Fluid Mechanics
Hyungmin Park
Multiphase Flow and Flow Visualization Lab.
Fall 2022, undergraduate course
Course Introduction
q Fluid Mechanics 001 (M2794.001300, 001) q Prof. Hyungmin Park(박형민)
o Office: 301동 1405호 (Tel: 880-4159) o Email: [email protected]
o Office hour: with appointment
q Goals
o In this course,
• we study the basic theories and concepts of fluid dynamics and derive the governing equations to describe the relevant
phenomena
• to possess the capability of understanding and analyzing the fluid
mechanics phenomena occurring in the diverse industrial and
natural environments.
Course Introduction
q Textbook o Main
• Fluid Mechanics (F. M. White), McGraw-Hill Higher Education
• Lecture Notes (to be uploaded after each class)
• Supplementary materials – please check “eTL” frequently o References
• Viscous Fluid Flow (F. White)
• Boundary Layer Theory (H. Schlichting)
• ETC.
q Evaluation
o Attendance (10%), Homework (15%), Midterm1 (20%), Midterm2 (20%), Final (35%)
Course Introduction
q Scope (Schedule) – to be operated flexibly o Ch.1
• Concept of fluid, Continuum, Properties of fluid flow,
Dimensions and units, Basic flow analysis techniques, Flow patterns
o Ch.2
• Pressure and pressure gradient, Hydrostatic pressure o Ch.3
• Basic physical laws of fluid mechanics, Reynolds transport theorem, Control volume analysis
o Ch.4
• Equations for mass and linear momentum conservation -
continuity and Navier-Stokes equation
Course Introduction
q Scope (Schedule) – to be operated flexibly o Ch.5
• Principle of dimensional homogeneity, Non-dimensional parameters, Pi-theorem
o Ch.6
• Internal viscous flows, laminar vs. turbulent flows, skin-friction drag
o Boundary-layer theory
TA info
q
여지은([email protected]), 김대일([email protected])
q Lab. Location: 313동 222호 (Tel: 880-9161)q TA Hour
o Flipped learning (online) – TA video will be uploaded in eTL biweekly o Q&A
o To solve example problems
o To derive theory/equation, not covered in the lecture
o Some stuffs covered in TA hour will be reflected in the exams.
Fluid Mechanics
q Fluids essential to life
o Human body 65% water
o Earth ’ s surface is 2/3 water
o Atmosphere extends 17 km above the earth ’ s surface
q History shaped by fluid mechanics o Geomorphology
o Human migration and civilization
o Modern scientific and mathematical theories and methods o Warfare
q Affects every part of our lives
History
Faces of Fluid Mechanics
Archimedes
(C. 287-212 BC) Newton
(1642-1727) Leibniz
(1646-1716) Euler
(1707-1783)
Navier
(1785-1836) Stokes
(1819-1903) Reynolds
(1842-1912) Prandtl
(1875-1953)
Bernoulli
(1667-1748)
Taylor
(1886-1975)
History
민태기 박사 강연 기계산업경영2
“경계를 뛰어넘은 과학자들”
9월 14일 16:00 301동 118호
Significance
q Fluids omnipresent o Weather & climate
o Vehicles: automobiles, trains, ships, and planes, etc.
o Environment o Energy
o Biology
o Semiconductor industry
o Physiology, medicine, and virus o Sports & recreation
o Many other examples!
Boundary-layer flow (경계층 유동)
Kelvin-Helmholtz instability (Karman vortex street)
Kelvin-Helmholtz instability (Karman vortex street)
Flow around a streamlined body
Diverse flows in industry…
Vehicles
Vehicles
Environment
Physiology and Medicine
Ventricular assist device
Physiology and Medicine
Flows in Nature
Sports & Recreation
Energy & Power conversion
다
. (INTRODUCTION
.
1.1
Prime Mary Remote
Fluid mechanism
TheStay
offluid
s( gas
andAid )
other in Motion orA rest
,especiaaytemteractiueettetsbetw.eu
① fluid
S -fluid
and② fluid
S -Solid
S .↳ Approach es
:Experiment
,CFD_wmputatonalb.MY
Modeli .Fluid D
names)
( theory ng
)1. 2.
History
andScore of EM
.-
Arch
.me des( 자 5-212
Be)
:Law of by
ang.
e
Leonardo da U
Mar( 1472-1519 ) 1% 녜
:
equation of
massConservation
in 1Dsteadyftw.ms#dy:firstf6wuisua1izatm.(sKetch
esfor May Complex
How phe.name
na)
'
Ed
MeMario # ( 1620-1684
):
First but
a어마쨒 ( 풍동 )
and Test d.
