• Tidak ada hasil yang ditemukan

First Order System Examples

N/A
N/A
Protected

Academic year: 2024

Membagikan "First Order System Examples"

Copied!
11
0
0

Teks penuh

(1)

Dongjun Lee

446.328 Mechanical System Analysis

기계시스템해석

‐ lecture 15‐

Dongjun Lee (

이동준

)

School of Mechanical & Aerospace Engineering Seoul National University

First Order System Examples

/

1

/

time constant

volume rate

/

density

resistance

(2)

Dongjun Lee

First Order Systems

first order system

(standard form) with   

0

1

1 0 1

1

:time constant [sec]

smaller  : faster response larger  ∶slower response

free response

1

1/ 0 0

Re Im

1/x

0.368

0.0183

s‐domain

faster slower no oscillation

Dongjun Lee

First Order System: Step Response

1 , 0 0

1

1 0 1

1

step response

1

]

0.368 0.0183

FVT

transient & steady‐state

0

1

no overshoot

0.63

(3)

Dongjun Lee

First Order System: Ramp Response

, 0 0

1

1 0 1

1

step response

‐>    1

smaller  => faster response  w/ less tracking error

FVT

lim

First Order System: Parameter Estimation

/

,  

/

,  

lim

lim

/ 1

FVT

∞ /

IVT

0 /

c

m

(4)

Dongjun Lee

Second Order Systems

second order system

(standard form)

2

input natural freq.

damping ratio

/

2 / ‐>   

/

1/

,  

,     ,    

1.5

to make  in steady‐state

Dongjun Lee

Second Order System: Free Response

second order system

(standard form)

2

input natural freq.

damping ratio

1

2 0 0 2 0

2

free response forced response

Re Im

x

x +

2 0

characteristic equation:

1

1.  0(un‐damped):  

2. 0 1(under‐damped):   1

1 : damped‐frequency

3.  1(critically‐damped):   ‐> no oscillation

4.  0(over‐damped):   1

dominant root:  1

(5)

Dongjun Lee

Second Order System: Pole Locations

second order system

(standard form)

2

input natural freq.

damping ratio

Re Im

x

x

+ 1

1

- : how fast is the convergence (

‐ 1 : damped oscillation frequency

‐ tan : depends only on 

‐radius 

Second Order System: Pole Locations

second order system (standard form)

2

input natural freq.

damping ratio

Re Im

x

x

+ 1

1

(6)

Dongjun Lee

Second Order System: Step Response

2 2

1/ , 0 0 0

1.  0(un‐damped):      1 cos

2. 0 1(under‐damped):   1 cos sin

3.  1(critically‐damped):   1

4.  0(over‐damped):   2 second order system

(standard form)

2

input natural freq.

damping ratio

Dongjun Lee

Step Response of Under‐Damped Systems

second order system

(standard form)

2

2. 0 1(under‐damped):   1 cos sin

:maximum overshoot : peak time

: rise time : settling time : 50% delay time

(7)

Dongjun Lee

Step Response of Under‐Damped Systems

1 cos sin

1 1

1 sin

1 1

1 sin

:maximum overshoot : peak time

: rise time : settling time

: 50% delay time

0 tan 1

2 3

2

Maximum Overshoot & Peak  Time

0 → tan tan → , 0,1, . .

1 4

1 1

1. c++ =>   t_p ++,  M_p ‐‐

2. M_p depends only on  :  can be used to estimate   3. k++   =>  t_p ‐‐,  M_p ++

4. m++  =>  M_p ++, t_p ++

1 1

1 sin

(8)

Dongjun Lee

Rise, Settling, and Delay Time

w_n ++   => t_r‐‐

100% rise time

1 → sin 0

1 1

1 sin

3 /2 2 → →

tan 1

2% settling time

4 2

c ++  or m‐‐ => t_s‐‐

50% delay time

0.5

1 0.7 1 0.7

2 c ‐‐ or k++  => t_d++

Dongjun Lee

Second Order System: Effect of 

second order system

(standard form)

2

Re Im

x

x

+ 1

1

(9)

Dongjun Lee

Second Order System: Effect of Pole Locations

Second Order System: Parameter Estimation

/

,  , 

1

1 sin

→ …

1 ln , 2

(10)

Dongjun Lee

MatLab Example

first‐order system

second‐order system

with zero

,

→ , 0

/

,  ,   

1

,     

4 2

Dongjun Lee

Second Order System: Example

/

2 / ‐>   

1 4 /

/

1. changing c

Re Im

x

x

+ 1

1

2. changing m

3. changing k

(11)

Dongjun Lee

Next Lecture

‐ fluid system modeling

Referensi

Dokumen terkait

Save all to author list a a b Mechanical Engineering Department, Diponegoro University, Semarang, Indonesia Department of Aerospace Information Engineering, Konkuk University, Seoul,

NPTEL >> Mechanical Engineering >> Modeling and Control of Dynamic electro-Mechanical System Module 5- Lecture 37 Special References for this lecture Special References for this

NPTEL >> Mechanical Engineering >> Modeling and Control of Dynamic electro-Mechanical System Module 3- Lecture 16 Special References for this lecture Special References for this

SEOUL NATIONAL UNIVERSITY School of Mechanical & Aerospace Engineering 400.002 Eng Math II 25 Cauchy’s Integral Formula, Derivatives of Analytic Func- tions 25.1 Independence of

SEOUL NATIONAL UNIVERSITY School of Mechanical & Aerospace Engineering 400.002 Eng Math II 4 Rank & Solutions of Linear Systems 4.1 Rank Recall G-J elimination.. Elimination

SEOUL NATIONAL UNIVERSITY School of Mechanical & Aerospace Engineering 400.002 Eng Math II 4 Rank & Solutions of Linear Systems 4.1 Rank Recall G-J elimination.. Elimination

and deformation of Al alloy substrate by cold gas dynamic spray One House, One Engine Dupont Vincent, Thomas Girardot School of Mechanical and Aerospace Engineering, Seoul National

2017 Copyright ã reserved by Mechanical and Aerospace Engineering, Seoul National University 21 a Discrete Random Variable b Continuous Random Variable Figure 2.2: Random Variable