4/12/2021
, current/
charge(
driftFent
n - E)
-- so→ ←s -7
mandate
: enLE 't iixis 's
- v. p + R,+5
, - moi's.dqfzpj-5zpio.ie
) e i. E'i'+E' jar
.-ii.pies
. -ii.5. etgmuso
* Two - fluids relations s = (x.
p
)Cl) momentum conservation
Ei fodvamiincap III
I
,
=
I' apt EI
. =fair maiiacapempvpcpa
-- oL2)
energy
conservationRs
Jd 've fmri cap
=
gdhszmuia-ciifcaptfdv.mu?vIscap
→
I
Qapt Fap
E.
Rs --Qapto-patu%FFptiej.FI 's
soe3 ) current &
Resistivity
- f-rook collision
approximation
IIe
-- -msnarapcui
-rip
)I c.elision
frequency
- fur electron d-- e ,
DIT
ionsp
-- TFei
- - meneVertue
-city
- momentum conservation
EI
, +I'
ie -- o → menever -- minivieif
near Vei ⇒ Vie-
-
proportional
to currentsj
's -enlai
-iii
)Feit me I
'•
parallel
momentum EG .for
electronmedc=
renee. + is ItFei
. "tf
small inertia p - homogeneous
F- 9
' Ea =
etaeEei.ci
' a'
.
" " "
yay
- E→ ( Oke~✓.io#..m 159
DmI
' .I
'÷ :)
n... -worm
6,2261 i.e Me, I 2ha
' In
general
,I
' can't be determined →p
alone
by
Ineed
E'
p147 Ohmic
heating
energy
conservationRei e are = -
ii. Fei
. -iii. Iie
= -
Eirene
- i'is= -
meveeij
' .ten )
--nj
e5) charge
density
Typically
. we don't use E. E- E'
= ecni -ne )
to determine E' = - of .
Rather ,
parallel
momentum balancegives a useful
info
forol steady
state . cnet.it Vape = oconst.
Te
. ene Jud = J. . Pe = Tea, nene a
etpleolte
?at a ete
le
) en Ene?
Very
good approximation .167 Draft of fluid
In
steady
state , w/o source(
exchangeB'
+ ( entenures
-Ep
3=0→
iii.
r. +5'Ii
'vi. evi
. ④ is→ t
-099 for
E-+ B'' drift diamagnetic £ 9
d.rife Up
Q ) where are B , curvature drifts ?
consistent with particle motion ?
vigor
.VI.
t + Kuru→* As sump
g Itis
' ro emagneticlow -p assumptionfieldby
externalcoils) MaxwellionEA) charge accumulation
A
simplified
example .^
if
, per) I°
- Z consider Ton drifts<##
- particle picture←
F
¥# EIgor
,25253×-813=21
"measure q
Yaffa
tBT
e.Brit
charge
q t →accumulation
Nq opto f Fdfs.ge
→Tee
--envgc
f-
← ← -we:*, =
:L
. - ITp soonstrfo robo
like
pedestal
- flood picture v
;
=B→xo
en Bt
Ep
=jpr
=envpr
" = en BE x e-HpbE
*
=
-4¥
:= - r kept a
- r
to Bo
dear
. -I
'reader :# )
--2÷÷
''
-
-
fee :÷
=:÷
-- do:#
A bit more
generally
,- wi
's
=E. vj ?
e.try
itfor
+E'
so)
CB
) drift
( or current) itself
?→
④ B Goldston 's book .
①
1¥
,chapter 7.4.
→
cancelled since Us
remains same
(
Laboratory
frame) lmoviny frame
)A bit more
generally
,ji
.I'
got +It
.Ei
= -547=-573
en
E.ie?..I.vgo
wi --via
Exiten
Ext
. . - E'+(
E':3
.)
=Baton
-2Pi5×E!3
iii.
