ESTIMATION THEORY
September 2010
Instructor: Jang Gyu Lee
Introduction
1
( )
1Find the best estimate from the measurements of the formˆ where is a rando
Problem:
(1). The fi
m proc rst me
ess.
asurement:
x z
t w
z w
x w
= x
=
+ +
( )
1 1ˆ
x t = z
( )
22 t σ
σ =
Introduction (continued)
2 2 1
(2). The second measurement: , z t ≅ t
( )
[ ] [ ]
22 2
2 1
2 2
2 / /( )
2 1
1 2
1
2 z z z z z z z
z σ σ σ σ σ
σ
μ = + + +
(
2) (
2)
2
2
1 1/
/ 1 /
1 σ = σz + σz
( ) [ ( ) ] [ ]
22 2
2 1
2 2
2
2 / /( )
2 1
1 2
1
2 z z
t
x = μ = σz σz +σz + σz σz +σz
( )
[ ] (
2 1)
2 2
2
1 1 / 1 2 z z
z + z z + z −
= σ σ σ
( )1 ( )2 2 ( )1
ˆ =Predictor + Corrector
x t K t ⎡z x t ⎤
= + ⎢⎣ − ⎥⎦
( )
2 2( )
1( ) ( )
2 2 12 t x t K t x t
x σ σ
σ = −
Introduction (continued)
( ) ( )
3 3 3
(3). The third measurement: ; dx
z x t w t u w
= + dt = +
( )
3( )
2(
3 2)
ˆ
x t − = x t +u t −t
( ) ( ) (
3 2)
22 2 3
2 t x t w t t
x − =σ +σ −
σ
( ) ( )
t3+ = x t3− + K( )
t3[
z3 − x( )
t3−]
x
( )
+ =( )
− −( ) ( )
3− 2 3 32 3
2 t x t K t x t
x σ σ
σ
( ) ( ) [ ( )
3 2]
2 3
2
3 x t / x t z3
t
K =σ − σ − +σ
( )
( ) ( )
3
2
3
2 2
As , 0.
As , and 1.
z K t
t K t
σ
σ σ −
→ ∞ =
→ ∞ → ∞ =
Chapter 1
Linear Systems Theory
Matrix Algebra
Suppose that is an matrix and is an matrix. Then the product of and is written as . Each element in the matrix p
(1). Matrix Multiplica
roduct is computed as
n tio
A n r B r p
A B C AB C
× ×
=
1
1
2 2
1 1
; 1, , ; 1, , . (1.13) In general, . (no commutability)
Inner Product:
(2). Vector Product
.
Outer Prod
s
r
ij ik kj
k
T
n n
n
C A B i n j p
AB BA
x
x x x x x x
x
=
= = =
≠
⎡ ⎤⎢ ⎥
⎡ ⎤ ⎢ ⎥
= ⎢⎣ ⎥⎦ ⎢ ⎥⎢ ⎥ = + +
⎢ ⎥⎣ ⎦
∑
" "" # "
2
1 1 1
1
2
1 1
uct: . (1.14)
n T
n
n n
x x x x
xx x x
x x x x
⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎡ ⎤ ⎢ ⎥
= ⎢ ⎥ ⎢⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎥⎦ = ⎢⎢⎢⎣ ⎥⎥⎥⎦
"
# " # % #
"
Matrix Algebra (continued)
1
is nonsingular.
exists.
The rank of is equal to .
The rows of are linearly independent.
The columns of are linearly (3). Rank and Nonsingularity of
i
( )
A A
A
A
A
A
n
n
n
−
•
•
•
×
•
=
•
( )
ndependent.
0.
has a unique solution for all . 0 is not an eigenvalue of .
(4). Trace of a square matrix:
Note that ( ) ( ),
)
,
(
T T
i
T
i i
A
Ax b x
Tr A
b A
Tr AB Tr BA AB
A
B A
• ≠
• =
•
=
=
=
∑
( ) 1 1 1
AB − = B A− − .
Matrix Algebra (continued)
is:
Positive definite if 0 for all nonzero 1 vectors . This is equivalent to
(5). Defini
saying that all of the eigenvalues of are o teness of a Symmet
isutu ric matrix
ve r
T
n n A
x A x
A
x n
A
• > ×
×
eak numbers. If is positive definite, then is also positive definite.
Positive semidefinite if 0.
Negative definite if 0.
