Contents lists available atScienceDirect
Physics Letters B
www.elsevier.com/locate/physletb
Gauge invariance and holographic renormalization
Keun-Young Kim
a, Kyung Kiu Kim
a, Yunseok Seo
b, Sang-Jin Sin
c,d,∗aSchoolofPhysicsandChemistry,GwangjuInstituteofScienceandTechnology,Gwangju500-712,RepublicofKorea bResearchInstituteforNaturalScience,HanyangUniversity,Seoul133-791,RepublicofKorea
cDepartmentofPhysics,HanyangUniversity,Seoul133-791,RepublicofKorea dSchoolofPhysics,KoreaInstituteforAdvancedStudy,Seoul130-722,RepublicofKorea
a r t i c l e i n f o a b s t ra c t
Articlehistory:
Received5March2015
Receivedinrevisedform20July2015 Accepted22July2015
Availableonline28July2015 Editor:M.Cvetiˇc
Keywords:
Gauge/gravityduality Holographicrenormalization Gaugeinvariance
We study the gauge invariance of physical observables in holographic theories under the local diffeomorphism.Wefindthatgaugeinvarianceisintimatelyrelatedtotheholographicrenormalization:
thelocalcountertermsdefinedintheboundarycancelmostofgaugedependencesoftheon-shellaction aswellasthedivergences.Thereisamismatchinthedegreesoffreedombetweenthebulktheoryand theboundaryone.Weresolvethisproblembynoticingthatthereisaresidualgaugesymmetry(RGS).By extendingtheRGSsuchthatitsatisfiesinfallingboundaryconditionatthehorizon,wecanunderstand theprobleminthecontextofgeneralholographicembeddingofaglobalsymmetryattheboundaryinto thelocalgaugesymmetryinthebulk.
©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
1. Introduction
AccordingtoAdS/CFT correspondence, anyglobalsymmetry at theboundarytheoryisliftedtoalocalsymmetryinthebulk[1,2].
Thegaugesymmetry isessential toreducethedegreeoffreedom whichisenlargedbygoingintoonehigherdimension.Thephysical goalinholographyistheboundaryquantitieswhichdo notknow the presence of higher dimension or gauge degrees of freedom, while we use the tools in the bulk theory. Therefore the gauge invarianceofaphysicalquantityisacriticalissueforthevalidityof theAdS/CFT.Alsotracingthegaugeinvariancegivesmuchintuition onthewayhowholographyactuallyworks, especiallyhowglobal symmetryisencodedinthelocalgaugesymmetry.
One can find gauge invariant combinations of the fields, and expressthephysicalquantities intermsofsuch mastervariables, however,itisnotalwayseasytofindsuchgaugeinvariantcombi- nation.Eveninthecasetheyareavailable,itisnotveryconvenient to usesuch fields,especially if manyfields are coupled,because thephysical quantitiesare definedinterms ofthefield variables whichareformallygaugedependent.Forexample[2],energymo- mentum tensor and chemical potential are defined in terms of metric/gaugefieldwhichis notgaugeinvariant.Similarly,heatcur- rentscan be relatedtothe metricperturbationdefinedonly ina
*
Correspondingauthor.E-mailaddresses:[email protected](K.-Y. Kim),[email protected] (K.K. Kim),[email protected](Y. Seo),[email protected](S.-J. Sin).
specific gauge where time periodhas definite relationwithtem- perature.
In recentworks[3,4],based on[5,6], wedeveloped asystem- aticmethodtonumericallycalculatetheGreen’sfunctionsandall AC transportsquantities simultaneouslyforthe casewheremany fields are coupled and there are constraints due to gauge sym- metry. Althoughwe have testedthe validityof the procedureby showingtheagreementofzerofrequencylimitsofACconductivi- tieswiththeknownanalyticDCconductivities[7–9]westillthink thatwe needtoprovethegaugeinvarianceofourprocedureasa matterofprinciple.Wefoundthatthebulkgaugeinvarianceisin- timately relatedto theholographic renormalization. Althoughthe local counter termswere introduced to kill thedivergences, they alsokill mostofgaugedependence.
