ContentslistsavailableatScienceDirect
NeuroImage
journalhomepage:www.elsevier.com/locate/neuroimage
Decoding the temporal dynamics of affective scene processing
Ke Bo
a,b, Lihan Cui
a, Siyang Yin
a, Zhenhong Hu
a, Xiangfei Hong
a,c, Sungkean Kim
a,d, Andreas Keil
e, Mingzhou Ding
a,∗aJ. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
bDepartment of Psychological and Brain Sciences, Dartmouth college, Hanover, NH 03755, USA
cShanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
dDepartment of Human-Computer Interaction, Hanyang University, Ansan, Republic of Korea
eDepartment of Psychology, University of Florida, Gainesville, FL 32611, USA
a r t i c le i n f o
Keywords:
Emotion, affective scenes IAPS
Multivariate pattern analysis EEG
fMRI
Representation similarity analysis Visual cortex
a b s t r a ct
Naturalimagescontainingaffectivescenesareusedextensivelytoinvestigatetheneuralmechanismsofvisual emotionprocessing.FunctionalfMRIstudieshaveshownthattheseimagesactivatealarge-scaledistributedbrain networkthatencompassesareasinvisual,temporal,andfrontalcortices.Theunderlyingspatialandtemporaldy- namics,however,remaintobebettercharacterized.WerecordedsimultaneousEEG-fMRIdatawhileparticipants passivelyviewedaffectiveimagesfromtheInternationalAffectivePictureSystem(IAPS).Applyingmultivariate patternanalysistodecodeEEGdata,andrepresentationalsimilarityanalysistofuseEEGdatawithsimultaneously recordedfMRIdata,wefoundthat:(1)∼80msafterpictureonset,perceptualprocessingofcomplexvisualscenes beganinearlyvisualcortex,proceedingtoventralvisualcortexat∼100ms,(2)between∼200and∼300ms (pleasantpictures:∼200ms;unpleasantpictures:∼260ms),affect-specificneuralrepresentationsbegantoform, supportedmainlybyareasinoccipitalandtemporalcortices,and(3)affect-specificneuralrepresentationswere stable,lastingupto∼2s,andexhibitedtemporallygeneralizableactivitypatterns.Theseresultssuggestthat affectivescenerepresentationsinthebrainareformedtemporallyinavalence-dependentmannerandmaybe sustainedbyrecurrentneuralinteractionsamongdistributedbrainareas.
1. Introduction
Thevisualsystemdetectsandevaluatesthreats andopportunities incomplexvisualenvironmentstofacilitatetheorganism’ssurvival.In humans,toinvestigatetheunderlyingneuralmechanisms,werecord fMRIand/orEEGdatafromobserversviewingdepictionsofnaturalistic scenesvaryinginaffectivecontent.AlargebodyofpreviousfMRIwork hasshown thatviewingemotionally engagingpictures, comparedto neutralones,heightensbloodflowinlimbic,frontoparietal,andhigher- ordervisualstructures(Langetal.,1998;Phanetal.,2002;Liuetal., 2012;Bradleyetal.,2015).ApplyingMVPAandfunctionalconnectiv- itytechniquestofMRIdata,wefurtherreportedthataffectivecontent canbedecodedfromvoxelpatternsacrosstheentirevisualhierarchy, includingearlyretinotopicvisualcortex,andthattheanterioremotion- modulatingstructuressuchastheamygdalaandtheprefrontalcortex arethelikelysourcesofthese affectivesignalsviathemechanismof reentry(Boetal.,2021).
Temporaldynamicsofaffectivesceneprocessingremainstobebet- terelucidated.Theevent-relatedpotential(ERP),anindexofaverage neuralmassactivitywithmillisecondtemporalresolution,hasbeenthe
∗Correspondingauthor.
E-mailaddress:[email protected]fl.edu(M.Ding).
mainmethodforcharacterizingthetemporalaspectsofaffectivescene perception(Cuthbertetal.,2000;Keiletal.,2002;Hajcaketal.,2009).
UnivariateERPsaresensitivetolocalneuralprocessesbutdonotre- flectthecontributionsofmultipleneuralprocessestakingplaceindis- tributed brainregionsunderlying affectivesceneperception.Thead- ventof themultivariatedecodingapproachhasbeguntoexpand the potentialoftheERPs(BaeandLuck2019;Suttereretal.,2021).Bygo- ingbeyondunivariateevaluationsofconditiondifferences,thesemul- tivariate patternanalyses(MVPA)take intoaccountvoltagetopogra- phiesreflectingdistributedneuralactivitiesandhelpuncoverthedis- criminabilityofexperimentalconditionsnotpossiblewiththeunivari- ateERPmethod.TheMVPAmethodcanevenbeappliedtosingle-trial EEGdata.Bygoingbeyondmeanvoltages,thedecodingalgorithmscan examinedifferencesinsingle-trialEEGactivitypatternsacrossallsen- sors,whichfurthercomplementstheERPmethod(Grootswagersetal., 2017; Continietal., 2017).Conceptually,thepresenceof decodable informationinneuralpatternshasbeentakentoindexdifferencesin neuralrepresentations(Normanetal.,2006).Thus,in thecontextof EEG/ERPdata,thetimecourseofdecoderperformancemayinformon howneuralrepresentationslinkedtoagivenconditionorstimulusform
https://doi.org/10.1016/j.neuroimage.2022.119532.
Received15February2022;Receivedinrevisedform1July2022;Accepted1August2022 Availableonline2August2022.
1053-8119/© 2022TheAuthors.PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense
and evolve over time (Cauchoix et al., 2014; Wolff et al., 2015; Dimaetal.,2018).
Thefirstquestionweconsideredwashowlongittakesfortheaffect- specificneural representations of affective scenes toform.For non- affectiveimagescontainingobjectssuchasfaces,housesorscenes,past workhasshownthattheneuralresponsesbecomedecodableasearlyas
∼100msafterstimulusonset(Cichyetal.,2014;Cauchoixetal.,2014).
Thislatencyreflectstheonsettimeforthedetectionandcategorization ofstereotypicalvisualfeaturesassociatedwithdifferentobjectsinearly visualcortex(Nakamuraetal.,1997;DiRussoetal.2002).Forcomplex scenesvaryinginaffectivecontent,however,althoughmappedontorich category-specificvisualfeaturesinamultivariatefashion(Krageletal., 2019),thereareno stereotypicalvisualfeaturesthat unambiguously separatedifferentaffectivecategories(e.g.,unpleasantscenesvsneu- tralscenes).Accordingly,univariateERPstudieshavereportedrobust voltagedifferencesbetweenemotionalandneutralcontentatrelatively latetimes,e.g.,∼170–280msattheleveloftheearlyposteriornegativ- ity(Schuppetal.,2006; Fotietal., 2009)and∼300msatthelevel of thelatepositive potential(LPP) (Cuthbert etal., 2000;Lang and Bradley,2010;Liuetal.,2012;Sabatinellietal.,2013).Wesoughtto furtherexaminetheseissuesbyapplyingmultimodalneuroimagingand theMVPAmethodology.Itisexpectedthatperceptualprocessingofaf- fectivesceneswouldbegin∼100msfollowingpicture onsetwhereas affect-specificneuralrepresentationswouldemergebetween∼150ms and∼300ms.
Arelatedquestioniswhethertherearesystematictimingdifferences intheformationofneuralrepresentationsofaffectivescenesdiffering inemotionalcontent.Specifically,ithasbeendebatedtowhatextent pleasantversusunpleasantcontentsemergeoverdifferenttemporalin- tervals(e.g.,Oyaetal.,2002).Thenegativitybiasideasuggeststhat aversive informationreceivesprioritizedprocessing in thebrainand predictsthatscenescontainingunpleasantelementsevokefasterand strongerresponsescomparedtoscenescontainingpleasantorneutral elements.TheERPresultstodatehavebeenequivocal(Carretié etal., 2001;HuangandLuo,2006;Frankenetal.,2008).Analternativeidea is thatthetimingofemotional representationformation depends on thespecificcontentoftheimages(e.g.,eroticwithinthepleasantcate- goryvsmutilatedbodieswithintheunpleasantcategory)ratherthanon thebroadersemanticcategoriessuchasunpleasantscenesandpleasant scenes(WeinbergandHajcak,2010).Wesoughttotesttheseideasby applyingtheMVPAapproachtodecodesubcategoriesofimagesusng EEGdata.Itisexpectedthatthetimingofrepresentationformationis content-specific.