Negative semidefinite if 0.
Indefinite
T T
T
A
x Ax x Ax
x Ax
• ≥
• <
• ≤
• if it does not fit into any of the above four caregories.
Suppose we have the partitioned matrix where and are invertible square matrices, and
(6). Matrix
the a Inversion Le
n mma
A B
A D
C D B
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
(
1)
1 1 1(
1)
1 1d matrices may or may not be square. Then,
. (1.38)
C
A BD C− − − = A− +A B D CA B− − − − CA−
Matrix Calculus
( )
( )
( )
( ) ( ) ( ) [ ] ( )
( ) ( )
1
11 1
1
1 1
(1). .
/ /
(2). ; , 1, , , 1, , .
/ /
(3). / / ; .
(4). ;
n
n
ij
m mn
T T
T T T T
n n
T T
T T T
f x f f
x x x
f A f A
f A A A i m j n
A f A f A
x y x y
x y x x y x y y y x
x y
x Ax x Ax
x A x A x
⎡ ⎤
∂∂ = ⎢⎢⎣∂∂ ∂∂ ⎥⎥⎦
⎡∂ ∂ ∂ ∂ ⎤
⎢ ⎥
∂ ⎢ ⎥
= ⎢ ⎥ = = =
⎢ ⎥
∂ ⎢⎢⎣∂ ∂ ∂ ∂ ⎥⎥⎦
∂ ∂ = ∂⎡⎢⎣ ∂ ∂ ∂ ⎤⎥⎦ = = ∂ ∂ =
∂ ∂
= +
∂ ∂
"
"
# % # " "
"
" "
( )
( )
( ) ( )
2 if .
(5). ; .
(6). ; 2 , if .
T T
T
T T
T T
x A A A x
Ax x A
A A
x x
Tr ABA Tr ABA
AB AB AB B B
A A
= =
∂ ∂
= =
∂ ∂
∂ ∂
= + = =
∂ ∂
Continuous, Deterministic Linear Systems
( )
( )
( )( )
( )
0
0
0
0 1 1
Models
Solution
( ) ( )
!
= .
A t t t A t
t j
At j
x Ax Bu y Cx
x t e x t e Bu d
e At
j
sI A
τ τ τ
− −
∞
=
− −
= +
=
= +
=
⎡ − ⎤
⎢ ⎥
⎣ ⎦
∫
∑
L
Nonlinear Systems
( )
( )
( ) ( ) ( )
2 3
2 3
2 3
1 1
Models
Linearized Models Employing the Taylor Series Expansio , ,
, (1.83)
1 1
2! 3!
n
x x x
n
x f x u w y h x v
f f f
f x f x x x x
x x x
f x x x
x x
=
=
∂ ∂ ∂
= + + + +
∂ ∂ ∂
∂ ∂
= + + +
∂ ∂
"
" ( )
( )
( )
2 1
1
3 1
1
1 2!
1 3!
n x
n
n x
n
n x
f x
x x f x
x x
x x f x
x x
⎛ ⎞⎟
⎜ ⎟ +
⎜ ⎟
⎜ ⎟
⎜⎝ ⎠
⎛ ∂ ∂ ⎟⎞
⎜ + + ⎟ +
⎜ ⎟
⎜ ⎟
⎜ ∂ ∂
⎝ ⎠
⎛ ∂ ∂ ⎟⎞
⎜ + + ⎟ +
⎜ ⎟
⎜ ⎟
⎜ ∂ ∂
⎝ ⎠
"
" "
Nonlinear Systems (continued)
( ) ( ) ( )
( ) ( ) ( )
( )
( )
2 3
1
1 1
2! 3!
(1.90)
Applying Eq. (1.90) into Eq. (1.83) , ,
, ,
k k k
x x x x i
i i
x
x
x
f x f x D f D f D f D f x f x
x f x D f f x f x f x Ax
x
x f x u w f x u w
=
⎛ ⎛ ⎞ ⎞⎟
⎜ ∂ ⎟ ⎟
⎜ ⎜ ⎟
= + + + + ⎜⎜⎜⎜⎝ =⎜⎜⎜⎝ ∂ ⎟⎟⎟⎠ ⎟⎟⎟⎠
≈ + = + ∂ = +
∂
=
≈
∑
"
( ) ( ) ( )
( )
.