Furthermore,thereisaresidualgaugesymmetry(RGS)evenaf- terwefixtheaxialgauge grx=0.While equationsofmotioncan be written in terms of the gauge invariant master fields Ph,Pχ (3.8),itturnsoutthatthequadraticon-shellaction,thegenerating functionfortwopointretardedGreen’sfunctions,cannot bewrit- tenassuch.However,weprovethattheGreen’sfunctionsarestill invariantundersuchasymmetry.
Thereisamismatchinthedegreesoffreedominthebulkand thoseattheboundary:thereareonlytwoindependentbulksolu- tions satisfyingthe in-fallingboundaryconditions whilewe need threesolutionsattheboundarysincetherearethreeindependent sourcefields.TheRGSistheonethatresolvestheproblem:sinceit cannotsatisfyaproperboundarycondition,itisnotapropergauge http://dx.doi.org/10.1016/j.physletb.2015.07.058
0370-2693/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.
symmetrybuta‘solutiongeneratingsymmetry’.Itgeneratethede- siredsolutionattheboundaryandthereforeweshouldaccept its bulkcounterpartasanewphysicaldegreeoffreedomaswellal- thoughit cannot satisfytheinfalling boundarycondition (BC).By extendingtheRGSsuch that itsatisfies infallingboundary condi- tionatthehorizon,wecanmakethebulksolutionmorenaturalin thesense thatit satisfiestheinfalling BC. Withsuchsolution we canalsounderstand theprobleminthe contextof generalstruc- tureofholography, namely thecorrespondence betweena global symmetry atthe boundaryandthe local gauge symmetryin the bulk.
2. Actionandbackgroundsolution
Letusfirstbrieflyreviewthesystemwewilldiscuss,whichhas beenanalysedin detailin[3,7,10].The holographicallyrenormal- ized action(Sren)isgivenby
Sren
=
SEM+
Sψ+
Sc,
(2.1)where SEM
=
M
d4x
√
−
gR
−
2−
1 4F2−
2∂M
d3x
− γ
K,
(2.2)is the usual action for charged black hole in AdS space (<0) withtheGibbons–Hawkingtermand
Sψ
=
M
d4x
√
−
g−
1 2 2 I=1(∂ψ
I)
2,
(2.3)istheactionfortwofreemasslessscalarsaddedforamomentum relaxationeffect.Sc isthecounterterm
Sc
= η
c∂M
dx3
− γ −
4−
R[ γ ] +
12
2 I=1γ
μν∂
μψ
I∂
νψ
I,
(2.4)whichisincludedtocancelthedivergencein SEM+Sψ.Here we introduced
η
c to keeptrackof theeffectof thecounter term. At theendofthecomputationwewillsetη
c=1.Theaction(2.1)yieldsgeneralequationsofmotion1 RMN
=
12gMN R
−
2−
1 4F2−
12
2 I=1(∂ψ
I)
2+
1 2I
∂
Mψ
I∂
Nψ
I+
12FMPFNP
,
(2.5)∇
MFMN=
0, ∇
2ψ
I=
0,
(2.6)whichadmitthefollowingsolutions ds2
=
GMNdxMdxN= −
f(
r)
dt2+
dr2f
(
r) +
r2δ
i jdxidxj,
(2.7) f(
r) =
r2− β
22
−
m0 r+ μ
24 r20 r2
,
m0=
r30 1+ μ
24r20
− β
2 2r02,
(2.8)A
= μ
1−
r0 rdt
,
(2.9)ψ
I= β
Iixi= βδ
Iixi.
(2.10)1 Indexconvention:M,N,· · · =0,1,2,r,andμ,ν,· · · =0,1,2,andi,j,· · · =1,2.
These are reduced to AdS–Reissner–Nordstrom (AdS–RN) black branesolutionswhenβ=0.HerewehavetakenspecialβIi,which satisfies 122
I=1βI· βI=β2 forgeneralcases.
The solutions (2.7)–(2.10) are characterized by three parame- ters:r0,
μ
,andβ.r0istheblackbranehorizonposition(f(r0)=0) andcanbereplacedbytemperatureT forthedualfieldtheory:T
=
f(
r0)
4π =
1 4
π
3r0
− μ
2+
2β
2 4r0.