How do neuralrepresentations of affective scenes, once formed, evolveover time?Fornon-affectiveimages,theneuralresponsesare foundtobetransient,withtheprocessinglocusevolvingdynamically fromonebrainstructuretoanother(Carlsonetal.,2013;Cichyetal., 2014;Kaiseretal.,2016).Foraffectiveimages,incontrast,theenhanced LPP,amajorERPindexofaffectiveprocessing,ispersistent,lastingup toseveralseconds,andsupportedbydistributedbrainregionsincluding thevisualcortexaswellasfrontalstructures,suggestingsustainedneu- ralrepresentations.Totestwhetherneuralrepresentationsofaffective scenesaredynamicorsustained,weappliedaMVPAmethodcalledthe generalizationacrosstime(GAT)(KingandDehaene,2014),inwhich theMVPAclassifieristrainedondataatonetimepointandtestedon datafromalltimepoints.Theresultingtemporalgeneralizationmatrix, whenplottedontheplanespannedbythetrainingtimeandthetesting time,canbeusedtovisualizethetemporalstabilityofneuralrepresenta- tions.Foradynamicallyevolvingneuralrepresentation,highdecoding accuracywillbeconcentratedalongthediagonalintheplane,namely, theclassifiertrainedatonetimepointcanonlybeusedtodecodedata fromthesametimepointbutnotdatafromothertimepoints.Forasta- bleorsustainedneuralrepresentation,ontheotherhand,highdecoding accuracyextendsawayfromthediagonalline,indicatingthattheclas- sifiertrainedatonetimepointcanbeusedtodecodedatafromother timepoints.Itisexpectedthattheneuralrepresentationsofaffective
scenesaresustainedratherthandynamicwiththevisualcortexplaying animportantroleinthesustainedrepresentation.
WerecordedsimultaneousEEG-fMRIdatafromparticipantsviewing affectiveimagesfromtheInternationalAffectivePictureSystem(IAPS) (Langetal.,1997).MVPAwasappliedtoEEGdatatoassesstheforma- tionofaffect-specificrepresentationsofaffectivesceneinthebrainand theirstability.EEGandfMRIdatawereintegratedtoassesstheroleofvi- sualcortexinthelarge-scalerecurrentnetworkinteractionsunderlying thesustainedrepresentationofaffectivescenes.FusingEEGandfMRI datavia representationsimilarityanalysis(RSA)(Kriegeskorteetal., 2008),wefurthertestedthetimingofperceptualprocessingofaffective scenesinareasalongthevisualhierarchyandcomparethatwiththe formationtimeofaffect-specificrepresentations.
2. Materialsandmethods 2.1. Participants
Healthyvolunteers(n=26)withnormalorcorrected-to-normalvi- sionsignedinformedconsentandparticipatedintheexperiment.Two participants withdrawbefore recording. Four additional participants wereexcluded forexcessivemovementsinside thescanner.EEG and fMRIdatafromthesefourparticipantswerenotconsidered.Datafrom theremaining20subjectswereanalyzedandreportedhere(10women;
meanage:20.4±3.1).
Thesedatahavebeenpublishedbefore(Boetal.,2021)toaddress adifferentsetofquestions.Inparticular,inBoetal.(2021),weasked thequestionofwhetheraffectivesignalscanbefoundinvisualcortex.
AnalyzingfMRI,anaffirmativeanswerwasfoundwhenitwasshown that pleasant,unpleasant,andneutralpicturesevokedhighlydecod- ableneuralrepresentationsintheentireretinotopicvisualhierarchy.
Usingthelatepositivepotential(LPP)andeffectivefunctionalconnec- tivityasindicesofneutralreentrywefurtherarguedthattheseaffective representationsarelikelytheresultsoffeedbackfromanterioremotion- modulatingstructuressuchastheamygdalaandtheprefrontalcortex.
Inthepresentstudyweaddressthetemporaldynamicsofaffectivescene processingwherethefocuswasplacedonEEGdecoding.
2.2. Procedure
2.2.1. Thestimuli
Thestimuliincluded20pleasant,20neutraland20unpleasantpic- turesfromtheInternationalAffectivePictureSystem(IAPS;Langetal., 1997): Pleasant: 4311, 4599, 4610, 4624, 4626, 4641, 4658, 4680, 4694,4695,2057,2332,2345,8186,8250,2655,4597,4668,4693, 8030;Neutral:2398,2032,2036,2037,2102,2191,2305,2374,2377, 2411,2499,2635,2347,5600,5700,5781,5814,5900,8034,2387;
Unpleasant:1114,1120,1205,1220,1271,1300,1302,1931,3030, 3051,3150,6230,6550,9008,9181,9253,9420,9571,3000,3069.
Thepleasantpicturesincludedsportsscenes,romance,anderoticcou- ples andhad average arousal and valenceratings of 5.8± 0.9 and 7.0±0.5,respectively.Theunpleasantpicturesincludedthreat/attack scenesandbodilymutilationsandhadaveragearousalandvalencerat- ingsof6.2±0.8and2.8±0.8,respectively.Theneutralpictureswere imagescontaininglandscapes,adventures,andneutralhumansandhad average arousal andvalenceratings of 4.2± 1.0and6.3± 1.0,re- spectively.Thearousalratingsforpleasantandunpleasantpicturesare not significantlydifferent (p= 0.2)butbotharesignificantlyhigher thanthatoftheneutralpictures(p<0.001).Valencedifferencesbe- tweenunpleasantvsneutral(p<0.001)andbetweenpleasantvsneu- tral(p=0.005)arebothsignificant.Basedonspecificcontent,the60 picturescanbefurtherdividedinto6subcategories:disgust/mutilation body,attack/threatscene,eroticcouple,happypeople,neutralpeople, andadventure/naturescene.Thesesubcategoriesprovidedanopportu- nitytoexaminethecontent-specificityoftemporalprocessingofaffec- tiveimages.
Fig.1. Experimentalparadigmanddataanalysispipeline.(A)Affectivepictureviewingparadigm.Eachrecordingsessionlastssevenminutes.60IAPSpictures including20pleasant,20unpleasantand20neutralpictureswerepresentedineachsessioninrandomorder.Eachpicturewaspresentedatthecenterofscreen for3sandfollowedbyafixationperiod(2.8or4.3s).Participantswererequiredtofixatetheredcrossatthecenterofthescreenthroughoutthesessionwhile simultaneousEEG-fMRIwasrecorded.(B)Analysispipelineillustratingthemethodsusedatdifferentstagesoftheanalysis(seetextformoredetails).
Twoconsiderations went into theselectionof the60 pictures as stimuliin thisstudy.First,thesepicturesarewellcharacterized,and havebeenusedinabodyofresearchattheUFCenterfortheStudy ofEmotionandAttentionaswellasinpreviousworkfromourlabo- ratories.Thecategorieswerenotsolelydesignatedonthebasisofnor- mativeratingsofvalenceandarousal,butalsotakenintoaccount of thepictures’abilitytoengageemotionalresponses,asassessedbyauto- nomic,EEG,andBOLDmeasures(Liuetal.,2012;Deweeseetal.,2016; Thigpenetal.,2018;Tebbeetal.,2021).Second,wehaveusedthesame picturesetpreviouslyinanumberofstudieswhereEEGLPPsandre- sponsetimeswererecordedacrossseveralsamplesofparticipants(see, e.g.,Thigpenetal.,2018),enablingustobenchmarktheEEGdatafrom insidethescanneragainstdatarecordedinanEEGlaboutsidethescan- ner,andtoconsidertheimpactofthesepicturesonmodulatingovert responsetimebehavior, wheninterpretingtheresults of thepresent study.