. Say, 0 (1.93) Similarly,
. (1.94)
x u w
x v
f f f
x x u u w w
x u w
x Ax Bu Lw
x Ax Bu Lw w
h h
y x v
x v
Cx Dv
∂ ∂ ∂
+ − + − + −
∂ ∂ ∂
= + + +
= + + =
∂ ∂
= +
∂ ∂
= +
Simulation/Trapezoidal Integration
( )
( ) ( )
[ ( ) ( ) ]( )
[ ( ) ( ) ][ ]
( ) ( )
0
1
0
0
0
1
We want to numerically solve the state equation, , , .
, ,
, , where =k for 0, , and / .
For some 0, 1 , we can write and as
f
k k
t
f t
L t
k f
k t
n n
x f x u t x t x t f x t u t t dt
x t f x t u t t dt t T k L T t L
n L x t x t
x t
+
=
+
=
= +
= + = =
∈ −
∫
∑ ∫
"
( ) ( )
[ ( ) ( ) ]( ) ( )
[ ( ) ( ) ]( )
[ ( ) ( ) ]1
1
1
0
0 1
1 0
0
, ,
, ,
, , . (1.110)
k k
k
k n n
n t
n k t
n t
n t
k t
n t
x t f x t u t t dt x t x t f x t u t t dt
x t f x t u t t dt
+
+
+
= + +
=
= +
= +
= +
∑ ∫
∑ ∫
∫
Simulation/Trapezoidal Integration (continued)
( )
(
( ) ( )) (
( ) ( )) (
( ) ( ))
( ) [ ]
( ) ( )
(
( ) ( )) (
( ) ( )) (
( ) ( ))
1 1 1
1
1 1 1
1
Approximate the integral in Eq. (1.110) as a trapezoid
, , , ,
, , , , for ,
, , , ,
, ,
n n n n n n
n n n n n n
n n n n n n
n n n n n
f x t u t t f x t u t t
f x u t f x t u t t t t t t t
T
f x t u t t f x t u t t
x t x t f x t u t t
T
+ + +
+
+ + +
+
⎛ − ⎞⎟
⎜ ⎟
≈ +⎜⎜⎜⎜⎝ ⎟⎟⎟⎠ − ∈
⎛ − ⎞⎟
⎜ ⎟
≈ + +⎜⎜⎜⎜⎝ ⎟⎟⎠( )
( )
(
( ) ( )) (
( ) ( ))
( )
( (
( ) ( )) (
( ) ( )) )
( ) ( )
( )
1
1 1 1
1 1 1
1
, , , ,
2
1 , , , , (1.114)
2 Defining
, ,
n n
t t n
n n n n n n
n
n n n n n n n
n n n
t t dt
f x t u t t f x t u t t
x t T
x t f x t u t t T f x t u t t T
x f x t u t t T x
+
+ + +
+ + +
⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ − ⎪
⎨ ⎬
⎪ ⎟ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭
⎛ + ⎞⎟
⎜ ⎟
= +⎜⎜⎜⎜⎝ ⎟⎟⎟⎠
= + +
=
∫
+
+
(
( ) ( ))
( ) ( )
( )
( ) ( ) ( )
2 1 1 1
1 1 1
1 1 2
, ,
, , ,
Eq. (1.114) may be expressed by
1 . (1.115) 2
n n n
n n n
n n
f x t u t t T
f x t x u t t T
x t x t x x
+ + +
+ +
+
=
≈ + +
≈ + +
+
+ +
Simulation/Trapezoidal Integration (continued)
( )
( ) ( )
( )
( ) ( )
( )
( )
0 0
1
2 1
1 2
Assume that is given
for : :
, ,
, , ,
( ) ( ) 1 2 e
Trapezoidal Integration Algorit
nd
hm
f
x t t t T t T
x f x t u t t T
x f x t x u t T t T T
x t T x t x x
= −
=
= + + + +
+ = + +
+
+ +
+ +
Observability and Controllability
1
Consider the following time-invariant system and the deterministic asymptotic estimation
x x u
z x (1.157) wh
k k k
k k
A B
H
+ = +
=
0
ere state x , control input u , output z ;
and , , and are known constant matrices of appropriate dimension.
All variables are deterministic, so that if initial state x is known then Eq. (
n m p
k R k R k R
A B H
∈ ∈ ∈
1.157) can be solved exactly for x , z for 0.