(2.11)Non-vanishing components of energy–momentum tensor and chargedensityread
Ttt=
2m0,
Txx=
Ty y=
m0,
Jt= μ
r0.
(2.12) Ttt=2Txx implies that charge carriers are still of massless character.Fromherewesetr0=1 nottoclutter.3. Gaugefixingandresidualgaugetransformation
Tostudyelectric,thermoelectric,andthermalconductivitieswe introducesmallfluctuationsaroundthebackground(2.7)–(2.10)
δ
Ax(
t,
r) =
∞−∞
d
ω
2
π
e−iωtax
( ω ,
r) ,
(3.1)δ
gtx(
t,
r) =
∞−∞
d
ω
2
π
e−iωtr2htx
( ω ,
r) ,
(3.2)δ
grx(
t,
r) =
∞−∞
d
ω
2
π
e−iωtr2hrx
( ω ,
r) ,
(3.3)δψ
1(
t,
r) =
∞−∞
d
ω
2
π
e−iωt
χ ( ω ,
r) .
(3.4)The fluctuationsare chosen to be independent of x and y. This isallowed since all thebackground fieldsappearingin theequa- tionsofmotionturnouttobeindependentofxand y.Thegauge fieldfluctuation(δAx(t,r))sourcesmetric(δgtx(t,r),δgrx(t,r))and scalarfield(δψ1(t,r))fluctuationandviceversaandalltheother fluctuationsaredecoupled.Wewillworkinmomentumspaceand htx(
ω
,r) andhrx(ω
,r)is definedso that it goesto constant asr goestoinfinity.By linearizing the full equation of motion, we get four equa- tions. However oneof themcan be obtainedby theothers.Thus wemayconsiderfollowingthreeequations:
( χ
− β
hrx) −
iμω
axβ
r2f(
r) −
ir2ω (
htx+
iω
hrx)
β
f(
r) =
0,
(3.5) ax(
r) +
ax(
r)
f(
r)
f
(
r) + ω
2ax(
r)
f
(
r)
2+ μ (
htx+
iω
hrx)
f
(
r) =
0,
(3.6) f(
r)
f(
r)( χ
(
r) − β
hrx) +
f(
r)
2( χ
− β
hrx)
+
2f(
r)
2( χ
− β
hrx)
r
+ ω
2χ (
r) −
iβ ω
htx(
r) =
0.
(3.7) Ifwe differentiate thethird equation withrespect tor,all equa- tions can be written interms of three variables, Pχ,Ph, andax, whereP
χ≡ χ
− β
hrx, P
h≡
htx+
iω
hrx.
(3.8) Therefore, hrx is a non-dynamical degree of freedom. Indeed, Pχ,Ph,andax areinvariantunderadiffeomorphismgeneratedbyξμ=(0,ζ (r)e−iωt,0,0),underwhichthefieldsaretransformedas follows:
δ
hrx=
1r2
( ∇
rξ
x+ ∇
xξ
r) = ζ
(
r)
e−iωt,
(3.9)δ
htx=
1r2
(∇
tξ
x+ ∇
xξ
t) = −
iω ζ (
r)
e−iωt,
(3.10)δ χ = βζ (
r)
e−iωt,
(3.11)δ
ax=
0.
(3.12)Usingthisgaugedegreeoffreedom,onemaysethrx=0,whichis so-called theaxialgauge.Thenumericalcalculationin[3]hasbeen performedin thisgauge. Aquestion arises whethertheresulting physicalquantitiesareindependentofsuchgaugefixingcondition.
Furthermore,evenafterwefixhrx=0,onecanstillfindaresid- ualgauge transformation whichis givenby constant ζ [11]. This residualdiffeomorphismdoesn’tchangethegaugefixingcondition hrx=0 and generates constant shift on htx and
χ
, because the equationsofmotioncontainonlyderivativesofhtx andχ
andthe linear combinationof them,ωχ
(r)−iβhtx(r), which is invariant underhtx
→
htx+
h0,
andχ → χ +
iβ
ω
h0,
(3.13)whereh0isaconstant.Thusthereisoneparameterconstantsolu- tiongivenby
ax
=
0,
htx=
h0, χ =
iβ
ω
h0,
(3.14)whichdoesnotsatisfy in-fallingboundaryconditionsoitisnota physicaldegreeoffreedom.2Wecallittheresidualgaugesymme- try(RGS)becauseitisgeneratedbythezeromodeofadiffeomor- phismgenerator.Thiskindofsolutionwasfirstintroducedin[12].