2.2.2. Theparadigm
TheexperimentalparadigmwasillustratedinFig.1A.Therewere fivesessions.Eachsessioncontains60trialscorrespondingtothepre- sentationof60differentpictures.Theorderofpicturepresentationwas randomizedacrosssessions.EachIAPSpicturewaspresentedonaMR- compatiblemonitorfor3s,followedbyavariable(2800msor4300ms) interstimulusinterval.Thesubjectsviewedthepicturesviaareflective mirrorplacedinsidethescanner.Theywereinstructedtomaintainfixa- tiononthecenterofthescreen.Aftertheexperiment,participantsrated thehedonicvalenceandemotionalarousallevelof12 representative pictures(4 pictures foreach broadcategory), which arenot partof the60-pictureset,basedonthepaperandpencilversionoftheself- assessmentmanikin(BradleyandLang,1994;Boetal.,2021).
2.3. Dataacquisition
2.3.1. EEGdataacquisition
EEGdatawererecordedsimultaneouslywithfMRIusinga32chan- nelMR-compatibleEEGsystem(BrainProductsGmbH).Thirty-onesin- teredAg/AgClelectrodeswereplacedonthescalpaccordingtothe10–
20systemwiththeFCzelectrodeservingasthereference.Anadditional electrodewasplacedonsubject’supperbacktomonitorelectrocardio- gram(ECG);theECGdatawasusedduringdatapreprocessingtoassist intheremovalofthecardioballisticartifacts.EEGsignalwasrecorded withanonline0.1–250Hzband-passfilteranddigitizedto16-bitata samplingrateof5kHz.Toensurethesuccessfulremovalofthegradient artifactsinsubsequentanalyses,theEEGrecordingsystemwassynchro- nizedwiththescanner’sinternalclockthroughoutrecording.
2.3.2. fMRIdataacquisition
FunctionalMRIdatawerecollectedona3TPhilipsAchievascan- ner(PhilipsMedicalSystems).Therecordingparametersareasfollows:
echotime(TE),30ms;repetitiontime(TR),1.98s;flipangle,80°;slice number,36;fieldofview,224mm;voxelsize,3.5∗3.5∗3.5mm;ma- trixsize,64∗64.Sliceswereacquiredinascendingorderandoriented paralleltotheplaneconnectingtheanteriorandposteriorcommissure.
T1-weightedhigh-resolutionstructuralimageswerealsoobtained.
2.4. Datapreprocessing
2.4.1. EEGdatapreprocessing
TheEEGdatawasfirstpreprocessedusingBrainVisionAnalyzer2.0 (BrainProducts GmbH,Germany)toremovegradientandcardiobal- listic artifacts.Toremove gradientartifacts,anartifacttemplatewas
createdbysegmentingandaveragingthedataaccordingtotheonset ofeach volumeandsubtracted fromtherawEEG data(Allenetal., 2000).To remove cardioballisticartifacts, ECGsignal waslow-pass- filtered,andtheRpeaksweredetectedasheart-beatevents(Allenetal., 1998).Adelayedaverageartifacttemplateover21consecutiveheart- beateventswasconstructedusingasliding-windowapproachandsub- tractedfromtheoriginalsignal.Aftergradientandcardioballisticarti- factswereremoved,theEEGdatawerelowpassfilteredwiththecut- off setat50 Hz,downsampled to250 Hz,re-referenced totheaver- agereference,andexportedtoEEGLAB(DelormeandMakeig,2004) forfurtheranalysis.Thesecond-orderblindidentification(SOBI)proce- dure(Belouchranietal.,1993)wasperformedtofurthercorrectforeye blinking,residualcardioballisticartifacts,andmovement-relatedarti- facts.Theartifact-correcteddatawerethenlowpassfilteredat30Hzand epochedfrom−300msto2000mswith0msdenotingpictureonset.The prestimulusbaselinewasdefinedtobe−300msto0ms.
2.4.2. fMRIdatapreprocessing
The fMRI data were preprocessed using SPM (http://www.
fil.ion.ucl.ac.uk/spm/).Thefirstfivevolumesfromeachsessionwere discardedtoeliminatetransientactivity.Slicetimingwascorrectedus- inginterpolationtoaccountfordifferencesinsliceacquisitiontime.The imageswerethencorrectedforheadmovementsbyspatiallyrealigning themtothesixthimageofeachsession,normalizedandregisteredto theMontrealNeurologicalInstitute(MNI)template,andresampledto aspatialresolutionof3mmby3mmby3mm.Thetransformedimages weresmoothedbyaGaussianfilterwithafullwidthathalfmaximumof 8mm.Thelowfrequencytemporaldriftswereremovedfromthefunc- tionalimagesbyapplyingahigh-passfilterwithacutoff frequencyof 1/128Hz.
2.5. MVPAanalysis:EEGdata
2.5.1. EEGdecoding
MVPAanalysiswasdoneusingsupportvectormachine(SVM)im- plementedinMatlab2014LIBSVMtoolbox(ChangandLin,2011).To reducenoiseandincreasedecodingrobustness,5consecutiveEEGdata points(nooverlap)wereaveraged,resultinginasmoothedEEGtimese- rieswithatemporalresolutionof20ms(50Hz).Unpleasantvsneutral scenesandpleasantvsneutralscenesweredecodedwithineachsubject ateachtimepointtoformadecodingaccuracytimeseries.Eachtrial oftheEEGdata(100trialsforeachemotioncategory)wastreatedas asamplefortheclassifier.The31EEGchannelsprovided31features fortheSVMclassifier.Aten-foldcrossvalidationapproachwasapplied.
Theweightvectororweightmapfromtheclassifierwastransformed accordingtoHaufeetal.(2014)anditsabsolutevalueisvisualizedas atopographicalmaptoassesstheimportanceofeachchannelinterms ofitscontributiontothedecodingperformancebetweenaffectiveand neutralpictures.
2.5.2. Temporalgeneralization
Thestabilityoftheneuralrepresentationsevokedbyaffectivescenes wastestedusingageneralizationacrosstime(GAT)method(Kingand Dehaene,2014).Inthismethod,theclassifierwasnotonlytestedon thedatafromthesametimepointatwhichitwastrained,itwasalso testedondatafromallothersamplepoints,yieldingatwo-dimensional temporalgeneralizationmatrix.Thedecodingaccuracyatapointonthis plane(𝑡𝑥,𝑡𝑦)reflectsthedecodingperformanceattime𝑡𝑥oftheclassifier trainedattime𝑡𝑦.
2.5.3. StatisticalsignificancetestingofEEGdecodingandtemporal generalization
Whetherthedecoding accuracywasabove chancewasevaluated bytheWilcoxonsign-ranktest.Specifically,thedecodingaccuracyat eachtimepointwastestedagainst50%(chancelevel).Theresulting pvaluewascorrectedformultiplecomparisonsbycontrollingforthe
falsediscoveryrate(FDR,p<0.05)acrossthetimecourse.Afurther requirementtoreducepossible falsepositivesisthatthesignificance clustercontainsatleastfiveconsecutivesuchsamplepoints.
Thedecodingaccuracywasexpectedtobeatchancelevelpriorto andimmediatelyafterpictureonset.Thetimeatwhichdecodingaccu- racyroseabovechancelevelwastakentobethetimewhentheaffect- specificneuralrepresentationsof affectivescenesformed.Thestatis- ticalsignificanceof thedifferencebetweentheonsettimesofabove- chance-decodingfordifferentdecodingaccuracytimeserieswasevalu- atedbyabootstrapresampleprocedure.Eachresampleconsistedofran- domlypicking20sampledecodingaccuracytimeseriesfrom20subjects withreplacementandabove-chancedecodingonsetwasdeterminedfor thisresample.Theprocedurewasrepeated1000timesandtheonset timesfromalltheresamplesformedadistribution.Thesignificantdif- ferencebetweentwosuchdistributionswasassessedbythetwo-sample Kolmogorov-Smirnovtest.