Deterministic asymptotic estimation problem: Design an estimator whose output x converges with k to the actual state x of Eq. (1.157)ˆ when the initial s
k k
k k
k ≥
( )
0
1
tate x is unknown, but u and z are given exactly.
An estimator of observer which solves this problem has the form
x x z xˆ u
as shown in Fig. 2.1-1.
k k
k+ = A k +L k −H k +B k
Observability and Controllability (continued)
Observability and Controllability (continued)
0
1 1 1
ˆ
To Choose in Eq. (1.157) so that the estimation error x x x goes to zero with for all x , it is necessary to examine the dynamics of x . Write
ˆ x x x x u
k k k
k
k k k
k k
L k
A B A
+ + +
= −
= −
= + −
( )
( ) ( )
0
x z ˆx u
ˆ
x x x x
( )x
It is now apparent that in order that x go to zero with for any x , observer gain must be selected so that ( ) is s
k k k k
k k k k
k
k
L H B
A L H H
A LH
k
L A LH
⎡ + − + ⎤
⎣ ⎦
= − − −
= −
−
table. can be chosen so that x 0 if and only if ( , ) is detectable which is defined in the sequel.
(1). ( , ) is observable if the poles of ( ) can be arbitrarily assigned by appropriate cho
k
L A H
A H A LH
→
−
ice of the output injection matrix .
(2). ( , ) is detectable if ( ) can be made asymptotically stable by some matrix . (If ( , ) is observable, then the pair is detectable; but the reverse is
L
A H A LH L
A H
−
not necessarily true.) (3). (A, B) is controllable (reachable) if the poles of (A-BK) can be arbitrarily assigned by
appropriate choice of the feedback matrix K.
(4). (A, B) is stabilizable if (A-BK) can be made asymptotically stable by some matrix K.
Observability and Controllability (continued)
1 1
1
: The -state discrete linear time-invariant system
has
Theor
the observability matrix defined by
em (Observability)
k k k
k k
n
n
x Ax Bu
y Hx
Q H
HA Q
HA
− −
−
= +
=
⎡ ⎤
⎢ ⎥
⎢⎢
= ⎢⎢
⎢⎢
⎢⎣ ⎦
# .
The system is observable if and only if ( )ρ Q n.
⎥⎥
⎥⎥
⎥⎥
⎥
=
1 1
1
The n-state discrete linear time-invariant system has the controllability matrix P defined by
Theore
. The system is controllable if an
m (Controllability):
d
k k k
n
x Ax Bu
P B AB A B
− −
−
= +
⎡ ⎤
= ⎢⎣ " ⎥⎦
only if ( )ρ P = n.
Chapter 2
Probability Theory
Probability
{ }
{ }
{ } { }
{ }
[ ]
[
{ }]
[{ }] [ ]1 2 3 4 5 6
, ,
sample space, e.g., , , , , ,
event space, , , , ,
probability assigned to ev Probability Space
Probability Axi
ents, e.g., 0, 1/2, 1
Axiom 1 For any eve oms S A P
S S f f f f f f
A A S A odd even S
P P P odd P even P S
φ
φ
=
= =
= ⊂ =
= = = = =
P
[ ] [ ]
[ ] [ ] [ ]
1 2
1 2 1 2
nt , 0.
Axiom 2 1.
Axiom 3 For any countable collection , , of mutually exclusive events
.
A P A P S
A A
P A A P A P A
≥
=
∪ ∪ = + +
"
" "
Random Variables
s
.