=then :tE#
+ten .it:7
-seeing
4/14/21
Single fluidMagnetohydrodynamics
CMH b)Ton & electron
. plasma
density
n = he = hi- Mass
density
pm =Is
msns = Mini- charge
density
6 =jeans
= o- Mass
velocity
isg msn.is/pm=U7tme-m..iie
- current
density j
' =Is
esnsie's
=eneui
-iie 7§
→ → →
wire at
mermaid
{ Eerie
-Een
- y.ee pressure tensor
95
=Is
Msn, Liv's-E'vis- it's>- Total heat flat
af
,ggtzmsns (
(Js-Tiflis
-ie)
( Ignore source terms )
Cl )
continuity
Is
Ms +( continuity
for each 7→ '
feet E
'.cpmii
) - oEs
es x (continuity
for each)
→
agree
E'-j
' so123
Equation of
motionIs
l momentum conservationfor
each)
→
pond :{
= 6E'
+j 't E
' -E. Y
'TERI
e.37 Equation
of energy
Is
e energy conservationfor
each)
→
Feel 'zp
) +5zpc-E.ci
)EET
:use of
'=
ej
- hi' ) - CE'eEtB' ? t-3k€
147
Generalized
Ohm's lawIs Engine
momentum conservationfor
each)
or electron equation
of
motion l two species)mee=
- eneE
' - eneTsB
-E. ietenenj
'electron inertia if - I
ene
E' tu 'xB→=nj
' ,I
ene ← Hall termt Matuell
equations
E'ni
--Mj 't I. IIe
+
E
' = - 25'to :* . :÷ :
Approximation
for 4¥
lowfrequency : :c .is?::...y
phenomenaa : scale
of interest
6 -EoE/a
w .-
Ier Vania
,ii
-E' YI
,-
E
. .
-
j
-II
, - e;ua
CA) small gyro radius
1a
KIEB) high collisional
icy ÷
, ntha
k /cc) low
resistivity
?→
Goldston
Friedberg
lo) Maxwell
Y÷¥÷
-EEE
-uve÷ ⇐
, a""
→
E' xei-rojtt.IE/
Ll)
continuity
n
:÷÷¥ne¥e÷÷
Veni .*
eyed
. -term
-II al
→
¥e I
somany
insta. eieies* .
w→=o
←Incompressible
.( defence
. so ←Effect
-Pacino
EZ) momentum
:÷÷÷:w÷n÷i÷ ⇐⇒
. .Pm ai
'
be
-z→
npmuvth.la
~ a-Pm Ven? la Vthi
Pm ii. E' E
TE ~Yn÷z { cgchzj
Ol') MHDdrift-ordering
-MHDordering
"
Hazeltine
u :÷n←÷ii÷x¥÷
p a "pen
momentum ~plz
,,viscosity
pm
DII
= +Exit
-Ep
-E3)
Energy
Millen?
" ÷w"n#¥÷
Puth-. la/ ⇐ It÷÷t
.kn -
Plmevei
,
Ki -
( Iie )£k
,fake )tIapcE
.tEEtE
=
of
-E' taxis )
=
ng
2( 47 Ohm 's law
→
u¥ .sn
.:::÷÷ii÷i7 ⇒ ¥÷It
since
jxis
' -E'
perE'
p,:¥;÷
-minister
( OCI )
MHD -ordering
OCD
drift MHDun O
( Ia )
- Ken,-E' tuxes -mjeIxEe
→ resistive MH17
for
parallel
motion .J
, ~ModBe
→
n-
u¥e
-Foa
-Tn
Magnetic Reynolds
( Lnundqaist )
number
I
' + itB'
to → ideal MH17* MHD
equations
E'
+E' =µj
→by eliminating
E' -j
'E'
c-E'
= -a'I
see dem
Fet
pm CE'
-i' 7=0
defeat pm
-E)
" O dePmdII=jx5
'-Ep
→Eet Esp
'i' 7=0
dIetEp Ezo
"
diet 4tB%
.> sis.Bye
.E'
+ E'xpgen.jo III
- E'
utBCE.u7-z.IE
( 4 equations 8 equations
for ( E'. -
E.
ii.j.pm.PT
for c. ii.5.
pm . P)simple
geometry (
ie→ -15×-547%5
BtB=bz5t5xEy
l 4. &.bz , -47 Pa , P
four field equations.