Whyshouldtherebesucharesidualdegreeoffreedom?Itcan betracedtothedifferenceofthedifferentialequationnearhorizon andthosenearboundary.Neartheblackholehorizon(r→1)the solutionsareexpandedas
htx
= (
r−
1)
ν±+1htx(I)
+
h(txI I)(
r−
1) + · · · ,
ax= (
r−
1)
ν±a(xI)
+
a(xI I)(
r−
1) + · · · , χ = (
r−
1)
ν±χ
(I)+ χ
(I I)(
r−
1) + · · ·
,
(3.15)where
ν
±= ±i4ω
/(−12+2β2+μ
2)= ∓iω
/(4π
T)andtheincom- ingboundarycondition correspondstoν
=ν
+.Byinsertingthese to theequationsof motion,one caneasily find a linearrelations betweenthezero-thmodes:( ν +
1)
htx(I)+ μ
a(xI)+ β χ
(I)=
0.
(3.16) Noticethat allother modesaregeneratedby these. Thusthereis a well defined constraintequation which reducesthe degrees of freedom.Ontheotherhand,byinsertingtheexpansionnearthebound- ary(r→ ∞)
htx
=
htx(0)+
1r2h(tx2)
+
1r3h(tx3)
+ · · · ,
ax=
a(x0)+
1ra(x1)
+ · · · , χ = χ
(0)+
1r2
χ
(2)+
1r3
χ
(3)+ · · · ,
(3.17)2 Itisaregularsolutionatfuturehorizon.
to the equations of motion,we cannot get any relationbetween the zero-thmodesa(x0),h(tx0),and
χ
(0),allofwhichare relatedto thehighermodes.Moreexplicitly,ω ( ωχ
(0)−
iβ
h(tx0)) −
2χ
(2)=
0,
i
β( ωχ
(0)−
iβ
h(tx0)) −
2htx(2)=
0,
(3.18) which are evolution equations in r-direction. Therefore, there is no constraintequation. Then thereis a crisis ofmismatchofde- greesoffreedomandthiscrisisisresolvedbytheeffectiveresidual degree of freedom described above. However, thisresidualgauge degree of freedom raises another issue of invariance of physics underthissymmetry.WewilladdressthisissueattheendofSec- tion5.4. Holographicrenormalizationandgaugeinvariance
Nowwecomebacktothequestionwhetherphysicalquantities are independent of the choice of the gauge condition hrx(r)=0.
Wewillshowthisbyprovingthatthegeneratingfunctionofphys- ical quantities, the on-shell action, is invariant even in the case withhrx(r)=0.
Theon-shellrenormalized actiontoquadraticorderinfluctua- tionfields,S(ren2),is
Sren(2)
=
limr→∞
d3xδψ
1 12
β
fδ
grx−
1 2f r2δψ
1+
2r
δ
gtx2−
12f
δ
Axδ
Ax− δ
gtx 12
δ
g˙
rx−
1 2r2( δ
gtxr2
)
+ μ
2r2
δ
Ax+ η
cδψ
1r2
δψ ¨
12
f
− β δ ˙
gtx 2f
+ β δψ ˙
1δ
gtx2
f
−
2f
δ
g2tx,
(4.1)where f(r)=r2−β22 −mr0 +4rμ22.Wedroppedtheboundarycon- tributionfromthehorizonasaprescriptionfortheretardedGreen function[13].3Nearboundaryr→ ∞,thefluctuationfieldsinmo- mentumspace,(3.1)–(3.4),maybeexpandedas
htx
( ω ,
r) =
∞ n=0h(txn)
( ω )
rn
,
hrx( ω ,
r) =
∞ n=0h(rxn)
( ω )
rn,
ax
( ω ,
r) =
∞ n=0a(xn)
( ω )
rn
, χ ( ω ,
r) =
∞ n=0χ
(n)( ω )
rn
,
(4.2)andusingtheequationsofmotion,wecan obtainaquadraticac- tionasfollows
3 Infact,thecontributionoftheincomingsolutionatthehorizoniszeroin(4.1), whichisreal.However,forageneratingfunctionofretardedGreen’sfunctions,we willtakeonlypartof(4.1)asexplainedbelow(4.3),whichiscomplex.Inthiscase, it turnsoutthatthecontributionfromthehorizonispureimaginary.Fromthis perspective,weshoulddropthecontributionfromthehorizon.