Totestthestatisticalsignificanceoftemporalgeneralization,wecon- ductedWilcoxsign-ranktestateachpixelinthetemporalgeneraliza- tionmapthedecodingaccuracyagainst50%(chancelevel).Thecor- respondingpvalueiscorrectedformultiplecomparisonsaccordingto FDRp<0.05.Clustersizeisafurthercontrol(>10points).
2.6. MVPAanalysis:fMRIdata
The picture-evokedBOLDactivationwas estimatedon a trial-by- trialbasisusingthebetaseriesmethod(Mumfordetal.,2012).Inthis method,thetrialofinterestwasrepresentedbyaregressor,andallthe othertrialswererepresentedbyanotherregressor.Sixmotionregres- sorswereincludedtoaccountforanymovement-relatedartifactsduring scanning.RepeatingtheprocessforallthetrialsweobtainedtheBOLD responsetoeachpicturepresentationinallbrainvoxels.Thesingle-trial voxelpatternsevokedbypleasant,unpleasant,andneutralpictureswere decodedbetweenpleasantandneutralaswellasbetweenunpleasant andneutralusingaten-foldvalidationprocedurewithintheretinotopic visualcortexdefinedaccordingtoarecentlypublishedprobabilisticvi- sualretinotopicatlas(Wangetal.,2015).Heretheretinotopicvisual cortexconsistedofV1v,V1d,V2v,V2d,V3v,V3d,V3a,V3b,hV4,hMT, VO1,VO2,PHC1,PHC2,LO1,LO2,andIPS.Forsomeanalyses,thevox- elsinalltheseregionswerecombinedtoformasingleROIcalledvisual cortex,whereasforotheranalyses,theseregionsweredividedintoearly, ventral,anddorsalvisualcortex(seebelow).
2.7. FusingEEGandfMRIdataviaRSA
Decodingbetweenaffectivescenesvsneutralscenes,asdescribed above, yields informationon theformation and dynamics of affect- specificneuralrepresentations.Forcomparisonpurposes,wealsoob- tainedtheonsettimeofperceptualorsensoryprocessingofaffective imagesinvisualcortex,whichisexpectedtoprecedetheformationof affect-specificrepresentations,byfusingEEGandfMRIdataviarepre- sentationsimilarityanalysis(RSA)(Kriegeskorteetal.,2008).RSAisa multivariatemethodthatassessestherepresentationalsimilarity(e.g., usingcrosscorrelation)evokedbyasetofstimuliandexpressesthere- sultasarepresentationaldissimilaritymatrix(1-crosscorrelationma- trix)(RDM).CorrelatingthefMRI-basedRDMsfromdifferentROIsand theEEG-basedRDMsfromdifferenttimepoints,onecanobtainthespa- tiotemporalprofileofinformationprocessinginthebrain.
Inthecurrentstudy,foreach trial,31channels ofEEGdataata giventimepointprovideda31-dimensionalfeaturevector,whichwas correlatedwiththe31-dimenstionalfeaturevectorfromanothertrial atthesametimepoint.Forall300trials(60trialspersessionx5ses- sions)a300× 300representationaldissimilaritymatrix(RDM)wascon- structedateachtimepoint.ForfMRIdata,followingthepreviouswork (Boetal., 2021),wedividedthevisualcortexintothree ROIs:early (V1v,V1d,V2v,V2d,V3v,V3d),ventral(VO1,VO2,PHC1,PHC2),and dorsal(IPS0-5)visualcortex.ForeachROI,thefMRIfeaturevectorwas
extractedfromeachtrialandcorrelatedwiththefMRIfeaturevector fromanothertrial,yieldinga300× 300RDMfortheROI.TofuseEEG andfMRI,acorrelationbetweentheEEG-basedRDMateachtimepoint andthefMRI-basedRDMfromaROIwascomputed,andtheresultwas therepresentationalsimilaritytimecoursefortheROI.Thisprocedure wascarriedout atsinglesubject levelfirstandthenaveragedacross subjects.
Wenotethatinourstudy,sinceEEGandfMRIweresimultaneously recorded,thereistrial-to-trialcorrespondencebetweenEEGandfMRI, whichmakessingletrialRSAanalysispossible.SingletriallevelRDMs, bycontainingmorevariability,mayenhancethesensitivityoftheRSA fusionanalysis.InmostpreviousRSAstudiesfusingMEG/EEGandfMRI (e.g.,Cichyetal.,2014;Muukkonenetal.,2020),thesingletrial-based RSAanalysisisnotpossible,becauseMEG/EEGandfMRIwererecorded separatelyandtherewasnotrial-to-trialcorrespondencebetweenthe twotypesofrecordings.Inthosesituations,theonlyavailableoption wastoaveragetrialsfromthesameexemplarorexperimentalcondition andconstructRDMmatriceswhosedimensionequalsthenumberof exemplarsorexperimentalconditions.
ToassesstheonsettimeofsignificantsimilaritybetweenEEGRDM andfMRIRDM,wefirstcomputedthemeanandstandarddeviationof thesimilaritymeasureduringthebaselineperiod(−300msto0ms).
Alongtherepresentationalsimilaritytimecourse,similaritymeasures thatarefivestandarddeviationsabovethebaselinemeanwereconsid- eredstatisticallysignificant(p<0.003).Tofurthercontrolformultiple comparisons,clusterscontainingfewerthanfiveconsecutivesuchtime pointswerediscarded.ForagivenROI,thefirsttimepointthatmeets theabovesignificancecriteriawasconsideredtheonsettimeforper- ceptualorsensoryprocessingforthatROI.Tostatisticallycomparethe onsettimesfromdifferentROIs,weconductedabootstrapresamplepro- cedure.Eachresampleconsistedofrandomlypicking20sampleRDM similaritytimeseriesfromthe20subjectswithreplacementandtheon- settimewasdeterminedfortheresample.Theprocedurewasrepeated 1000timesandtheonsettimesfromalltheresamplesformedadistribu- tion.Thesignificantdifferencebetweendistributionswasthenassessed bythetwo-sampleKolmogorov-Smirnovtest..
3. Results
3.1. Affect-specificneuralrepresentations:formationonsettime
We decoded multivariate EEG patterns evoked by pleasant, un- pleasant,andneutralaffectivescenesandobtainedthedecodingaccu- racytimecoursesforpleasant-vs-neutralandunpleasant-vs-neutral.As showninFig.2A,forpleasantvsneutral,above-chanceleveldecoding began∼200msafterstimulusonset,whereasforunpleasantvsneutral, theonsettimeofabove-chancedecodingwas∼260ms.Usingaboot- strapprocedure,thedistributionsoftheonsettimeswereobtainedand showninFig.2B,wherethedifferencebetweenthetwodistributions wasevident,withpleasant-specificrepresentationsformingsignificantly earlierthanthatofunpleasant-specificrepresentations(ksvalue=0.87, effectsize=1.49,two-sampleKolmogorov-Smirnovtest).Toexamine thecontributionof differentelectrodestothedecodingperformance, Fig.2Cshowstheclassifierweightmapsattheindicatedtimes.These weightmapssuggestedthatneuralactivitiesthatcontributedtoclassi- fierperformancewasmainlylocatedinoccipital-temporalchannels,in agreementwithpriorstudiesusingfMRIwhereenhancedand/ordecod- ableBOLDactivitiesevokedbyaffectivesceneswasobservedinvisual cortexandtemporalstructures(Sabatinellietal.,2006;Sabatinellietal., 2013;Boetal.,2021).
Giventhatabove-chancedecodingstarted∼200postpictureonset, itisunlikelythatthedecodingresultsweredrivenbylow-levelvisual features,whichwouldhaveentailedearlierabove-chancedecodingtime (e.g.,∼100ms).Tofirmupthisnotion,wefurthertestediftherearesys- tematiclowlevelvisualfeaturedifferencesacrossemotioncategories.