x X(s)=x
S
real line
( )
( )
( ) (
( ))
( )( )
( ) [0,1]
( ) 0
P
( ) 1
( ) ( ) if
robability Distribution Function (
( ) ( )
| | ,
( ) PDF)
X X X X
X X
X X
X
F x P X x F x
F F
F a F b a b
P a X b F b F a
P X x A F x A P X x A
P A
= ≤
∈
−∞ =
∞ =
≤ ≤
< ≤ = −
= ≤ = ≤
Random Variables (continued)
( )
( ) ( )
( )
2( )
22
( ) ( )
( ) ( )
( ) 0
( ) 1
( )
| |
( ) ( )
( ) Probability Density Function (pdf):
Expected Value:
Variance:
X X
x
X X
X
X
b a X
X X
X
X X
f x dF x
dx
F x f z dz f x
f x dx
P a X b f x dx dF x A
f x A
dx E X xf x dx
E X X x X f x dx
σ
−∞
∞
−∞
∞
−∞
∞
−∞
=
=
≥
=
< ≤ =
=
=
⎡ ⎤
= ⎢⎣ − ⎥⎦ = −
∫
∫
∫
∫
∫
Random Variables (continued)
[ ] [ ] ( )
( )
[ ] [ ]
2 2
2
/2
2
( ) 1
2 ; 12
( ) , 0
2
;
Uniform Random Variable:
Gaussian (Normal) Random Variable:
X
X
x X
X X
X
X
f x a x b
b a
b a a b
E X VAR X
f x e x
E X X VAR X
σ
πσ σ
σ
− −
= ≤ ≤
−
−
= + =
= − ∞ < < ∞ >
= =
Multiple Random Variables
( )
( )
( , ) , ; ( , ) [0,1]
( , ) ( , ) 0; ( , ) 1
( , ) ( , ) if and
, ( , ) ( , ) ( , ) ( , )
( , ) ( ); ( , ) ( )
Joint Probability Distribution Function:
Joint Probabi
FXY x y P X x Y y F x y
F x F y F
F a c F b d a b c d
P a x b c y d F b d F a c F a d F b c
F x F x F y F y
= ≤ ≤ ∈
−∞ = −∞ = ∞ ∞ =
≤ ≤ ≤
< ≤ < ≤ = + − −
∞ = ∞ =
( )
( )
( ) ( )
2
1 2 1 2
( , ) ( , )
( , ) ,
( , ) 0; , 1
, ,
( ) ( , ) ; ( ) ( , )
lity Density Function:
XY XY
x y
d b
c a
F x y f x y
x y
F x y f z z dz dz
f x y f x y dxdy
P a x b c y d f x y dxdy f x f x y dy f y f x y dx
−∞ −∞
∞ ∞
−∞ −∞
∞ ∞
−∞ −∞
= ∂
∂ ∂
=
≥ =
< ≤ < ≤ =
= =
∫ ∫
∫ ∫
∫ ∫
∫ ∫
Multiple Random Variables (continued)
( )
( ) ( )
( ) ( )
( )( ) ( )
( )
1 1 1
1 1
1 /2 1/ 2
( , )
( , )
1 1
( ) exp
(2 ) 2
Correlation Matrix:
Covariance Matrix:
Gaussian Random Vector:
m T
XY
n m
T T T
XY
T
X n X
X
E X Y E X Y R x y E XY
E X Y E X Y
C x y E X X Y Y E XY XY
f x X X C
π C
−
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
= =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
⎡ ⎤
= ⎢⎣ − − ⎥⎦ = −
= − −
"
# #
"
( )
( ) ( ) ( )
( ) ,
( , ) ( ) ( ) ( , ) ( ) ( )
( ) ( ) (uncorrelatedness) Statistical Independence:
XY X Y
XY X Y
X X
P X x Y y P X x P Y y F x y F x F y
f x y f x f y
R E XY E X E Y
⎡ ⎤
⎢ − ⎥
⎢ ⎥
⎣ ⎦
≤ ≤ = ≤ ≤
=
=
= =
Stochastic Processes
Conceptual Representation of Stochastic Process
(1) Ensemble Average (2) Time Average
Stochastic Processes (continued)
( , ),
1,
(1) , = fixed a single number (an outcome of an experiment) (2) variable a time function
fixed
(3) fixed X t s t R s S
t s X
t X
s
t X
∈ ∈
=
= =
=
= = a random variable
variable
(4) variable a random process (a family of time functions) variable
s
t X
s
=
= =
=
Stochastic Processes (continued)
Stationary Process:
Stochastic Processes (continued)
Wide-Sense Stationary (WSS):
(0) 2( )
( ) ( )
( ) (0)
Properties of WSS:
X
X X
X X
E X t
R
R
R R
R
τ τ
τ
⎡ ⎤
= ⎣ ⎦
− =
≤
White Noise and Colored Noise
( ) ( )
( ) 1 ( )
2
( ) (0) for all ( ) (0) ( )
Power Spectrum:
White Noise:
j
X X
j
X X
X X
X X
S R e d
S e d
S
R
R
R R
ωτ
ωτ
ω τ τ
τ ω ω
π
ω ω
τ δ τ
∞ −
−∞
∞
−∞
=
=
=
=
∫
∫