S(ren2)
=
V2 2 ∞ 0d
ω
2
π
− μ
a¯
(x0)h(tx0)− μ
h¯
tx(0)a(x0)−
2m0h¯
(tx0)h(tx0)+ ¯
a(x0)a(x1)+
¯ χ
(0)+
iβ
ω
h¯
(0)
tx 3
χ
(3)+ β
hrx(4)+ ( η
c−
1)
−
34h
¯
tx(0)h(tx0)−
24h
¯
(tx1)htx(0)+
4ih¯
(tx0)h(rx2)ω +
i
β
h¯
tx(0)χ
(0)ω −
2ih¯
(tx0)h(rx3)ω + β
2h¯
(tx0)h(tx0)+
−
4ih¯
(tx1)h(rx2)ω −
4h¯
(tx2)h(tx0)+
iβ χ ¯
(0)h(tx0)ω
− ¯ χ
(0)χ
(0)ω
2−
2m0h¯
(tx0)htx(0)−
4h¯
(tx0)h(tx3)−
2iω
h¯
tx(1)h(rx3)+ β
2h¯
(tx1)h(tx0)+
iβ ω
h¯
(tx1)χ
(0)−
4iω
h¯
(tx2)h(rx2)−
4h¯
(tx3)htx(0)+
iβ ω χ ¯
(1)h(tx0)− ω
2χ ¯
(1)χ
(0)+ [
c.c],
(4.3)wheretheargumentofthefields4is
ω
.V2 denotesvolumeinx–y spaceand[c.c]means the complexconjugated terms.From here, we will drop the [c.c] term since we want to compute retarded Green’sfunctions[13].The second line is proportional to a gauge invariant combi- nation under (3.13). Furthermore,one ofthe equation ofmotion includingh(rx4)is
h(rx4)
−
1β
2− ω
23i
ω
htx(3)−
iμω
a(x0)−
3β χ
(3)=
0.
(4.4) Onecanshowthat(4.4) isequivalenttoaWardidentity∇
μTμν+
FλνJλ− O
I∂
νψ
I=
0,
(4.5) by using the boundary metric andthe other fields in the linear approximationgivenasfollows:ds2
= η
μνdxμdxν+
2h(tx0)e−iωtdtdx,
Tμν=
T(0)μν+
T(1)μν F= −
iω
a(x0)e−iωtdt∧
dx,
Jμ=
J(0)μ+
J(1)μ= ( μ ,
0,
0) +
0
,
a(x1)− μ
h(tx0),
0 e−iωtψ
I= (β
x, β
y) ,
O
I= O
(1)I=
3
χ
(3)+ β
h(rx4),
0e−iωt
,
(4.6) where T(0)μν=
m0⎛
⎝
2 0 00 1 0 0 0 1⎞
⎠ ,
T(1)μν=
−
2m0h(tx0)−
3htx(3)+
iω
h(rx4)⎛
⎝
0 1 01 0 0 0 0 0⎞
⎠
e−iωt.
(4.7) One may ask why Ward identity of the boundary theory is in- cluded in the bulk equation of motion. It is not accidental: The
4 a¯(x0)(ω)≡a(x0)(−ω)=a(x0)(ω)∗bytherealityconditionofδAx.Thesamenota- tionandrealityconditionapplytoalltheotherfields.
translation,x→x+ξ0attheboundarytheoryisimbeddedintothe bulk diffeomorphismx→x+ξ(x),whichinduces thefield trans- formation→+δξ,whichinturnisaspecialcaseofgeneral variation, →+δ. Now the equation of motion is coming fromtheinvarianceofbulkactionδSB=0 underthegeneralvari- ation,whiletheWardidentityistherequirementoftheboundary action under the translation δξ0Sb=0. Because AdS/CFT request SB=Sb attheonshell,thelatteriscontainedinthehugetowerof equationofmotionasatinypiece.