LowlevelvisualfeatureswereextractedbyGISTusingamethodfroma
previouspublication(Khoslaetal.,2012).WehypothesizedthatifGIST featuresdependoncategory labels,we shouldbeabletodecodebe- tweendifferentcategoriesbasedonthesefeatures.ASVMclassification analysiswasappliedtoimage-basedGISTfeatures,andthedecoding accuracyisatchancelevel: pleasantvsneutralis49%(p=0.9,ran- dompermutationtest)andunpleasantvsneutralis52.5%(p=0.8,ran- dompermutationtest).Theseresultssuggestthatthedecodingresults inFig.2arenotlikelytobedrivenbylow-levelvisualfeatures.
Dividingthescenesinto6subcategories:eroticcouple,happypeo- ple,mutilationbody/disgust,attack,naturescene/adventure,andneu- tral people,wefurtherdecodedmultivariateEEGpatternsevokedby thesesubcategoriesofimages.Againstneutralpeople,theonsettimes of above-chance decoding for erotic couple, attack, and mutilation body/disgustwere∼180ms,∼280ms,and∼300ms,respectively,with happypeoplenotsignificantlydecodedfromneutralpeople.Theon- settimesweresignificantlydifferentbetweeneroticcoupleandattack witheroticcouplebeingearlier(ksvalue=0.81,effectsize=2.1),and betweeneroticcoupleandmutilationbody/disgustwitheroticcouple beingearlier(ksvalue=0.92,effectsize=2.3).Theonsettimesbe- tweenattack andmutilatedbody/disgustwereonlyweaklydifferent withattackbeingearlier(ksvalue=0.35,effectsize=0.34).Against naturalscenes,theonsettimesofabove-chanceleveldecodingforerotic couple,attack,andmutilationbody/disgustwere∼240ms,∼300ms, and ∼300 ms, respectively, with happy people not significantly de- coded fromnaturalscenes.Theonsettimes weresignificantlydiffer- entbetweeneroticcoupleandattackwitheroticcouplebeingearlier (ksvalue=0.7,effectsize=1.3)andbetweeneroticandmutilation body/disgustwitheroticcouplebeingearlier(ksvalue=0.87,effect size=1.33);theonsettimingswerenotsignificantlydifferentbetween attackandmutilationbody/disgust(ksvalue=0.25,effectsize=0.25).
Combiningthesedata,forsubcategoriesofaffectivescenes,theforma- tiontimeofaffect-specificneuralrepresentationsappeartofollowthe temporalsequence:eroticcouple→attack→mutilationbody/disgust.
Affectivepicturesarecharacterizedalongtwodimensions:valence andarousal.Wetestedtowhatextentthesefactorsinfluencedthedecod- ingresults.Erotic(arousal:6.30,valence:6.87)andDisgust/Mutilation (arousal:6.00,valence:2.18)pictureshavesimilararousal(p=0.76) butsignificantlydifferentvalence(p<0.001).AsshowninFig.3A,the decodingaccuracybetweenthesetwosubcategoriesroseabovechance level∼200msafterpictureonset,suggestingthatthepatternsevoked byaffective scenestoalargeextentreflect valence.Incontrast,nat- uralscenes/adventure(arousal:5.4,valence: 7.0)andneutralpeople (arousal:3.5,valence:5.5)havesignificantlydifferentarousalratings (p=0.05),butthetwosubcategoriescannotbedecoded,asshownin Fig.3B,suggestingthatarousalisnotaverystrongfactordrivingde- codability.
3.2. Affect-specificneuralrepresentations:temporalstability
Howdoaffect-specificneuralrepresentations,onceformed,evolve overtime?Aserialprocessingmodel,inwhichneuralprocessingpro- gressesfromonebrainregiontothenext,wouldpredictthattherepre- sentationswillevolvedynamically,resultinginatemporalgeneraliza- tionmatrixasschematicallyshowninFig.4ALeft.Incontrast,arecur- rentprocessingmodel,inwhichtherepresentationsareundergirdedby therecurrentinteractionsamongdifferentbrainregions,wouldpredict sustainedneuralrepresentations,resultinginatemporalgeneralization matrixasschematicallyshowninFig.4ARight.Weappliedatempo- ralgeneralizationmethodcalledthegeneralizationacrosstime(GAT) totestthesepossibilities.Aclassifierwastrainedondatarecordedat time𝑡𝑦 andtested ondataattime𝑡𝑥.Thedecodingaccuracyisthen displayed asacolor-codedtwo-dimensionalfunction(calledthetem- poralgeneralizationmatrix)ontheplanespannedby𝑡𝑥and𝑡𝑦.Ascan beseeninFig.4B,astableneuralrepresentationemerged∼200msaf- terpictureonsetandremainedstableaslateas2000mspoststimulus onset,withthepeakdecodingaccuracyoccurringwithinthetimein-
Fig.2. DecodingEEGdatabetweenaffectiveandneutralscenesacrosstime.(A)Decodingaccuracytimecourses.(B)Bootstrapdistributionsofabove-chance decodingonsettimes.Subjectsarerandomlyselectedwithreplacementandonsettimewascomputedforeachbootstrapresample(atotalof1000resampleswere considered).(C)Weightmapsshowingthecontributionofdifferentchannelstodecodingperformanceatdifferenttimes.
terval300–800ms.Althoughthedecodingaccuracydecreasedafterthe peaktime,itremainedsignificantlyabovechance,asshownbythelarge areawithintheblackcontour.Theseresultsdemonstratethattheaffect- specificneuralrepresentationsofaffectivescenes,whetherpleasantor unpleasant,arestableandsustainedoverextendedperiodsoftime,sug- gestingthataffectivesceneprocessingcouldbesupportedbyrecurrent interactionsintheengagedneuralcircuits.Repeatingthesametemporal generalizationanalysisforemotionalsubcategories,asshowninFig.5, weobservedsimilarstableneuralrepresentationsforeachemotionsub- category.
3.3. Visualcorticalcontributionstosustainedaffectiverepresentations
WeightmapsinFig.2suggestthatoccipitalandtemporalstructures arethemainneuralsubstrateunderlying affect-specificneuralrepre- sentations,whichisinlinewithpreviousstudiesshowingpatternsof visualcortexactivityencodingrich,category-specificemotionrepresen- tations(Krageletal.,2019;Boetal.,2021).Whetherthesestructures participateintherecurrentinteractionsthatgiverisetosustainedneu-
ralrepresentationsofaffectivesceneswasthequestionweconsidered next.Previouswork,basedontemporalgeneralization,hasshownthat cognitiveoperationssuchasattention,workingmemory,anddecision- makingarecharacterizedbysustainedneuralrepresentations,inwhich sensorycortexisanessentialnodeintherecurrentnetwork(Bücheland Friston,1997;Gazzaleyetal.,2004;Wimmeretal.,2015).Wetested whetherthesameholdstrueinaffectivesceneprocessing.Itisreason- abletoexpectthatifthisisindeedthecase,thenthemorestableand sustainedtheneuralinteractions(measuredbytheEEGtemporalgen- eralization),themoredistincttheneuralrepresentationsinvisualcor- tex(measuredbythefMRIdecodingaccuracyinvisualcortex).Fig.6A shows above-chance fMRIdecoding accuracyfor pleasantvsneutral (p<0.001)andunpleasantvsneutral(p<0.001)invisualcortex.We quantifiedthestrengthofthetemporalgeneralizationmatrixbyaver- agingthedecodingaccuracyinsidetheblackcontour(seeFig.4B)and correlatedthisstrengthwiththefMRIdecodingaccuracyinvisualcor- tex.AsshowninFig.6B,forunpleasantvsneutraldecoding,therewas asignificantcorrelationbetweenfMRIdecodingaccuracyinvisualcor- texandthestrengthoftemporalgeneralization(R=0.66,p=0.0008),
Fig.3. Furtherdecodinganalysistestingtheinfluenceofvalencevsarousal.(A)EEGdecodingbetweenErotic(normativevalence:6.87,arousal:6.30)vsDis- gust/Mutilationpictures(normativevalence:2.18,arousal:6.00).Redhorizontalbarindicatesperiodofabovechancedecoding(FDRp<0.05).(B)EEGdecoding betweenNeutralpeople(normativevalence:5.5,arousal:3.5)vsNaturalscenes/adventure(normativevalence:7.0,arousal:5.4).Abovechanceleveldecodingis notfound.
whereasforpleasantvsneutraldecoding,thecorrelationisnotasstrong butis stillmarginallysignificant(R= 0.32,p=0.07). Dividingsub- jectsintohighandlowdecodingaccuracygroupbasedontheirfMRI decodingaccuraciesinthevisualcortex,thecorrespondingtemporal generalizationforeachgroupisshowninFig.6C,whereitisagainin- tuitivelyclearthattemporalgeneralizationisstrongerinsubjectswith higherdecodingaccuracyinthevisualcortex.Statistically,thestrength oftemporalgeneralizationforunpleasantvsneutralwassignificantly largerinthehighdecodingaccuracygroup(p=0.01)thanthelowac- curacygroup;thesamewasalsoobservedforpleasantvsneutralbutthe statisticaleffectisagainweaker(p=0.065).Wenotethatthemethod usedheretoquantifythestrengthoftemporalgeneralizationmaybe influencedbythelevelofdecodingaccuracy.IntheSupplementaryMa- terialswe exploredadifferentmethodof quantifyingthestrengthof temporalgeneralizationandobtainedsimilarresults(Fig.S5).