-
Issac Newton ( 1642-1727 )
:Law of Motion
(
Momentan)
↳ Law of
멱쏄 ( Newton
ianfluid )
'
Fiction loss fluid ( theory /
assumpara )
- 18C
Mathematics
ans,Eden
dHerbert
,ange.e.T.devebpedbtdrfferatiala.de#usF(BemouUi 19T 9)
| cnn.piaiabgimmerse.in
africtionlessfluidepeweucesaze.ro
drgforce.unfaliste.ly route ( 수리학
.수렴할 )
-My
ing
onte
Application
-Experimental Oriental
.
:
Pitottlagen.Poiseu.ie
,Day
, a . .↓ produceddataonuanmsflows.ba
they rawformwithodrgardtotefundamentalpys.es
were used inof flow
.-
End f De
:Experimental hydraul.is
+
theoreticdhydrodynamies.Foude.Rylegh.Reynolds.ci (
←iad 一↳ Reyn.ws Number
analysis
CC4.5)Re
=9- 나
M~inert_a.li
isWait
a Mean
while
, U isasflow theory
is avariable
,Nai 와 ( 1785-1836 )
,States
( 189-1903)⇒
too-difficulttosolveforarbitrayf.ws
.↓
-
Ludwig Prand.tl
. (1875-1953 )
( publishedthemostimportantpo.pe
((904)error
write
on EM . "In
day
-layer theory
" .Von
Karen
an,G.
I.펙
(or, a . . .-
Second Half of
20C →CFDemerges.tsophisticatedexp.tec.hn
ique
S.1.4
Gap
+of
afluid
,*
matter / fluid I
reactionto
anapple.dshear.la .li
d(
ort agent
at) St
→
A Solid
Can resist
ader stress by
Mu
du
ing
aState de Formation ( defkc.tn )
13t
, afluid Can't !
→
Any Mean stress apple.la
to afluid NG
re
suit
inMotion of that Head
.(
andhe Hard
deArms
as well)
( 媤
'Atom
a,nofw.i.si
o
A fluid at rest
is in aState of
Zeroshears.CThyd.ro static stress condition )
.T r I
斷 mokcales.it?mEsundergrauiy,formsafree I effect Between of Cohe site fora surface ,
? for
a
My to static
condition( fluid at rest )
,te pressure at
aPoint
B의의
to in aa"
이에
"鼠
• -79
Rhedogy
.( 유벤함 )
:( Study
liqui
d,of
inGeneral
HeHow )
,but of
matteralso
asstream
flow
.(
"soft Plastic
Solidflow
" . thatMatter response
than withdeformiy.V.slunymixture-asphalt.lead.ms
istSean stress for Short
Time
, →event y dans
and
Show fluid behavior
Over
Long period
,.
swexist.su Matt per phase critical flow fluid
. :Two ( 초임계유체
onMore ? phase
p
a•
Critical Point
.Tiifi distinetanbetweenliq.andgasblurs.ITTTTpho.se digam gas
. --Only V Single phase
aits
.( Super critical fluid )
.1.5
.The fluid
as amt 邀
fluidsiagregatrm.fm I .eu
.( gas Y
. :: Warsendenser.freeymoo.net
↓
eachother
.Q ) How wedefnefluidpwprty.eqdenaity.oiswy.ca?
For exampe.g.li 怡批
m또 IimHi
y Volume
."
it-ty_macros.pt
iuncertainty.yi-srmicwkopuncerto.in ty mm3 for
a"liqu.io/gases../(3Xo7moleca1esinaiD
Most Engineering problem
s are onand
W
/ Physical del
meansMuch layer
thanSt
1
denaityisessentyap.int
↓at
andfluid Property
Canbemsideredasvanyigwntinuousyinspaa.TLtwntinuum.la
. 6Di
Monsters andUnit
-
Dimens.in ( 雅 )
: a meansareby
which aPhysical variable
☐ e usedqua 꺠學
( length
, mass,tre
, →)
-
Unit ( 단위 )
:aparticalanwayofalteh.rs
a .
number to
teqaa 깨逃
1 dm 槌 ( metengram.am b)
'
International stem of Unit (
S)
:1960
BG ( Bird
gravitataebunm.is
Primary di
Men Sin .Sandy
mass
M 1kg ]
dimeusim.leytht.fm ]
(
-accelenatm.tw T [ a]
'.LT
ftp.ratuneof.KI
. -form
:IT ?
-
prinapleofdmen_ai.net/omgenei1y.___(homogeneousTsotropiC
.At E
=드
t모
.
↳ should
have
he Samedi
Men- 위해
.
e) Bernard q
.rgrav.cat
-altitude.pt#ev2t9gz=mstant.
↑ T-T
pressure Engine Gay
dShouldInvasionhaveofte
pressure
→Pop
=FA
=T.ME/EICstag.presssy=
[
ME'다 ]
.
늘
一一[ M 인 0T ]
,f
= M/ E
=[ ME 3]
v2
.( II
=[ 다 ]
.ge [ LFI.EE 다 ]
.