Thetermsproportionalto(
η
c−1)in(4.3)includethedivergent terms with,a regularization parameter, andfinite termswith- out .Aremarkablefactisthat withthecounter termofweightη
c=1,notonlythedivergenttermsarecanceled,butalsoallthe hrxdependentfinitetermsdisappearsfromtheon-shellaction,as weclaimedinthebeginningofthissection.5. Gaugeinvarianceundertheresidualgaugetransformation Ourstartingpointistheaction5
S(ren2)
=
V2 2 ∞ 0d
ω
2
π
− μ
a¯
(x0)h(tx0)−
2m0h¯
tx(0)h(tx0)+ ¯
a(x0)a(x1)−
3h¯
tx(0)h(tx3)+
3χ ¯
(0)χ
(3)+
β χ ¯
(0)+
iω
h¯
(tx0) hrx(4)+
c.c,
(5.1)which is still dependent on residual gauge (3.13) even after we set hrx=0. Since it is just a constant shift of the solution , its effects are only shifts of zero-th modesand (r) andall of its modes,especially (a(x1),h(tx3),
χ
(3)):=a are intact. Noticethat the recurrence relations derived fromequations of motionrelate highermodeswiththezero-thmodes Ja=(a(x0),h(tx0),χ
(0)).How- ever,alldependencesofhighermodesonzerothmodesisthrough thegaugeinvariant combinationωχ
(0)−iβh(tx0).See,forexample, (3.18).Thusallhighermodesaregaugeinvariant,whichmakesthe gaugeinvarianceofthe(r)intactinspiteofthecomplicatedde- pendenceofhighermodesonthezerothmodes.The residual gauge dependence of(5.1) can be understood as follows. The full on shell action should be invariant under the residualgaugetransformation.However,whatwearelookingatis thequadraticpartoftheaction S(ren2),whichgeneratesthe2-point function,intheexpansionof
Sren
[δ] =
S(ren0)+
S(ren1)[δ] +
S(ren2)[δ] + · · ·,
(5.2) whereδ=(δμν,δμ,δI) collectivelydenotes thesources of the dualfield theory,whichare boundaryvalues of r12δgμν,δAμ andδψI.S(ren1)[δ]andS(ren2)[δ]aregivenasfollows:S(ren1)
[δ] =
d3x
12
δ
μν T(0)μν+ δ
μ J(0)μ+ δ
IO
(0)I,
(5.3)S(ren2)
[δ] =
d3x
12
δ
μν T(1)μν+ δ
μ J(1)μ+ δ
IO
(1)I.
(5.4)5 Itcomesfrom(4.1)beforewegetEq.(4.3),forwhichwehavetousetheequa- tionsofmotion.
Under the residual gauge transformation6 with h0= −i
ω
ζ0, the variationsoftheseactionsareδ
S(ren1)[δ] =
V2 dω
2
π ζ ¯
0i
ωμ
a(x0)+
2iω
m0h(tx0)+
c.c,
(5.5)δ
S(ren2)[δ] = −δ
S(ren1)[δ]
+
V2 dω
2
π ζ ¯
03
β χ
(3)−
3iω
h(tx3)+
iωμ
a(x0)+
β
2− ω
2hrx(4)
+
c.c.
(5.6)ThusthetotalvariationisproportionaltotheWardidentity(4.4).
Noticethat SrenisgaugeinvariantbutS(ren2),whichisstartingpoint toderivetheGreenfunction,isnotinvariantbyitself.Nevertheless physical observablesderived from S(ren2) are invariant becausethe Greenfunctionsare second derivatives ofthefull on shellaction atthezerosourcelimit.
At thispoint one can discussa puzzlein countingdegreesof freedom.Thereareonlytwoindependentbulksolutionssatisfying thein-fallingboundaryconditions,7whileweneedthreesolutions atthe boundary since there are three independent source fields.