3.4. Onsettimeofperceptualprocessingofaffectivescenes
Pastworkhasfoundthatperceptualprocessingofsimplevisualob- jectsbegins∼100msafterimageonsetin visualcortex(Cichyetal., 2016).Thistimeisearlierthantheonsettimeofaffect-specificneural representations(∼200ms).Sincethepresentstudyusedcomplexvisual scenesratherthansimplevisualobjectsasstimuli,itwouldbehelpfulto obtaininformationontheonsettimeofperceptualprocessingofthese compleximages,providingareferenceforcomparison.Wefusedsimul- taneousEEG-fMRIdatausingrepresentationalsimilarityanalysis(RSA) (Cichyetal.,2016;CichyandTeng,2017)andcomputedthetimeat whichvisualprocessingofIAPSimagesbeganinvisualcortex.Visual cortexwassubdividedintoearly,ventral,anddorsalparts(seeMeth- ods).TheiranatomicallocationsareshowninFig.7A.Wefoundthat sharedvariancebetweenEEGrecordedonthescalpandfMRIrecorded fromearlyvisualcortex(EVC),ventral visualcortex(VVC),anddor- salvisualcortex(DVC)begantoexceedstatisticalsignificancelevelat
∼80ms,∼100ms,and∼360mspostpictureonset,respectively,and remainedsignificantuntil∼1800ms;seeFig.7B.Theseonsettimesare significantlydifferent fromone anotheraccordingtotheKStestap- pliedtobootstrapgeneratedonsettimedistributions:EVC<VVC(ks value=0.21,effectsize=0.37),VVC<DVC(ksvalue=0.75,effect size=1.38),andEVC<DVC(kstest=0.79,effectsize=1.79);see Fig.7C.
Anadditionalanalysiswasconductedtotesttheinfluenceoflow- levelvisualfeaturesontheRSAresults(Groenetal.,2018;Grootswagers etal.,2020).Specifically,wecomputedpartialcorrelationbetweenEEG RDMandfMRIRDMwhilecontrollingfortheeffectoflow-levelfeature RDM.LowlevelfeatureswereextractedbyGISTusingamethodfrom apreviouspublication(Khoslaetal.,2012).300×300GISTRDMwas constructedinasimilarwayasEEGandfMRIRDMs.IfGISTisanim- portantfactordrivingthesimilaritybetweenEEGRDMandfMRIRDM, itwillhaveasignificantcontributiontoEEGRDM-fMRIRDMcorrela- tion,andcontrollingforthiscontributionwouldreduceEEGRDM-fMRI RDMcorrelation.Ascanbe seen,theresultsin Fig.7D,E,wherethe partialcorrelationresultsareshown,arealmostthesameasFig.7B,C, suggestingthatlow-levelfeaturesarenotanimportantfactordriving theRSAresult.
Furthermore,we soughttoexamineifaffect featuresarea factor driving theRSA result.A300×300 emotion-categoryRDMwas con- structed.Specifically,iftwotrialsbelongtothesameemotioncategory, thecorrespondingelementinRDMiscodedas‘0,’otherwiseitiscoded as‘1’.Fig.7FshowedthatthiscategoricalRDMbecomescorrelatedwith EEGRDM∼240mspostpictureonset,whichagreeswiththeonsettime ofaffect-specificrepresentationsfromEEGdecoding,suggestingthatthe EEGpatternsbeyond∼240msmanifestedtheemotionalcontentofaf- fectivescenes.
4. Discussion
Weinvestigatedthetemporaldynamicsofaffectivesceneprocessing andreportedfourmainobservations.First,EEGpatternsevokedbyboth pleasantandunpleasantscenesweredistinctfromthoseevokedbyneu- tralscenes,withabove-chancedecodingoccurring∼200mspostimage onset.Theformationofpleasant-specificneuralrepresentationsledthat ofunpleasant-specificneuralrepresentationsbyabout60ms(∼200ms vs∼260ms);thepeakdecodingaccuracieswereaboutthesame(59%vs 58%).Second,dividingaffectivescenesintosixsubcategories,theonset ofabove-chancedecodingbetweenaffectiveandneutralscenesfollowed thesequence:eroticcouple(∼210ms)→attack(∼290ms)→mutilation body/disgust(∼300ms),suggestingthatthespeedatwhichneuralrep- resentationsformdependsonspecificpicturecontent.Third,forboth pleasantandunpleasant scenes,theneuralrepresentationsweresus- tainedratherthantransient,andthestabilityoftherepresentationswas associatedwiththefMRIdecodingaccuracyinthevisualcortex,sug-
Fig.4. Temporalgeneralizationanalysis.Classifiertrainedateachtimepointwastestedonallothertimepointsinthetimeseries.Thedecodingaccuracyata pointonthisplanereflectstheperformanceattime𝑡𝑥oftheclassifiertrainedattime𝑡𝑦.(A)Schematictemporalgeneralizationsofdynamicortransient(Left)vs sustainedorstable(Right)neuralrepresentations.(B)Temporalgeneralizationfordecodingbetweenpleasantvsneutral(Left)andbetweenunpleasantvsneutral (Right).Wilcoxsign-ranktestappliedateachpixelinthetemporalgeneralizationmaptotestthesignificanceofdecodingaccuracyagainst50%(chancelevel).The correspondingpvalueiscorrectedformultiplecomparisonsaccordingtoFDRp<0.05.Clustersizeisfurthercontrolled(>10points).Backcontoursenclosepixels withabovechancedecodingaccuracy.
gesting,albeitindirectly,aroleofvisualcortexin therecurrentneu- ralnetworkthatsupportstheaffectiverepresentations.Fourth,apply- ingRSAtofuseEEGandfMRI,perceptualprocessingofcomplexvisual sceneswasfoundtostartinearlyvisualcortex∼80mspostimageonset, precedingtoventralvisualcortexat∼100ms.
4.1. Formationofaffect-specificneuralrepresentations
Thequestionofhowlongittakesforaffect-specificneuralrepre- sentations to form hasbeen considered in the past. Anintracranial electroencephalographystudyreportedenhancementofgammaoscil- lationsforemotionalpicturescomparedtoneutralpicturesinoccipital- temporallobeinthetimeperiodof200–1000ms(Boucheretal.,2015).
