4.07 System: sysDG
Gain: 1.09 Pole: -2 + 3.58i Damping: 0.489 Overshoot (%): 17.2 Frequency (rad/sec): 4.1
Example
Root locus of the compensated system
( )
2.9 4
5.4 2
c
K s
s s s
+
+ +
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0 0.2 0.4 0.6 0.8 1 1.2 1.4
time [sec]
response
step response
uncompensated compensated
Example
4) Static velocity error constant ;
가능한한 큰 가 증가에기여 , 가 lead Compensator로충분히증가하지못한 경우 Lag compensator v추가 Lead-Lag Compensator
K Kv
α
0 0 2 0
1 1 1 1 1
( ) lim ( ) lim lim
0.345 1 4
1 ( ) ( ) 1 ( ) ( ) ( ) ( )
2.51 0.185 1 ( 2) 1 0.1984
2.52 2
ss s s s
c c c
e t s R s s
G s G s G s G s s sG s G s s
s s s s
→ → →
= = = =
+ + ⋅ ++ +
= =
×
5.04 ( 2)
v v
K = old K =
The Procedure for design a Lead compensator
1) Performance Spec.
desired locations for the dominant closed-loop poles
2) Draw the root locus
(1) Check whether or not the gain adjustment alone satisfactory results (2) If not calculate the angle deficiency
φ
3)
dc gain ;
; compensate angle deficiency 1
( ) 1
1 1
c c c
s T Ts
G s K K
s Ts T
αα α
+ +
= =
+ +
Kcα ,T
α
4) Tune to locate the closed – loop poles at the desired locations ; as large as possible
,T α α
−
5) Tune from the magnitude condition Kc
Lag Compensation
1
( ) ˆ , 1
c c 1
s T G s K
s T
β β
= + >
+
① satisfactory transient response
② unsatisfactory steady state characteristics i) closed loop poles : no change
ii) open loop gain increase
Lag compensator
β >1
Procedure
1) Draw the root-locus plot for the uncompensated system locate the dominant closed loop poles
2)
calculate 1
( ) 1
c c
s T G s K
s βT
= +
+
c( )
G s
3) Evaluate the particular static error constant specified ; The static velocity error constant
4) Determine pole and zero of the lag compensator s.t.
① the static error constant is sufficiently large ② without altering the original root loci.
5) Draw a new root-locus plot
6) Adjust from the magnitude condition Kˆc
1 1 1 s T
s βT +
+ Angle
pole, zero close together and near the origin of the s-plane
( ) 50 G sc ≤
Lag Compensation
The static velocity gain ;
Uncompensated system
Compensated system
lim0 ( )
v s
K sG s
= →
0 0
ˆv lim c( ) ( ) lim c( ) v ˆc v
s s
K sG s G s G s K K β K
→ →
= = = ⋅ ⋅
Increased by a factor of ˆc 1
factor K
β =
≈
ˆc
K ⋅β
Example
Ex. ( )( )
( )( )
( ) 1.06
1 2
( ) 1.06
( ) 1 2 1.06
G s s s s
C s
R s s s s
= + +
= + + +
The dominant closed-loop poles ;
1
0.3307 0.5864 0.491
0.673 / sec 0.53sec
n v
s j
rad K
ζ ω
−
= − ±
=
=
=
Increase without change of the location of dominant poles Lag compensator Kv →5sec−1
1) 1
( ) ˆ
c c 1
s T G s K
s βT
= +
+ ˆ ˆ
v c v
K =K βK
2) Let 10 , 1 0.05, 1 0.005
T T
β = = β =
ˆ 0.05
( ) 0.005
c c
G s K s s
= +
+
Angle contribution near a dominant closed loop poles
0.3307 0.5864
ˆ 0.05 4
0.005
c
s j
K s
s =− ±
+ +
No significant change
Root Locus
Real Axis
Imaginary Axis
-6 -5 -4 -3 -2 -1 0 1 2
-4 -3 -2 -1 0 1 2 3 4
System: sysT Gain: 0 Pole: -0.331 + 0.586i Damping: 0.491 Overshoot (%): 17 Frequency (rad/sec): 0.673
System: sysT Gain: 0 Pole: -0.331 - 0.586i Damping: 0.491 Overshoot (%): 17 Frequency (rad/sec): 0.673
Example
3) G s G sc( ) ( )=Kˆc ss++0.0050.05 ⋅s s
(
+1.061)(
s+2)
• dominant closed loop poles same damping ratio
s = − 0.31 ± j 0.55
4) Magnitude condition
( )( )
0.31 0.550.05 1.06
ˆ 1
0.005 1 2
c
s j
K s
s s s s =− ±
+ ⋅ =
+ + +
ˆc 0.9656
⇒ K =
× × ×
× 0
o
<
<
Root Locus
Real Axis
Imaginary Axis
-6 -5 -4 -3 -2 -1 0 1 2
-4 -3 -2 -1 0 1 2 3 4
System: sysDG Gain: 1.01 Pole: -0.31 + 0.556i Damping: 0.487 Overshoot (%): 17.4 Frequency (rad/sec): 0.636