Therefore,thereisa crisisofmismatchofdegreesoffreedombe- tweenthebulkandboundary.WhatsolvestheproblemistheRGS (3.14). We call it RGS because it is generated by the zero mode ofadiffeomorphismgenerator.Ontheotherhand,tobeaproper gaugedegreeoffreedominthebulk,thediffeomorphismgenerator shouldsatisfytheproperboundaryconditions:infallingathorizon andDirichlet at boundary. The residual gauge symmetry genera- torisaglobalshiftandthereforeitcansatisfyneitherofthem.So suchashiftbythediffeomorphismzeromodeisnotatruegauge symmetry,whileitisasymmetryofthebulkequationsofmotion.
Inotherwords,theRGSisa“solutiongeneratingsymmetry”rather thanagaugesymmetry.Therefore,thegaugeorbitofRGScanpro- videusthenecessarydegree offreedom (d.o.f)nearboundary. To matchthed.o.f,weneedtoacceptitsbulkorbitasphysicalconfig- urationinspiteofthefactthattheresultingbulksolutiondoesnot satisfytheinfallingBC.8Onecangiveamorenaturalbulksolution byextendingRGStoadiffeomorphismwhichsatisfiestheinfalling boundaryconditionanditisreducedtoourpreviousRGSnearthe boundary.Itisgeneratedbyξμ=(0,ζ (r)e−iωt,0,0),with9
ζ (
r) = (
f(
r)/
r2)
−iω/(4πT),
(5.7) where f isthemetricfactorgiveninEq.(2.8)and isaconstant parameter.NoticethattheRGSisthecasewhereζ (r)isconstant.We willcall this“boundaryshifting diffeomorphism”(BSD). Now we can understand the degree of freedom mismatchas follows:
Since it is not satisfyingthe Dirichlet bc, it is still not a proper gaugetransformation.Noticealsothatunder(5.7),thegaugeslice is shiftedand some ofthe gauge fieldsbecome singular. Forthe discussiononthetreatingtheseissues,wereferthereadertop. 24 ofRef. [9].10This isthereasonwhytheBSD cangeneratea new
6 Thistransformation changesthe sourcesoftheaction, δμν,δμ,δI. One shouldnotethattherearenon-vanishingtransformationsforδ00andδ0.
7 Wehavetwosecondorderdifferentialequationsand onefirstorderonein threevariables:ax,htx,χ.Therefore,thereare5boundaryconditionstofix.Ifwe fixthein-fallingboundaryconditionsforallthreevariables,weareleftwithtwo degreesoffreedom.Werecallequations(3.15)and(3.16).
8 SofarwediscussedthedegreeoffreedommismatchusingtheRGS,sinceour formalismin[3]tocalculatetheconductivityisbasedonit.
9 Wethanktheanonymousrefereeforsuggestingtoconsiderthis.
10 ItisverytemptingtoconsiderBSDasagaugetransformationatleastfrombulk pointofview.Ifwedoit,wegettotheproblem:Itsorbitintheboundarygenerate physicalconfigurationwhileitdoesnotinthebulk,sothatcrisisofd.o.fbecomes real!
solution in theboundary. It is preciselythe same logic whyRGS generate new solution.11 Since RGS and BSD shift the boundary values of fields,they generate the Ward identity forthe transla- tion invariance.Thisisatypical examplehowa globalsymmetry isencodedinalocalgauge transformationandhowtheapparent paradox ofthedegree offreedomcan beresolved becauseofthe holographiccorrespondence.12
6. Basisindependence
In[3],weconstructed aformalism toperformtheACconduc- tivities for the case where multiple fields are coupled together.