Inourdata,the∼200msonsetofabove-chancedecodingand∼500ms occurrenceofpeakdecodingaccuracy,withthemaincontributiontode- codingperformancecomingfromoccipitalandtemporalelectrodes,are consistentwiththepreviousreport.Comparedtononaffectiveimages suchasfaces,housesandscenes,wheredecodabledifferencesinneural representationsinvisualcortexstartedtoemerge∼100mspoststim- ulusonsetwithpeakdecodingaccuracyoccurringat∼150ms(Cichy etal.,2016;Cauchoixetal.,2014),theformationtimesoftheseaffect-
specificrepresentationsappeartobequitelate.Fromatheoreticalpoint ofview,thisdelaymaybeexplainedbythereentryhypothesiswhich holdsthatanterioremotionregionssuchastheamygdalaandthepre- frontalcortex,uponreceivingsensoryinput,sendfeedbacksignalsto visualcortextoenhancesensoryprocessingandfacilitatemotivatedat- tention(LangandBradley,2010).InarecentfMRI study(Boetal., 2021),wefoundthatscenesexpressingdifferentaffectcanbedecoded frommultivoxelpatternsintheretinotopicvisualcortexandthedecod- ingaccuracyiscorrelatedwiththeeffectiveconnectivityfromanterior regions tovisualcortex,inagreementwiththehypothesis.Whathas notbeenestablishedishowlongittakesforthereentrysignalstoreach visualcortex.Toprovideareferencetimeforaddressingthisquestion.
wefusedEEGandfMRIdataviaRSAandfoundthatsensoryprocessing ofcomplexvisualscenessuchasthosecontainedIAPSpicturesbegan
∼100mspostpicture onset.This gaveusanestimate ofthereentry timewhichisontheorderof∼100msorshorter.Wecautionthatthese estimatesaresomewhatspeculativeasourinferencesaremaderather indirectly.
UnivariateERPanalysis,presentedintheSupplementaryMaterials, wasalsocarriedtoprovideadditionalinsights.Fourgroupsofelectrodes centeredonOz,Cz,Pz,andFzwerechosenasROIs.ERPsevokedby affectivepicturesandneutralpictureswerecontrastedateachROI.At
Fig.5.Temporalgeneralizationanalysisforsubcategoriesofaffectivescenes.(A)Decodingemotionsubcategoriesagainstneutralpeople.(B)Decodingemotion subcategoriesagainstnaturalscenes.SeeFigure4forexplanationofnotations.
Cz,thedifferenceERPwavesbetweenpleasantvsneutralshowedclear activationstartingat∼172ms,whereasforunpleasantvsneutral,the activationstartedat∼200ms,bothingeneralagreementwiththetiming informationobtainedfromMVPAanalysis.
Theforegoing indicatesthatpleasantscenesevokedearlieraffect- specificrepresentationsthanunpleasantscenes.Thispositivitybiasap- pearstobeatvariancewiththenegativitybiasidea,whichholdsthat negativeeventselicitmorerapidandstrongerresponsescomparedto pleasantevents(RozinandRoyzman,2001;Vaishetal.,2008).While theideahasreceivedsupportinbehavioraldata,e.g.,subjectstendtolo- cateunpleasantfacesamongpleasantdistractorsinshortertimethanthe reverse(Öhmanetal.,2001),theneurophysiologicalsupportismixed.
Somestudiesusingaffectivepictureviewingparadigmsreportedshorter ERPlatencyandlargerERPamplitudeforunpleasantpicturescompared topleasantonesincentralP2andlatepositivepotential(LPP)(Carretié etal.,2001;HuangandLuo,2006),butotherERPstudiesfoundthat positivesceneprocessingcanbeasstrongandasfastasnegativescene processingwhenexaminingearlyposteriornegativity(EPN)inoccipi- talchannels(Schuppetal.,2006;Frankenetal.,2008;Weinbergand Hajcak,2010).Onepossibleexplanationforthediscrepancymightbe thechoiceofstimuli.Theinclusionofexcitingandsportsimages,which havehighvalencebutaveragearousal,asstimuliinthepleasantcate- goryweakensthepleasantERPeffectswhencomparedagainstthreat- eningscenesincludedintheunpleasantcategorywhichhavebothlow valenceandhigharousal(WeinbergandHajcak,2010).Inthepresent work,byincludingimagessuchaseroticaandaffiliativehappyscenes inthepleasantcategory,whichhavecomparablearousalratingsasim- agesincludedintheunpleasantcategory,wewereabletomitigatethe possibleissuesassociatedwithstimulusselection.Otherexplanations neededtobesought.
Subdividingtheimagesinto6subcategories:eroticcouples,happy people,mutilationbody/disgust,attackscene,neutralscene,andneu-
tralpeople, anddecodingtheemotionsubcategoriesagainsttheneu- tral subcategories, we found the following temporal sequence of formation of neuralrepresentations: erotic couple (pleasant)→attack (unpleasant)→mutilationbody/disgust (unpleasant),with happypeo- ple failing to be decoded from neutralimages. This findingcan be seen as providing neural support toprevious electrodermal findings showing thateroticscenesevokedlargestresponseswithinIAPS pic- tures,whichwasfollowedbymutilationandthreatscenes(Sarloetal., 2005), suggesting the temporal dynamic of emotion processing de- pends on specificscene content.It alsosupports a behavioral study thatfoundafastdiscriminationoferoticpictures comparedtoother categories, assessed using choice and simple response time experi- ments, using thesamepictures asused here (Thigpen et al., 2018).
In a neural study of nude body processing (Alho et al. 2015), the authors reportedanearly100–200 ms nude-bodysensitiveresponse in primary visual cortex, which was maintained in a later period (200–300 ms). Their consistent occipitotemporal activation is com- parable with our weight map analysis which implicates the occipi- totemporalcortexasthemainneuralsubstratesustainingtheaffective representations.
Thefaster discriminationbetween eroticscenesvsneutralpeople compared toeroticscenesvsnaturalscenesis worthdiscussing.One possibility is thattheneutralpeople category haslowerarousal rat- ings(3.458)comparedtonaturalscenes(5.42)andarousalinfluences decodability.Inaddition,comparingdiscriminationperformanceand ERPsforpictureswithnopeopleversuspictureswithpeople,Ihssenand Keil(2013)foundnoevidencethataffectivesubcategories withpeo- plewerebetterdiscriminatedagainstsubcategorieswithobjectsthan subcategorieswithpeople.Instead,aface/portraitcategorywasmost rapidlydiscriminated whenusing ago/no-goformat forresponding.
Despitethesimilarities,theexactmechanismsunderlyingourdecoding findings,remaintobebetterunderstood.
Fig.6. Visualcorticalcontributiontostablerepresentationsofaffect.(A)fMRIdecodingaccuracyinvisualcortex.p<0.05thresholdindicatedbythedashedline.
(B)CorrelationbetweenstrengthofEEGtemporalgeneralizationandfMRIdecodingaccuracyinvisualcortex.(C)Subjectsaredividedintotwogroupsaccordingto theirfMRIdecodingaccuracyinvisualcortex.Temporalgeneralizationforunpleasantvsneutral(Upper)andpleasantvsneutral(Lower)wasshownforeachgroup (highaccuracygroupontheLeftvslowaccuracygroupontheRight).Blackcontoursoutlinethestatisticallysignificantpixels(p<0.05,FDR).
Fig.7.Representationalsimilarityanalysis(RSA).(A)Regionsofinterest(ROIs):earlyvisualcortex(EVC),ventralvisualcortex(VVC),anddorsalvisualcortex (DVC).(B)SimilaritybetweenEEGRDMandfMRIRDMacrosstimeforthethreeROIs.Similaritylargerthanfivebaselinestandarddeviationsformorethan5 consecutivetimepointsaremarkedasstatisticallysignificant.(C)OnsettimeofsignificantsimilarityforeachROIinB.∗Smalleffectsize.∗∗∗Largeeffectsize.(D) PartialcorrelationbetweenEEGRDMandfMRIRDMwithGISTRDMbeingsetascontrolvariable.(E)OnsettimeofsignificantsimilarityforeachROIinD.(F) TimecourseofsimilaritybetweenEEGRDMandemotioncategoryRDM.