System: sysDG Gain: 1.01 Pole: -0.31 - 0.556i Damping: 0.487 Overshoot (%): 17.4 Frequency (rad/sec): 0.636
Example
Verification ;
( )( )
0 2
0
1
,
1 1 1
ˆ lim 1 ( ) ( ) ˆ lim ( ) ( )
0.05 1.06 0.9656
0.005 1 2
5.12 sec
s c
v
v c
s
v old
s G s G s s K
K sG s G s s
s s s
βK
→
→
−
= +
=
= +
+ + +
=
5)
s
3= − 2.326 s
4= − 0.0549
A long tail of small amplitude
Example
0 5 10 15 20 25 30 35 40 45 50
0 5 10 15 20 25 30 35 40 45 50
time [sec]
response
ramp response
uncompensated compensated
0 5 10 15 20 25 30 35 40 45 50
0 0.2 0.4 0.6 0.8 1 1.2 1.4
time [sec]
response
step response
uncompensated compensated
Lag-Lead Compensation
Lead compensator speeds up, increase the stability
Lag compensator improves the steady state accuracy but reduce the speed
Lag-Lead compensators
Design procedure
1) Design lead compensator to relocate the dominant poles 2) Design lag compensator to improve the s.s. gain
1 2
1 2
1 1
1 1
( ) 1
c c
Lead Lag
s s
T T
G s K
s s
T T
γ β
γ
β
> >
+ +
= + +
Lag-Lead Compensation
Spec. 1) dominant poles
2) (steady state velocity error constant) Kv Step 1. Lead Compensator
1) choose desired poles 2) angle condition
determine the angle deficiency
3) magnitude condition
( ) ( )
1
1
1
1
1
( ) 180 2 1
c
s s
s T
K G s k
s T γ
=
+
= +
+
s1
φ
( )
1
1
1
1
1
180 2 1 ( )
s s
s T
k G s
s T γ φ
=
+
= = + −
+
(infinitely many ) ; choose one γ, T
1 1
1
1
( ) 1
c
s T
K G s
s T γ +
= +
Kc
Step 2. Lag Compensator, spec
1)
2) choose such that i)
ii)
Kv
1 2
0 0 0
1 2
1 1
lim ( ) ( ) lim ( ) lim ( )
v c c 1 c
s s s
s s
T T
K sG s G s sK G s sK G s
s s
T T
β
γ γ
β
→ → →
+ +
= = =
+ +
β
T2
Lag-Lead Compensation
2
2
1 1 1 s T s βT
+
+
2
2
1
5 0
1 s T s βT
+
− < <
+
Example
Ex
(
4)
( ) 0.5
G s = s s +
The closed-loop poles ;
1
0.25 1.9843 0.125
2 / sec 8sec
n v
s j
rad K
ζ ω
−
= − ±
=
=
= Desired spec : 0.5
5 80
n
Kv
ζ ω
=
=
=
Lead – Lag compensator
1 2
1 2
1 1
( ) , 1, 1
c c
1
s s
T T
G s K
s s
T T
γ β
γ
β
+ +
= > >
+ +
Example
Step 1. Lead Compensator 1) choose desired poles 2) angle condition
the angle deficiency = 55˚
choose , such that pole-zero cancelation happens
let
angle condition
3) magnitude condition
1 2.50 4.33
s = − ± j
(
40.5)
s s1 235s s = = −
+
( )
( ) ( ) 180 2 1
G sc + G s = − k+
T1
1 1
1 0.5 2
s s T
+T = + ⇒ =
(
1) (
1)
10.04
0.5 0.5 55
s s
γ
γ
=
+ + + =
( )
1
0.5 4
5.021 0.5 1
6.26
c
s s c
K s
s s s
K
=
+ =
+ +
⇒ =
Example
Step 2. Lag Compensator
1)
2) choose such that i)
ii)
( ) ( )
0 0
0
lim ( ) ( ) lim ( )
lim 6.26 4 4.988 80
10.04 0.5 16.04
v c c
s s
s
K sG s G s sK G s
s s s
β γ
β β
β
→ →
→
= =
= = =
+
⇒ =
T2
1
2
2
1 1 1
s s
s T s βT =
+
+
2
2
2 2
1
5 0
1
5 5
s T
s T
T let T
β +
− < <
+
⇒ ≥ ⇒ =
1 1
5 ( ) 6.26 2
10.04 1
2 16.04 5
25.04( 0.2) ( ) ( )
( 5.02)( 0.01247)
c
c
s s G s
s s
G s G s s
s s s
+ +
=
+ +
×
= +
+ +
Example
Root locus of the compensated system
×
σ jω
×
×
Root Locus
Real Axis
Imaginary Axis
-6 -5 -4 -3 -2 -1 0
-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
System: sysDG Gain: 0 Pole: -5.02 Damping: 1 Overshoot (%): 0 Frequency (rad/sec): 5.02
System: sysDG Gain: 0 Pole: -0.0125 Damping: 1 Overshoot (%): 0 Frequency (rad/sec): 0.0125
System: sysDG Gain: 0 Pole: 0 Damping: -1 Overshoot (%): 0 Frequency (rad/sec): 0
Example
0 1 2 3 4 5 6 7 8 9 10
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
time [sec]
response
step response
uncompensated compensated
0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9 10
time [sec]
response
ramp response
uncompensated compensated
End of lecture note 7