We had to choose a basis of initial conditions and one can ask whetherdifferentchoicesofbasisgivethesameresult.Answering this question will also provide an alternative reasoning ofgauge invariance.Toprovidethesetup,let usconsider N fieldsa(x,r), (a=1,2,· · ·,N),
a
(
x,
r) =
ddk(
2π )
de−ikxrp
a
(
k,
r) ,
(6.1)where the index a may include components of higher spin fields. For convenience, rp is multiplied such that the solution a(k,r)goestoconstantatboundary.Inourcase, (1,2,3)= (ax,htx,
χ
)andp=0 for1,3 andp=2 for2.Nearhorizon(r=1),solutionscanbeexpandedas
ai
(
k,
r) = (
r−
1)
νa±ϕ
ia+ ˜ ϕ
ai(
r−
1) + · · ·
,
(6.2)whereanewsubscripti isintroducedtodenotethesolutionscor- responding toa specificindependent setofinitial conditions.For example,
ϕ
ai maybechosenasϕ
1a=
1
, −( μ ˜ + ˜ β)/(
1+ ν ),
1, ϕ
2a=
1
, −( μ ˜ − ˜ β)/(
1+ ν ), −
1,
(6.3)whereweused(3.16)and
ν
= −iω
/(4π
T)asshownbelow(3.15) forincomingboundaryconditiontocomputetheretardedGreen’s function[13].Duetoincomingboundarycondition,ϕ
ai determines˜
ϕ
ai throughhorizon-regularityconditionsothatwecandetermine thesolutioncompletely.Eachinitialvalue vectorϕ
i yieldsasolu- tion,denotedbyi(r),whichisexpandedasai
(
k,
r) → S
ai+ · · · + O
airδa
+ · · · (
near boundary) ,
(6.4) where Sai are the sources (leading terms) of i-th solution and Oai are the operatorexpectation values corresponding to sources (δa≥1).Notice thatwehaveonlytwosolutions whilewehaveathree dimensional vector spaceJof boundaryvalues Ja,a=1,2,3.To
11 Thisargumentisfurtherjustifiedifweconsiderthenumericalcalculationstart- ingfromtheboundaryinsteadfromhorizon.Afterchoosing3fields’svalues,wecan adjusttwo“expectationvalues”suchthatwecangetinfallingboundaryvaluesat thehorizon.Itiseasytoshowthatonlywhenwestartfromasubspaceofcodimen- sion 1,wegetthreeinfallingsolutionnearthehorizon.Ifwestartfromapointoff thisplane,wegetoneinfallingandtwofieldswhicharemixtureofinfallinganda constant.Inthiscalculationthegaugeconditionhrx=0 isintact.Thisdemonstrates thatwecannot imposeinfallingbcforallfieldsathands.Ifwedothesamenumer- icalexperimentforBSD,thepictureisfollowing.TheBSDgeneratetheorbitandit alsomovethegaugeslice.Nowinthiscaseeveninthecasewestartfromtheoff theplane,wecangetthreeinfallingfieldsatthehorizon.Weneedtocalculatethe r-evolutionateach‘gaugefixing’planewhichpassthroughtheinitialdata.
12 Theapparent‘mismatch’isduetothedifferenceinviewingthegaugeorbitof BSD(orRGS)betweenthebulkandboundary.Inthebulk,onecouldviewitas gaugeorbit.Ontheotherhand,fromtheboundarytheorypointofview,thereisno gaugestructureandtheorbitoftranslationsymmetryisphysicaldegreeoffreedom.
fixsuchmismatchofdegreeoffreedom, weintroduce aconstant solution0(r)= S0=(0,1,iβ/
ω
)alongthegauge-orbitdirection oftheresidualgaugetransformationsothatSa1,Sa2,Sa0 formabasis ofJ.NowSandOaregenericregularmatricesoforder 3.Thegeneralsolutionisalinearcombinationofthem:let
a
(
k,
r) =
ai(
k,
r)
ci,
(6.5) withrealconstantsci’s.Wecanchooseci suchthatthecombined sourcetermmatchestheboundaryvalue Ja:Ja
= S
aici,
(6.6)whichyields
a
(
k,
r) =
ai(
k,
r)
ci→
Ja+ · · · +
a rδa+ · · · ,
(
near boundary)
(6.7)where,with(6.4)and(6.6),
a
= O
aici= O
ai(S
−1)
ibJb=:
CabJb.
(6.8) NoticethatbothaandCabareinvariantunderthetransformation Jb→Jb+Sb0becauseCbaSb0=Oai(S−1)ibSb0=Oa0=0,whereOa0= 0 sinceitisthesub-leadingtermoftheconstantsolutions.
Ageneralon-shellquadraticactioninmomentumspacehasthe formof
S(ren2)
=
1 2 ddk(
2π )
d¯
JaA
ab(
k)
Jb+ ¯
JaB
ab(
k)
b,
(6.9)whereAandBareregularmatricesoforderN. ¯Ja means