4.2. Temporalevolutionofneuralrepresentationsofaffectivescenes
Oncetheaffect-specificneuralrepresentationsform,howdothese representationsevolveovertime?Ifemotionprocessingissequential, namely,ifitprogressesfromonebrainregiontothenextastimepasses, wewouldexpectdynamicallyevolvingneuralpatterns. Ontheother hand,iftheemotionalstateisstableovertimeundergirdedbyrecurrent processingindistributedbrainnetworks,wewouldexpectasustained neuralpattern.Atechniquefortestingthesepossibilitiesisthetemporal generalizationmethod(KingandDehaene,2014).Inthismethod,aclas- sifiertrainedondataatonetimeisappliedtodecodedatafromallother times,resultingin a2Dplotofdecoding accuracycalled thetempo- ralgeneralizationmatrix.Paststudiesdecodingbetweennon-emotional imagessuch asneutralfaces vs objectshave founda transienttem- poralgeneralizationpattern(Carlsonetal.,2013;Cichyetal., 2014; Kaiseretal.,2016),supportingasequentialprocessingmodelforob- jectrecognition(Carlsonetal.,2013).Thetemporalgeneralizationre- sultsfromourdatarevealedthattheneuralrepresentationsofaffective scenesarestableoverawidetimewindow(∼200msto2000ms).Such stablerepresentationsmaybemaintainedbysustainedmotivationalat- tention,triggeredbyaffectivecontent(Schuppetal.,2004;Hajcaketal., 2009),whichcouldinturnbesupportedbyrecurrentinteractionsbe- tweensensorycortexandanterioremotionstructures(Keiletal.,2009; Sabatinellietal.,2009;LangandBradley2010).Inaddition,thetime windowin whichsustainrepresentationswerefoundis broadlycon- sistentwithpreviousERPstudieswhereelevatedLPPlastedmultiple seconds,extendingevenbeyondtheoffsetofthestimuli(FotiandHaj- cak,2008;Hajcaketal.,2009).
4.3. Roleofvisualcortexinsustainedneuralrepresentationsofaffective scenes
Thevisualcortex,inadditiontoitsroleinprocessingperceptualin- formation,isalsoexpectedtoplayanactiveroleinsustainingaffective representations,becausethepurposeofsustained motivationalatten- tionistoenhancevigilancetowardsthreatsoropportunitiesinthevi- sualenvironment(LangandBradley,2010).Thesensorycortex’srole in sustainedneuralcomputationshasbeen shownin othercognitive paradigms,includingdecision-making(Mostertetal.,2015),wheresta- bleneuralrepresentationsareshowntobesupportedbythereciprocal interactionsbetweenprefrontaldecisionstructuresandsensorycortex.
Infaceperceptionandimagery,neuralrepresentationsarealsofoundto bestableandsustainedbycommunicationsbetweenhighandloworder visualcortices(Dijkstraetal.,2018).Inourdata,twolinesofevidence appeartosupportasustainedroleofvisualcortexinemotionrepresenta- tion.First,overanextendedtimeperiod,theweightmapsobtainedfrom EEGclassifierswerecomprisedofchannelslocatedmainlyinoccipital- temporalareas.Second,iftheemotion-specificneuralrepresentationsin thevisualcortexstemfromtherecurrentprocessingwithindistributed networks,thenthestrongerandlongertheseinteractions,thestronger andmoredistincttheaffectiverepresentationsinvisualcortex.Thisis supportedbythefindingthatthestrengthoftemporalgeneralizationis correlatedwiththefMRIdecodingaccuracyinvisualcortex.
4.4. Temporaldynamicofsensoryprocessinginvisualpathway
The temporal dynamics of sensory processing of complex visual scenes can be revealed by fusing EEG-fMRI using RSA. The results showedthatvisualprocessingofIAPSimagesstarted∼80mspostpic- tureonsetinearlyvisualcortex(EVC)andproceededtoventralvisual cortex(VVC)at∼100ms.Itisinstructivetocomparethistimingin- formationwithapreviousERPstudywhereitisfoundthatduringthe recognitionofnaturalscenes,thelow-levelfeaturesarebestexplained bytheERPcomponentoccurring∼90mspostpictureonsetwhilehigh- levelfeatures arebest representedby theERPcomponentoccurring
∼170msafterpictureonset(GreeneandHansen,2020).Comparedwith
the∼100msstarttimeofperceptualprocessingin visualcortex,the
∼200msformationonsetofaffect-specificneuralrepresentationslikely includesthetimeittookforthereentrysignalstotravelfromemotion processingstructuressuchastheamygdalaortheprefrontalcortexto thevisualcortex(seebelow),whichthengiverisetotheaffect-specific representationsseenintheoccipital-temporalchannels.Thedorsalvi- sualcortex(DVC),abrainregionimportantforactionandmovement preparation(WandellandWinawer,2011),is activated at∼360ms, which isrelativelylateandmayreflecttheprocessingof actionpre- dispositionsresultingfromaffectiveperceptions.Thissequenceoftem- poralactivityis consistentwiththatestablishedpreviouslyusing the fast-fMRImethodwhereearlyvisualcortexactivationprecededventral visualcortexactivationwhichprecededdorsalvisualcortexactivation (Sabatinellietal.,2014).
ItisworthnotingtheRSAsimilaritytimecoursesinallthreevisual ROIsstayedhighlyactivated forarelativelylongtimeperiod,which maybetakenasfurtherevidence,alongwiththetemporalgeneraliza- tionanalysis, tosupportsustained neuralrepresentationsofaffective scenes.Fromamethodologicalpointofview,theRSAdiffersfromthe decodinganalysisinthatdecodinganalysiscapturesaffect-specificdis- tinctionbetweenneuralrepresentations,whereastheRSAfusingofEEG- fMRIissensitivetoevokedpatternsimilaritysharedbyEEGandfMRI imagingmodalities,withearlyeffectslikelydrivenbysensorypercep- tualprocessingandlateeffectsbybothsensoryandaffectiveprocessing.
4.5. Beyondthevisualcortex
Thevisualcortexisnottheonlybrainregionactivatedbyaffective scenes.IntheSupplementaryMaterials,weperformeda whole-brain decodinganalysisoffMRIdata(Fig.S1),andfoundabove-chancede- codinginmanyareasinprefrontal,limbic,aswellasoccipital-temporal cortices.Interestingly,thestrongestdecodingwasfoundintheoccipital- temporalareas,lendingsupporttoourfocusonthevisualcortex.Shed- dinglightonthetimingoftheseactivations,apreviousEEGsourcelo- calizationstudyreportedthataffect-relatedactivationbegantoappear in visualcortex, prefrontalcortexandlimbicsystems∼200 msafter stimulusonset(Costaetal.,2014),complementingourfMRIanalysis andthefMRIanalysisbyothers(Saarimäkietal.,2016).FusingEEG andfMRIwithRSA,wefurthertestedthetemporaldynamicsinseveral emotion-modulatingstructures,includingamygdala,dACC,anteriorin- sula,andfusiformcortex.AsshowninFig.S3,visualinputreachedthe amygdala∼100mspostpictureonset,whichiscomparablewiththeac- tivationtimeofearlyvisualcortex.Asimilaractivationtimehasbeen reportedinapreviousintracranialelectrophysiologicalstudy(Méndez- Bértoloetal.,2016).EarlyactivationwasalsofoundindACC.Despite these earlyarrivalsof visual input,ittakes longerfor affect-specific signalstoarise,however.Recordingfromsingleneurons,Wangetal.
showedthat ittakes∼250msfortheemotionaljudgementsignalof facestoemergein theamygdala (Wangetal.,2014).Itisintriguing tonotethatthe∼100msdifferencebetweenthearrivalofvisualinput andtheemergenceofaffect-specificactivityissimilartooursuggested reentrytimeof∼100ms.
4.6. Limitations
Thisstudyisnotwithoutlimitations.First,thesuggestionthatsus- tainedaffectiverepresentationsaresupportedbyrecurrentneuralin- teractions isspeculative andbased onindirectevidence, aswehave alreadyacknowledgedabove.Second,weusedcrosscorrelationtocon- structRDMs.Apreviousstudyhasshownthatadecoding-basedanal- ysis leadstomorereliableRDMs(Guggenmosetal., 2018).Unfortu- nately,this methodisnotapplicable toourdata,becausewedonot haveenoughrepetitionsforeachpicture(fivetimes)topermitareli- abledecodingaccuracyforeverypairofpictures.Third,theinclusion ofadventurescenes,whichcontainhumans(smallinsizerelativetothe overallimage),whileprovidingamorerelevant,interestinggroupof